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1. Introduction

A large chunk of psychology is divided into many topics such as excitement, stimulus,
learning of the single selective time, time of reaction, etc. Unlike the other extensive group
of psychological problems of memory, thinking, and perception, all of the areas mentioned
above are having a common theme, which is choice. While studying, sensation choice is
lying between stimuli; it lies between responses in the process of learning. In contrast,
motivation can be seen in the substitutes of changeable preference evaluations. Accord-
ing to some psychologists’ beliefs, these differences are fundamental for understanding
behavior, significantly the difference that lies in stimulus and response.

The two-reaction, two-event, path-independent, contingent form of various stochastic
models for the learning process is given by the following equation

xn+1 =

{
Q1xn with probability xn,
Q2xn with probability (1− xn),

(1.1)
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where Q1 and Q2 act as transition operators, and on trial n, the probabilities of the
responses A1 and A2 are xn and (1 − xn), respectively. Bush and Mosteller [1] defined
these transition operators Q1 and Q2 as

Q1xn = α1xn + (1− α1),

Q2xn = α2xn, (1.2)

where α1, α2 ∈ [0, 1]. Such type of linear model is known as ‘alpha model.’ If g : [0, 1]→
[0, 1] is the outcome of the starting probability with boundary conditions g(0) = 0 and
g(1) = 1, then we have the following functional equation

g(x) = xg(Q1(x)) + (1− x)g(Q2(x)) (1.3)

for all x ∈ [0, 1].
In 2015, Istrăţescu’s result [2] was expanded by Berinde and Khan [3] to prove the exis-

tence of a solution of the functional equation (1.3). They defined the transition operators
Q1, Q2 : [0, 1] → [0, 1] (satisfying the boundary conditions Q1(1) = 1 and Q2(0) = 0) as
Banach contraction mappings with contractive coefficients α and β, respectively, where
0 < α ≤ β < 1. Recently, Turab and Sintunavarat [4] used such type of functional
equation to observe the behavior of the paradise fish in a two-choice situation.

On the other hand, Epstein [5] proposed the following functional equation, which is
very similar to the functional equation (1.3) defined above

g(x) =

(
ex

1 + ex

)
g(Q1(x)) +

(
1− ex

1 + ex

)
g(Q2(x)) (1.4)

for all x ∈ [0, 1], where Q1, Q2 : [0, 1] → [0, 1] are the given transition operators. Such
type of this model has many applications in learning theory and mathematical psychology,
and named as ‘beta model.’ With these observations in mind, we first re-write (1.3) and
(1.4) into the following more general form

g(x) = φ(x)g(h(x)) + (1− φ(x)) g(k(x)) (1.5)

for all x ∈ [0, 1], where φ, h, k : [0, 1]→ [0, 1] are the given mappings and g : [0, 1]→ R is
an unknown function.

The objective of this paper is to consider the functional equation (1.5) and investigate
the existence and uniqueness of a solution of the proposed functional equation by using the
Banach contraction principle or Banach fixed point theorem. After that, we will discuss
the Hyers-Ulam and Hyers-Ulam-Rassias stability of the functional equation (1.5). At
the end, we will present some examples which show the significance of our results.

2. Preliminaries

Following definitions and known results will be needed in the sequel.

Definition 2.1. Let A and B are two nonempty sets and Z : A → B be a mapping. A
point a ∈ A is called a fixed point of Z if and only if a = Za.

Definition 2.2. Let (X, d) be a metric space and Z : X → X be a mapping.

(1) Z is called a Banach contraction mapping if there is a nonnegative real number
k < 1 such that

d(Zx,Zy) ≤ kd(x, y) (2.1)

for all x, y ∈ X.
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(2) Z is called a contractive mapping if

d(Zx,Zy) < d(x, y) (2.2)

for all x, y ∈ X with x 6= y.
(3) Z is called a non-expansive mapping if

d(Zx,Zy) ≤ d(x, y) (2.3)

for all x, y ∈ X.

Remark 2.3. For a metric space (X, d) and a mapping Z : X → X, the following
obserbvations hold:

(1) if Z is a Banach contraction mapping, then Z is a contractive mapping;
(2) if Z is a contractive mapping, then Z is a nonexpansive mapping.

