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1. Introduction

Fixed point theory plays very important role in science, applied science, medical sci-
ence, data science, engineering and economic. Moreover, it has different applications to
many areas of science, such as existence of nonlinear equations, optimization problems [1],
equilibrium problems [2], image restoration [3], regression and data classification prob-
lems [4], variational inequality problems [5] and split feasibility problems [6]. Many real
life problems can be converted into equations in the form of fixed point problems meaning
that we have to find a fixed point of some operators. Recently, many fixed point algo-
rithms have been proposed and studied to solving various kinds of real world problems,
such as Picard iteration, Mann iteration [7], Halpern iteration [8], etc.

In this work, we are dealing with the convex minimization problem which can be for-
mulated as

min
x∈Rn
{F (x) = f(x) + g(x)}, (1.1)
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where g : Rn → R ∪ {∞} is proper convex and lower semi-continuous function, and
f : Rn → R is convex differentiable with gradient ∇f being L-Lipschitz constant for some
L > 0. The set of minimizers of F is denoted by Argmin(F ). The classical Forward-
Backward splitting (FBS) algorithm [9] for problem (1.1) is given by the following iterative
formula:

xn+1 = proxcng(I − cn∇f)(xn), cn ∈ (0, 2/L), (1.2)

where cn is the step-size, I is an identity operator and proxg is the proximity operator of
g defined by

proxg(x) = arg min
y

{
g(y) +

‖x− y‖2

2

}
. (1.3)

This method (1.2) has been widely used due to its simplicity, as a result it has been
improved by many works such as the method that has improved the convergence rate
of (1.2) signicantly. It is a method known as the fast iterative shrinkage-threshodling
algorithm or FISTA. It was proposed by Beck and Teboulle [10] as follows:

x1 = y0 ∈ Rn, t1 = 1

yn = Txn

tn+1 =
1 +

√
1 + 4t2n
2

, θn =
tn − 1

tn+1
,

xn+1 = yn + θn(yn − yn−1). (1.4)

Very recently, Laing and Schonlieb [11] modified FISTA by replacing tn+1 =
p+
√
q+rt2n
2

where p, q > 0 and 0 < r ≤ 4, and proved weak convergence theorem of FISTA.
Later, the new accelerated proximal gradient algorithm (NAGA) was proposed by

Verma and Shukla in [12] as follows:

x0, x1 ∈ C
yn = xn + θn(xn − xn−1),

xn+1 = Tn[(1− αn)yn + αnTnyn], (1.5)

where Tn is the forward-backward operator of f and g with respect to cn ∈ (0, 2/L).
They proved a convergence theorem of NAGA and applied this method for solving the
non-smooth convex minimization problem.

Motivated by those works mentioned above, in this paper, a new accelerated fixed
point algorithms for sloving (1.1) is proposed by employing the concepts of Aoyama et al.
iteration process together with the inertial step for a countable family of nonexpansive
mappings. We also prove the convergence of our algorithm under some conditions and
apply it to solving regression and classification problems. The organization of this paper
is as follows. In Section 2, we describes some notation and useful Lemmas for the later
section. In Section 3, we introduce our proposed algorithm for common fixed point
problem, give the theoretical proofs of its convergence under particular condition. In
Section 4, we apply our algorithm to solving regression and classification problems.
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2. Preliminaries

Let H be a real Hilbert space with norm ‖·‖ and inner product 〈·, ·〉, and C a nonempty
closed convex subset of H. A mapping T : C → C is said to be L-Lipschitz operator if
there exists L > 0 such that ‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ C. An L-Lipschitz operator
is called nonexpansive operator if L = 1. A point x ∈ C is a fixed point of T if Tx = x.
Let F (T ) := {x ∈ C : Tx = x}, the fixed point set of T. Let {Tn} and Ω be families of
nonexpansive operator of C into itself such that ∅ 6= F (Ω) ⊂ Γ :=

⋂∞
n=1 F (Tn), where

F (Ω) is the set of all common fixed points of Ω, and let ωw(xn) denote the set of all
weak-cluster point of a bounded sequence {xn} in C. A sequence Tn is said to satisfy the
NST-condition(I) with Ω [13], if for every bounded sequence {xn} in C,

lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0 for all T ∈ Ω.