Theorem 2.4 (Banach contraction principle or Banach fixed point theorem, [6]). Let
(X, d) be a complete metric space. A Banach contraction mapping Z : X → X has
precisely one fixed point. Moreover, the Picard iteration {xn} in X which is defined by
xn = Zxn−1 for all n ∈ N, where x0 ∈ X, converges to the unique fixed point of Z.

3. Main Results

Let X be the collection of all continuous real-valued functions g : [0, 1]→ R such that
g(0) = 0 and

sup
x 6=y

|g(x)− g(y)|
|x− y|

< ∞. (3.1)

If ‖·‖ : X → R is defined by

‖g‖ = sup
x 6=y

|g(x)− g(y)|
|x− y|

(3.2)

for all g ∈ X, then (X, ‖·‖) is a Banach space. Throughout this paper, unless otherwise
specified, ‖·‖ is a norm on X defined by (3.2). Furthermore, we shall be interested with
the existence of a solution of the following functional equation

g(x) = φ(x)g(h(x)) + (1− φ(x)) g(k(x)) (3.3)

for all x ∈ [0, 1], where g : [0, 1] → R is an unknown function, h, k : [0, 1] → [0, 1] are
given contraction mappings with contractive coefficients α1 and α2, respectively. Also,
φ : [0, 1] → [0, 1] is a given non-expansive mapping. We now turn to our main result in
this paper.

Theorem 3.1. Consider the functional equation (3.3). If h(0) = 0 = k(0) and α1 +α2 <
1
2 , then the mapping Z : X → X defined for each g ∈ X by

(Zg)(x) = φ(x)g(h(x)) + (1− φ(x))g(k(x)) (3.4)

for all x ∈ [0, 1] is a Banach contraction mapping with the metric d induced by ‖·‖.
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Proof. Let d : X ×X → R be a metric induced by ‖·‖ on X. Then (X, d) is a complete
metric space. First, we want to claim that Z is well-defined. For each g ∈ X, we obtain

(Zg)(0) = φ(0)g(h(0)) + (1− φ(0))g(k(0)) = 0.

Also, Zg is continuous and ‖Zg‖ < ∞ for all g ∈ X. Therefore, Z is a self operator on
X and so it is well-defined. Furthermore, it is clear that the solution of the functional
equation (3.4) is equivalent to the fixed point of an operator Z. As Z is a linear mapping,
so that for g1, g2 ∈ X, we have

‖Zg1 − Zg2‖ = ‖Z(g1 − g2)‖ .

Thus, to estimate ‖Zg1 − Zg2‖, we let g1, g2 ∈ X and for each distinct points x, y ∈ [0, 1],
we obtain

|(Zg1 − Zg2)(x)− (Zg1 − Zg2)(y)|
|x− y|

=

∣∣∣∣ 1

x− y
[φ(x)(g1 − g2)(h(x)) + (1− φ(x))(g1 − g2)(k(x))

−φ(y)(g1 − g2)(h(y))− (1− φ(y))(g1 − g2)(k(y))]

∣∣∣∣
=

∣∣∣∣ 1

x− y
[φ(x)(g1 − g2)(h(x)) + (1− φ(x))(g1 − g2)(k(x))

−φ(y)(g1 − g2)(h(y))− (1− φ(y))(g1 − g2)(k(y))

+φ(x)(g1 − g2)(h(y)) + (1− φ(x))(g1 − g2)(k(y))

−φ(x)(g1 − g2)(h(y))− (1− φ(x))(g1 − g2)(k(y))]

∣∣∣∣
=

∣∣∣∣ 1

x− y
[φ(x)(g1 − g2)(h(x))− φ(x)(g1 − g2)(h(y))]

+
1

x− y
[(1− φ(x))(g1 − g2)(k(x))− (1− φ(x))(g1 − g2)(k(y))]

+
1

x− y
[φ(x)(g1 − g2)(h(y))− φ(y)(g1 − g2)(h(y))]

+
1

x− y
[(1− φ(x))(g1 − g2)(k(y))− (1− φ(y))(g1 − g2)(k(y))]