If Ω is singleton, i.e., Ω = T , then {Tn} is siad to satisfy the NST-condition(I) with T .
After that, Nakajo et al. [14] introduced the NST*-condition which is more general than
that of NST-condition. A sequence {Tn} is siad to satisfy the NST*-condition if for every
bounded sequence {xn} in C,

lim
n→∞

‖xn − Tnxn‖ = lim
n→∞

‖xn − xn+1‖ = 0 implies ωw(xn) ⊂ Γ.

It follows directly from above definition that if {Tn} satisfies the NST-condition(I), then
{Tn} satisfies the NST*-condition. Observe that if g : Rn → R ∪ {∞} is a proper
convex and lower semi-continuous function, then for all x ∈ Rn the proxg(x) exists and
unique [15]. The solution of (1.1) can be characterized by Theorem 16.3 of Bauschke and
combettes [16] as follows:

x∗ is a minimizer of (f + g) if and only if 0 ∈ ∂g(x∗) +∇f(x∗)

where ∂g is subdifferential of g and ∇f is the gradient of f . The subdifferential of g at
x∗, denoted by ∂g(x∗), is defined by

∂g(x∗) := {u : g(x) ≥ 〈u, x− x∗〉+ g(x∗) for all x},

It is well-known that the subdifferential operator ∂g is maximal monotone, see [17] for
more details. For solving (1.1) is characterized by the following fixed point problem:

x∗ is a minimizer of (f + g) if and only if x∗ = proxcg(I − c∇f)(x∗)

= Jc∂g(I − c∇f)(x∗),

where c > 0 and J∂g is resolvent of ∂g defined by J∂g = (I + ∂g)−1. It is also known that
proxcg(I − c∇f) is a nonexpansive mapping when c ∈ (0, 2/L). The operator proxcg(I −
c∇f) is called the forward-backward operator of f and g with respect to c. We end this
part with the following Lemmas which will be used to prove our main results.

Lemma 2.1. [4] For a real Hilbert speace H, let g : H → R ∪ {∞} be proper convex and
lower semi-continuous function, and f : H → R be convex differentiable with gradient ∇f
being L-Lipschitz constant for some L > 0. If {Tn} is the forward-backward operator of f
and h with respect to cn ∈ (0, 2/L) such that cn converges to c, then {Tn} satisfies NST-
condition(I) with T, where T is the forward-backward operator of f and h with respect to
c ∈ (0, 2/L).

Lemma 2.2. [18] Let H be a real Hilbert space. Then the following results hold:



2004 Thai J. Math. Vol. 18 (2020) /P. Thongsri and S. Suantai

(i) for all t ∈ [0, 1] and x, y ∈ H,

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2;

(ii) ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2 ∀x, y ∈ H.

Lemma 2.3. [19] Let {an}, {bn} and {γn} be sequences of nonnegative real numbers such
that

an+1 ≤ (1 + γn)an + bn, n ∈ N.

If
∑∞
n=1 γn <∞ and

∑∞
n=1 bn <∞, then limn→∞ an exists.

Lemma 2.4. [20] Let H be a Hilbert space and {xn} be a sequence in H such that there
exists a nonempty set Γ ⊂ H satisfying

(i) for every p ∈ Γ, limn→∞ ‖xn − p‖ exists;
(ii) each weak-cluster point of the sequence {xn} is in Γ.

Then there exists x∗ ∈ Γ such that {xn} weakly converges to x∗.

Lemma 2.5. [3] Let {an} and {θn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 + θn)an + θnan−1, n ∈ N.

Then the following holds

an+1 ≤ K ·
n∏
j=1

(1 + 2θj), where K = max{a1, a2}.

Moreover, if
∑∞
n=1 θn <∞, then {an} is bounded.

3. Main Results

In this section, we propose a new accelerated fixed point algorithms for finding a
common fixed point of a countable family of nonexpansive operators in a real Hilbert
space. We now ready to introduce this algorithm by the theorem as follows:

Theorem 3.1. Let H be a real Hilbert space and {Tn : H → H} be a family of non-
expansive operators. Suppose {Tn} satisfies NST ∗-condition and Γ :=

⋂∞
n=1 F (Tn) 6= ∅.