∣∣∣∣
≤ φ(x)‖g1 − g2‖

|h(x)− h(y)|
|x− y|

+ (1− φ(x))‖g1 − g2‖
|k(x)− k(y)|
|x− y|

+

∣∣∣∣φ(x)− φ(y)

x− y

∣∣∣∣ ‖g1 − g2‖ |h(y)− h(0)|
|y − 0|

|y − 0|

+

∣∣∣∣φ(x)− φ(y)

x− y

∣∣∣∣ ‖g1 − g2‖ |k(y)− k(0)|
|y − 0|

|y − 0|

≤ α1φ(x)‖g1 − g2‖+ α2(1− φ(x))‖g1 − g2‖
+α1 |y − 0| ‖g1 − g2‖+ α2 |y − 0| ‖g1 − g2‖

≤ 2(α1 + α2)‖g1 − g2‖.
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This gives that

d(Zg1, Zg2) = ‖Zg1 − Zg2‖ ≤ 2(α1 + α2)‖g1 − g2‖ = 2(α1 + α2)d(g1, g2).

It follows from 0 ≤ 2(α1 + α2) < 1 that Z is a Banach contraction mapping with the
metric d induced by ‖·‖.

From Theorem 3.1, we get the following result related to the existence and uniqueness
of a solution of the functional equation (3.3).

Theorem 3.2. The functional equation (3.3) has a unique solution in X provided that

h(0) = 0 = k(0) and α1 + α2 <
1

2
. Moreover, the iteration {gn} in X which is defined by

(gn)(x) = φ(x)gn−1(h(x)) + (1− φ(x))gn−1(k(x))

for all n ∈ N, where g0 ∈ X, converges to the unique solution of the functional equation
(3.3) in the sense of the metric d induced by ‖·‖.

Proof. By using the Banach contraction principle with Theorem 3.1, we get the conclusion
in this theorem.

Remark 3.3. The condition h(0) = 0 = k(0) is sufficient to prove the existence and
uniqueness of a solution of the proposed functional equation (3.3) but not necessary. Our
next theorems are independent of this condition.

Theorem 3.4. Consider the functional equation (3.3). Suppose that φ(0) = 0 = k(0)
and there exists an α3 ≥ 0 such that

|h(x)− k(x)| ≤ α3 (3.5)

for all x ∈ [0, 1] with α1 + α2 + α3 < 1. Then the mapping Z : X → X defined for each
g ∈ X by

(Zg)(x) = φ(x)g(h(x)) + (1− φ(x))g(k(x)) (3.6)

for all x ∈ [0, 1] is a Banach contraction mapping with the metric d induced by ‖·‖.

Proof. Let d : X ×X → R be a metric induced by ‖·‖ on X. Then (X, d) is a complete
metric space. First, we want to claim that Z is well-defined. For each g ∈ X, we obtain

(Zg)(0) = φ(0)g(h(0)) + (1− φ(0))g(k(0)) = 0.

Also, Zg is continuous and ‖Zg‖ < ∞ for all g ∈ X. Therefore, Z is a self operator on
X and so it is well-defined. Furthermore, it is clear that the solution of the functional
equation (3.6) is equivalent to the fixed point of an operator Z. As Z is a linear mapping,
so that for g1, g2 ∈ X, we have

‖Zg1 − Zg2‖ = ‖Z(g1 − g2)‖ .
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Thus, to estimate ‖Zg1 − Zg2‖, let g1, g2 ∈ X and for each distinct points x, y ∈ [0, 1],
we obtain

|(Zg1 − Zg2)(x)− (Zg1 − Zg2)(y)|
|x− y|

=

∣∣∣∣ 1

x− y
[φ(x)(g1 − g2)(h(x)) + (1− φ(x))(g1 − g2)(k(x))

−φ(y)(g1 − g2)(h(y))− (1− φ(y))(g1 − g2)(k(y))]

∣∣∣∣
=

∣∣∣∣ 1

x− y
[φ(x)(g1 − g2)(h(x)) + (1− φ(x))(g1 − g2)(k(x))

−φ(y)(g1 − g2)(h(y))− (1− φ(y))(g1 − g2)(k(y))