Let {xn} be a sequence generated by Algorithm 1 as follows:

x0, x1 ∈ H
wn = xn + θn(xn − xn−1)

zn = (1− γn)wn + γnTnwn

xn+1 = αnxn + βnTnwn + (1− αn − βn)Tnzn (3.1)

where γn ∈ [a1, b1] ⊂ (0, 1), βn ∈ [0, 1], αn ∈ [a1, b1) ⊂ [0, 1), αn + βn ∈ [a1, b1] ⊂ (0, 1),
θn ≥ 0 and

∑∞
n=1 θn <∞. Then the following hold:

(i) ‖xn+1 − x∗‖ ≤ K ·
∏n
j=1(1 + 2θj), where K = max{‖x1 − x∗‖, ‖x2 − x∗‖} and

x∗ ∈
⋂∞
n=1 F (Tn),

(ii) xn ⇀ x∗ ∈
⋂∞
n=1 F (Tn).
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Proof. (i) Let x∗ ∈ Γ. By (3.1) and nonexpansiveness of Tn, we have

‖wn − x∗‖ = ‖xn + θn(xn − xn−1)− x∗‖
≤ ‖xn − x∗‖+ θn‖xn − xn−1‖, (3.2)

‖zn − x∗‖ = ‖(1− γn)wn + γnTnwn − x∗‖
= ‖(1− γn)(wn − x∗) + γn(Tnwn − x∗)‖
≤ (1− γn)‖wn − x∗‖+ γn‖Tnwn − x∗‖
≤ ‖wn − x∗‖, (3.3)

and

‖xn+1− x∗‖ = ‖αnxn+βnTnwn+(1−αn−βn)Tnzn− x∗‖
= ‖αn(xn− x∗)+βn(Tnwn−x∗)+(1−αn−βn)(Tnzn−x∗)‖
≤ αn‖xn − x∗‖+βn‖Tnwn − x∗‖+ (1− αn − βn)‖Tnzn − x∗‖
≤ αn‖xn − x∗‖+ βn‖wn − x∗‖+ (1− αn − βn)‖zn − x∗‖
≤ αn‖xn − x∗‖+ βn(‖xn − x∗‖+ θn‖xn − xn−1‖)
+ (1− αn − βn)(‖xn − x∗‖+ θn‖xn − xn−1‖)
= ‖xn − x∗‖+ (1− αn)θn‖xn − xn−1‖. (3.4)

This implies

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖+ θn‖xn − xn−1 + x∗ − x∗‖ (3.5)

≤ (1 + θn)‖xn − x∗‖+ θn‖xn−1 − x∗‖

Apply Lemma 2.5, we get ‖xn+1 − x∗‖ ≤ K ·
∏n
j=1(1 + 2θj), where K = max{‖x1 −

x∗‖, ‖x2 − x∗‖}. Since
∑∞
n=1 θn < ∞, it follows that {xn} is bounded. This implies∑∞

n=1 θn‖xn − xn−1‖ <∞.
(ii) By (3.4) and Lemma 2.3, we obtain limn→∞ ‖xn − x∗‖ exists. By Lemma 2.2(ii),

we obtain

‖wn − x∗‖2 ≤ (‖xn − x∗‖+ θn‖xn − xn−1‖)2

= ‖xn − x∗‖2 + θ2n‖xn − xn−1‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖. (3.6)

By Lemma 2.2(i), we have

‖zn − x∗‖2 = ‖(1− γn)(wn − x∗) + γn(Tnwn − x∗)‖2

= (1−γn)‖wn−x∗‖2+γn‖Tnwn−x∗‖2−γn(1−γn)‖wn−Tnwn‖2

≤ ‖wn − x∗‖2 − γn(1− γn)‖wn − Tnwn‖2. (3.7)
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Using Lemma 2.2(i) together with (3.6) and (3.7), we get

‖xn+1 − x∗‖2 = ‖αnxn + βnTnwn + (1− αn − βn)Tnzn − x∗‖2

= ‖αn(xn− x∗) + βn(Tnwn− x∗) + (1−αn−βn)(Tnzn−x∗)‖2

≤ αn‖xn− x∗‖2+βn‖Tnwn−x∗‖2 +(1−αn−βn)‖Tnzn−x∗‖2

− αnβn‖Tnwn − xn‖2

≤ αn‖xn − x∗‖2 + βn‖wn − x∗‖2 + (1− αn − βn)‖zn − x∗‖2

≤ αn‖xn − x∗‖2 + βn‖xn − x∗‖2 + βnθ
2
n‖xn − xn−1‖2

+ 2θnβn‖xn − x∗‖‖xn − xn−1‖+ (1− αn − βn)(‖xn − x∗‖2

+ θ2n‖xn − xn−1‖2 + 2θn‖xn − x∗‖‖xn − xn−1‖
− γn(1− γn)‖wn − Tnwn‖2).

Thus

(1−αn−βn)γn(1−γn)‖wn−Tnwn‖2 ≤ ‖xn−x∗‖2+(1−αn)θ2n‖xn−xn−1‖2

+ (1− αn)2θn‖xn − x∗‖‖xn − xn−1‖
− ‖xn+1 − x∗‖2. (3.8)

Since
∑∞
n=1 θn‖xn−xn−1‖ <∞ and limn→∞ ‖xn−x∗‖ exists, it follows that limn→∞ ‖wn−

Tnwn‖ = 0. Note that

‖xn − Tnxn‖ ≤ ‖xn − wn‖+ ‖wn − Tnwn‖+ ‖Tnwn − Tnxn‖
≤ 2‖xn − wn‖+ ‖wn − Tnwn‖, (3.9)

and

‖zn − wn‖ = ‖(1− γn)wn + γnTnwn − wn‖
= γn‖Tnwn − wn‖. (3.10)

These imply limn→∞ ‖xn − Tnxn‖ = 0 and limn→∞ ‖zn − wn‖ = 0. By (3.1) and nonex-
pansiveness of Tn, we have

‖xn+1 − xn‖ = ‖αnxn + βnTnwn + (1− αn − βn)Tnzn − xn‖
= ‖βn(Tnwn − Tnzn) + (1− αn)(Tnzn − xn)‖
≤ βn‖Tnwn − Tnzn‖+ (1− αn)‖Tnzn − xn‖
≤ βn‖wn − zn‖+ (1− αn)(‖Tnzn − Tnxn‖+ ‖Tnxn − xn‖)
≤ βn‖wn − zn‖+(1−αn)‖zn−xn‖+(1−αn)‖Tnxn− xn‖
≤ βn‖wn − zn‖+ (1− αn)‖zn − xn‖+ (1− αn)‖wn − xn‖
+ (1− αn)‖Tnxn − xn‖,

(3.11)

‖wn − xn‖ = θn‖xn − xn+1‖ → 0, and ‖wn − zn‖ = γn‖Tnwn − wn‖ → 0.

These imply limn→∞ ‖xn − xn+1‖ = 0. Since {Tn} satisfies NST*-condition, we get
ωw(xn) ⊂ Γ :=

⋂∞
n=1 F (Tn). Therefore, by Lemma 2.4, we obtain that {xn} converges

weakly to a point x∗ ∈ Γ. This completes the proof.
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Finally, we apply our proposed algorithm, for solving the minimization problem (1.1)
by setting Tn = proxcng(I − cn∇f), the forward-backward operator of f and g with
respect to cn, where g : H → R∪{∞} is proper covex and lower semi-continuous function
and f : H → R is convex differentiable with gradient ∇f being L-Lipschitz constant
for some L > 0 with Argmin(f + g) 6= ∅. The following result is directly obtained by
Theorem 3.1.

4. Simulated Results for Regression and Classification
Problems

In this section, we predict a sine function and classify datasets by our proposed learning
algorithm. All results are performed on Intel Core-i5 gen 8th with 8.00 GB RAM, windows
10, under MATLAB computing environment.

Extreme learning machine(ELM). Let D = {(xi, ti) : xi ∈ Rn, ti ∈ Rm, i = 1, 2, ..., N}
be a training set with N distinct samples, xi and ti are called input data and target,
respectively. A standard SLFNs with M hidden nodes and activation function Φ(x), e.g.
sigmoid, are mathematically modeled as

M∑
j=1

βjΦ(〈wj , xi〉+ bj) = oi, i = 1, ..., N,

where wj is the weight vector connecting the jth hidden node and the input node, βj
is the weight vector connecting the jth hidden node and the output node, and bj is the
threshold of the jth hidden node. The target of standard SLFNs is to approximate these

N samples with zero error means that
∑N
i=1 ‖oi − ti‖ = 0, i.e., there exist βj , wj , bj such

that
M∑
j=1

βjΦ(〈wj , xi〉+ bj) = ti, i = 1, ..., N.