+φ(x)(g1 − g2)(h(y)) + (1− φ(x))(g1 − g2)(k(y))

−φ(x)(g1 − g2)(h(y))− (1− φ(x))(g1 − g2)(k(y))]

∣∣∣∣
=

∣∣∣∣ 1

x− y
[φ(x)(g1 − g2)(h(x))− φ(x)(g1 − g2)(h(y))]

+
1

x− y
[(1− φ(x))(g1 − g2)(k(x))− (1− φ(x))(g1 − g2)(k(y))]

+
1

x− y
[φ(x)(g1 − g2)(h(y))− φ(y)(g1 − g2)(h(y))]

+
1

x− y
[(1− φ(x))(g1 − g2)(k(y))− (1− φ(y))(g1 − g2)(k(y))]

∣∣∣∣
≤ φ(x)‖g1 − g2‖

|h(x)− h(y)|
|x− y|

+ (1− φ(x))‖g1 − g2‖
|k(x)− k(y)|
|x− y|

+

∣∣∣∣φ(x)− φ(y)

x− y

∣∣∣∣ ‖g1 − g2‖ |h(y)− k(y)|

≤ α1φ(x)‖g1 − g2‖+ α2(1− φ(x))‖g1 − g2‖+ α3‖g1 − g2‖
≤ (α1 + α2 + α3)‖g1 − g2‖.

This gives that

d(Zg1, Zg2) = ‖Zg1 −Zg2‖ ≤ (α1 +α2 +α3)‖g1 − g2‖ = (α1 +α2 +α3)d(g1, g2).

It follows from 0 ≤ α1 + α2 + α3 < 1 that Z is a Banach contraction mapping with the
metric d induced by ‖·‖.

From Theorem 3.4, we get the following result related to the existence and uniqueness
of a solution of the functional equation (3.3).

Theorem 3.5. The functional equation (3.3) has a unique solution in X provided that
φ(0) = 0 = k(0) and there exists an α3 ≥ 0 with α1 + α2 + α3 < 1 such that (3.5) holds.
Moreover, the iteration {gn} in X which is defined by

(gn)(x) = φ(x)gn−1(h(x)) + (1− φ(x))gn−1(k(x))

for all n ∈ N, where g0 ∈ X, converges to the unique solution of the functional equation
(3.3) in the sense of the metric d induced by ‖·‖.
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Proof. By using the Banach contraction principle with Theorem 3.4, we get the conclusion
in this theorem.

From the above results, we get the following corollaries.

Corollary 3.6. Consider the functional equation (3.3). Suppose that φ(0) = 0 = k(0)
and h, k : [0, 1] → [0, 1] are bounded by constants m1,m2 ≥ 0, respectively. For 0 <
α1 + α2 +m1 +m2 < 1, the mapping Z : X → X defined for each g ∈ X by

(Zg)(x) = φ(x)g(h(x)) + (1− φ(x))g(k(x)) (3.7)

for allx ∈ [0, 1] is a Banach contraction mapping with the metric d induced by ‖·‖.

Corollary 3.7. The functional equation (3.3) has a unique solution provided that φ(0) =
0 = k(0) and h, k : [0, 1]→ [0, 1] are bounded by constants m1,m2 ≥ 0, respectively, such
that 0 < α1 + α2 +m1 +m2 < 1. Moreover, the iteration {gn} in X which is defined by

(gn)(x) = φ(x)gn−1(h(x)) + (1− φ(x))gn−1(k(x))

for all n ∈ N , where g0 ∈ X, converges to the unique solution of the functional equation
(3.3) in the sense of the metric d induced by ‖·‖.

Remark 3.8. Our proposed functional equation (3.3) generalizes many functional equa-
tions in the existing literature.

4. Stability Analysis of the Proposed Functional Equation

We start this section from the following question of Ulam [7] regarding the stability of
group homomorphisms:

Let d(·, ·) be a metric and we denote (Z1, �), (Z2, ·, d) be a group and a metric group,
respectively. For given ε > 0, does there exist a δ > 0 such that if a function g1 : Z1 → Z2

satisfies d(g1(x � y), g1(x).g1(y)) < δ for all x, y ∈ Z1, then there exists a homomorphism
g2 : Z1 → Z2 with d(g1(x), g2(x)) < ε for all x ∈ Z1?