From above N equations, we can formulate a simple equation as

Hβ = T,

where

H =

Φ(〈w1, x1〉+ b1) · · · Φ(〈wM , x1〉+ bM )
...

. . .
...

Φ(〈w1, xN 〉+ b1) · · · Φ(〈wM , xN 〉+ bM )


N×M

β = [βT1 , ..., β
T
M ]Tm×M , T = [tT1 , ..., t

T
N ]Tm×N .

The goal of a standard SLFNs is estimate βj , wj and bj for solving (1.1) while ELM aim
to find only βj with randomly wj and bj .

We conduct some experiments on regression and classication problems, the problem is
formulated as the following convex minimization problem:

min
β
‖Hβ − T‖22 + λ ‖β‖1 ,
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where ‖·‖1 is l1-norm defined by ‖x‖1 =
∑n
i=1 |xi| and λ > 0 is called regularization

parameter. This problem is called the least absolute shrinkage and selection operator
(LASSO) [21].

4.1. Regression for a Sine Function

In order to regress a sine function, we create a training set by randomly 10 distinct
data,our activation function is sigmoid, number of hidden nodes M = 100, and regulariza-
tion parameter λ = 1× 10−5. In Algorithm 1, we set Tn = proxcng(I − cn∇f), αn = 0.1,
βn = 0.1, γn = 0.9 and

θn =

{
1
2n , if n > 1700,

0.9 , if n ≤ 1700.

We then get results compared to FISTA and NAGA as in Figure 1 and Table 1.

Method MSE Computational time

Algorithm 1 2.016534× 10−3 4.23423× 10−2

FISTA 1.982393× 10−1 2.11288× 10−2

NAGA 9.596212× 10−2 2.49963× 10−2

Table 1. Numerical results of regression of a function sine.

Table1 and Figure1 show that Algorithm 1 gives a better performance to predict a sine
function than FISTA and NAGA while a computational time have a few difference.

Figure 1. A regression of the sine function at 1700th step

4.2. Data Classification

In order to classify datasets, we classify the type of iris plants from Iris dataset and
identify heart patient from Heart Disease UCI dataset. We would to thanks
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https://www.kaggle.com/ and https://archive.ics.uci.edu/ for supporting database web-
site.

• Iris dataset [22] This dataset contains 3 classes of 50 instances where each class
refers to a type of iris plant. The aim is to separate each type of iris plant (iris
setosa, iris versicolour and iris virginica) from sepal and petal length.
• Heart Disease UCI dataset [23] The original dataset contains 76 attributes,
but all published experiments refer to using a subset of 14 of them. This dataset
refers to the presence of heart disease in the patient. The predicted attribute is
aim to classify the data into 2 classes.

Table 2 shows information about the datasets,number of attributes and number of
samples for training (around 70% of data) and testing (remainder 30% of data) sets.

Dataset Attributes Sample
Train Test

Heart Disease UCI 14 213 90
Iris 4 105 45

Table 2. Information about the datasets.

Dataset RegularizedELM
Algorithm 1 NAGA FISTA
test train test train test train

Heart Disease UCI 68.57 62.37 67.39 61.29 51.74 54.84
Iris 98.10 100.00 95.24 97.78 94.29 95.56

Table 3. Information about the datasets.

We set all control parameters λ, αn, βn, γn, θn as in Section 4.1, activation function is
sigmoid, and the nmber of hidden nodes M = 100. Given a training set for each dataset
as mentioned in Table 2. An accuracy of the output data is calculated by

accuracy =
correct predicted data

all data
× 100.

Table 3 shows the performance in term of accuracy of training set and accuracy of
testing set of each methods.
The results presented in Table 3 are obtained as follows:

• The proposed learning algorithm have a high performance of accuracy of train-
ing set with a few difference.
• The optimal weight computed by proposed algorithm gives a performance of
accuracy better than those computed by NAGA and FISTA
• The proposed learning algorithm has a high performance of accuracy of testing
set.
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