Hyers [8] was the first who partially answered the question of Ulam for Banach spaces.
Certainly, he also demonstrated that for Banach spaces X and Y , every solution of the
inequality

‖g(x+ y)− g(x)− g(y)‖ ≤ ε (4.1)

for all x, y ∈ X, where g : X → Y is an unknown function and ε > 0, can be approximated
by an additive function. After that, Rassias [9] tried to weak the condition for the bound
of the norm of the Cauchy difference in (4.1) as follows

‖g(x+ y)− g(x)− g(y)‖ ≤ ε(‖x‖p + ‖y‖p) (4.2)

for all x, y ∈ X, where g : X → Y is an unknown function, ε > 0 and 0 ≤ p < 1. The
work of Rassias in [9] (known as, Hyers-Ulam-Rassias stability theorem) has the great
impact on the theory of stability analysis and has many applications (see [10, 11]).

On the other hand, the stability of solutions has the great importance in the theory
of mathematical modeling. For instance, in physical problems, slight deviations from
the mathematical model caused by unavoidable errors in measurement do not have a
correspondingly slight effect on the solution, the mathematical equations describing the
problem will not accurately predict the future outcome. Therefore, it is very important
to discuss the stability of a solution of the proposed functional equation (3.3) here.
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Now, we prove the following result related to the Hyers-Ulam-Rassias stability of a
solution of the functional equation (3.3).

Theorem 4.1. Under the assumption of Theorem 3.1, the equation Zg = g, where Z :
X → X is defined for each g ∈ X by

(Zg)(x) = φ(x)g(h(x)) + (1− φ(x))g(k(x)) (4.3)

for all x ∈ [0, 1], has Hyers-Ulam-Rassias stability; that is, there is a function ϕ : X →
[0,∞) such that for each g ∈ X with

d(Zg, g) ≤ ϕ(g),

there exists a unique ḡ ∈ X such that Zḡ = ḡ and

d(g, ḡ) ≤ µϕ(g)

for some µ > 0.

Proof. Let g ∈ X such that d(Zg, g) ≤ ϕ(g). By Theorem 3.1, there is a unique solution
ḡ ∈ X of the functional equation (3.3) on X, that is Zḡ = ḡ. Thus, we have

d(g, ḡ) ≤ d(g, Zg) + d(Zg, ḡ)

≤ ϕ(g) + d(Zg, Zḡ)

≤ ϕ(g) + 2(α1 + α2)d(g, ḡ)

and so

d(g, ḡ) ≤ µϕ(g),

where µ :=
1

1− 2(α1 + α2)
> 0.

From the above theorem, we can propose the following result related to the Hyers-Ulam
stability.

Corollary 4.2. Under the assumption of Theorem 3.1, the equation Zg = g, where
Z : X → X is defined for each g ∈ X by

(Zg)(x) = φ(x)g(h(x)) + (1− φ(x))g(k(x)) (4.4)

for all x ∈ [0, 1] has Hyers-Ulam stability, that is, there is an ε > 0 such that for each
g ∈ X with

d(Zg, g) ≤ ε,

there exists a unique ḡ ∈ X such that Zḡ = ḡ and

d(g, ḡ) ≤ µε

for some µ > 0.
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5. Some Illustrative Examples

To support our results, we present the following examples.

Example 5.1. Consider the following functional equation

g(x) = xg
( x

12

)
+ (1− x) g

( x
11

)
(5.1)

for all x ∈ [0, 1], where g : [0, 1] → R is an unknown function. We set the mappings
φ, h, k : [0, 1]→ [0, 1] by

φ(x) = x, h(x) =
x

12
and k(x) =

x

11

for all x ∈ [0, 1]. It can be seen that φ is a non-expansive mapping and h, k are contraction
mappings with contractive coefficients α1 := 1

12 and α2 := 1
11 , respectively. Clearly,

α1 + α2 <
1
2 . Also, we have

h(0) = 0 = k(0).

Therefore, we can apply Theorem 3.2 for claiming the solution of the functional equation
(5.1).

If we take an initial approximation g0(x) = x, then the following iterates converge to
the unique solution of the functional equation (5.1):

g1(x) =
−x2 + 12x

132
,

g2(x) =
23x3 − 1728x2 + 19008x

2299968
,

...

gn(x) = xgn−1

( x
12

)
+ (1− x)gn−1

( x
11

)
for all n ∈ N. Now, let

µ :=
1

1− 2(α1 + α2)
=

66

43
> 0.

If a function g ∈ X satisfies the inequality

d(Zg, g) ≤ ϕ(g), for all g ∈ X,

then Theorem 4.1 implies that there exists a unique solution ḡ ∈ X of the functional
equation (5.1) such that

Zḡ = ḡ and d(g, ḡ) ≤ µϕ(g).

Example 5.2. Consider the following functional equation

g(x) = xg
(x

7

)
+ (1− x)g

(x
8

)
(5.2)

for all x ∈ [0, 1], where g : [0, 1] → R is an unknown function. We set the mappings
φ, h, k : [0, 1]→ [0, 1] by

φ(x) = x, h(x) =
x

7
and k(x) =

x

8
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for all x ∈ [0, 1]. It can be seen that, φ is a non-expansive mapping and h, k are contraction
mappings with contractive coefficients α1 := 1

7 and α2 := 1
8 , respectively, and φ(0) = 0 =

k(0). Also, we have

|h(x)− k(x)| =
∣∣∣x
7
− x

8

∣∣∣ ≤ 1

56
:= α3

for all x ∈ [0, 1] and

α1 + α2 + α3 =
2

7
< 1.

Therefore, we can apply Theorem 3.5 for claiming the solution of the functional equation
(5.2).

If we take an initial approximation g0(x) = x, then the following iterates converge to
the unique solution of (5.2):

g1(x) =
x2 + 7x

56
,

g2(x) =
15x3 + 441x2 + 2744x

175616
,

...

gn(x) = xgn−1

(x
7

)
+ (1− x)gn−1

(x
8

)
for all n ∈ N.

Example 5.3. Consider the following functional equation

g(x) = xg

(
(1− a)x

4

)
+ (1− x)g

(
bx

2

)
(5.3)

for all x ∈ [0, 1], where 0 < a ≤ b < 1
2 . We set the mappings φ, h, k : [0, 1]→ [0, 1] by

φ(x) = x, h(x) =
(1− a)x

4
and k(x) =

bx

2
.

It can be seen that, φ is a non-expansive mapping and h, k are contraction mappings with
contractive coefficients α1 := 1−a

4 and α2 := b
2 , respectively. Also, we have

φ(0) = 0 = k(0)

and

|h(x)| ≤ 1− a
4

=: m1 and |k(x)| ≤ b

2
=: m2

for all x ∈ [0, 1]. It is easy to see that

α1 + α2 +m1 +m2 =
1− a+ 2b

2
.

If 0 <
1− a+ 2b

2
< 1, then we can apply Corollary 3.7 for claiming the solution of the

functional equation (5.3).
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If we take an initial approximation g0(x) = x, then the following iterates converge to
the unique solution of (5.3):

g1(x) =
(1− a)x2 + 2bx(1− x)

4
,

g2(x) =
x(x2(1−a)3+2bx(1− a)(4−x(1− a)))

64
+

(
b2x2(1− a)+ 4b2x

(
1− 4bx

2

))
(1− x)

16
,

...

gn(x) = xgn−1

(
(1− a)x

4

)
+ (1− x)gn−1

(
bx

2

)
for all n ∈ N.

6. Conclusion

In this paper, we proposed a new class of functional equation (1.5) which connects
two different categories of functional equations arising in the psychological learning theory.
The proposed functional equation (1.5) has the great importance, especially in a two-
choice situation, i.e., such type of functional equation describes the relationship between
the predator animals and their two choices of prey with their corresponding probabilities.
In [2–4], the authors used the boundary conditions in the proof of their main results, but
in their comparison, in Theorem 3.4, we do not use such types of conditions to find the
existence and uniqueness results of the functional equation (1.5), which shows that our
result covers more problems than the previous ones existing in the particular literature.
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