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1. Introduction and Preliminaries

We begin by recalling definition of an ultrametric space. The classical definition goes
back over fifty years [1]. A metric space (X, d) is called an ultrametric space if the
metric d satisfies the strong triangle inequality; namely for all x, y, z ∈ X: d(x, y) ≤
max{d(x, z), d(y, z)}. A non-Archimedean normed space [1] (X, ‖.‖) is said to be spheri-
cally complete if every shrinking collection of balls in X has a nonempty intersection [1].
In 1993, Petals proved a fixed point theorem on non-Archimedean normed space using a
contractive condition [2]. This result is extended by Kubiaczyk (1996) from single valued
to set-valued contractive mapping [3]. Also for nonexpansive set-valued mappings, some
fixed point theorems are proved.

In this paper, we investigate the existence of a fixed point for set-valued nonexpansive
mappings in partially ordered ultrametric spaces and non-Archimedean normed spaces
and we also give more constructive proof for our theorem and obtain a useful conclusion.
It would be interesting to study the conclusions that obtained by Xu et al. [4] and
Mursaleen et al. [5] in 2016 and compare with our results. Therefore, we can find out
the importance of our results and get such results for p-adic fuzzy non-Archimedean
numbers and the applications of Schwarz lemma involving the boundary fixed point in
non-Archimedean complex analysis.
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2. Main Results

In the following proposition, we prove that if (X, d) is an ultrametric space, then the

Hausdorff metric H [6] on CB(X) is also an ultrametric. Where H(A,B)=max
{
δ(A,B),

δ(B,A)
}

, δ(A,B) = supa∈A d(a,B) and d(a,B) = infb∈B d(a, b).

Proposition 2.1. Let (X, d) be an ultrametric space. Then the metric H is an ultrametric
on CB(X).

Proof. Let a ∈ A. Then for each b ∈ B, d(a,B) ≤ d(a, b), which implies that d(a,B) ≤
max{d(a, c), d(c, b)} for all b ∈ B, c ∈ C. Because b ∈ B was arbitrary, for each ε > 0 we
can choose b ∈ B such that d(c, b) ≤ d(c,B) + ε and hence

d(a,B) ≤ max{d(a, c), d(c,B) + ε} (c ∈ C),
d(a,B) ≤ max{d(a, c), δ(C,B) + ε} (c ∈ C).

Similarly, because c ∈ C was arbitrary, we can choose c ∈ C such that d(a, c) ≤ d(a,C)+ε
and hence

d(a,B) ≤ max{d(a,C) + ε, δ(C,B) + ε},
d(a,B) ≤ max{δ(A,C) + ε, δ(C,B) + ε},
d(a,B) ≤ max{δ(A,C), δ(C,B)}+ ε.

Because a ∈ A and ε > 0 were arbitrary, we conclude that
δ(A,B) ≤ max{δ(A,C), δ(C,B)}. Therefore, H(A,B) ≤ max{H(A,C), H(C,B)}.

Definition 2.2. Let (X,�) be a partially ordered set and suppose that there exists an
ultrametric d in X such that (X, d) is an ultrametric space, and T : X → CB(X) is
a mapping. A closed ball B(x, r) is said to be a partially T -invariant ball if for any
u ∈ B(x, r) comparable to x, there exists v ∈ Tu such that d(x, v) ≤ r. Also, the closed
ball B(x, r) is called minimal partially T -invariant ball if B(x, r) is partially T -invariant
and d(u, Tu) = r for any u ∈ B(x, r) comparable to x.

Theorem 2.3. Let (X,�) be a partially ordered set and suppose that there exists a metric
d in X such that (X, d) is an ultrametric space and a mapping T : X → CB(X). Suppose
also that the following properties are satisfied:

(C1) H(Tx, Ty) ≤ d(x, y) for every comparable x, y ∈ X.
(C2) If d(x, y) < 1 for some x ∈ X and some y ∈ Tx, then x � y;
(C3) There exist an x0 ∈ X and an x1 ∈ Tx0 such that d(x0, x1) < 1;
(C4) If {xn} is a non-decreasing sequence in X and {B(xn, rn)} is a descending

sequence of closed balls in X, then there exists a subsequence {xnk
} of {xn} such

that {xn} has an upper bound z ∈
⋂∞

k=1B(xnk
, rnk

),

and set XT = {x ∈ X : there exists x
′ ∈ Tx such that d(x, x

′
) < 1}. Then for any

x ∈ XT , the ball B(x, d(x, Tx)) contains either a fixed point of T or a minimal partially
T -invariant closed ball.

Proof. Let z ∈ X, put r = d(z, Tz) and pick u ∈ B(z, r) comparable to z. Then

d(z, Tu) ≤ {d(z, Tz), H(Tu, Tz)} ≤ max{d(z, Tz), d(u, z)} = d(z, Tz).
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Thus, there exists v ∈ Tu such that d(z, v) ≤ d(z, Tz). Therefore, every ball in X of
the form B

(
z, d(z, dz)

)
is partially T -invariant. Now, let x0 ∈ XT and put x1 = x0,

r1 = d(x1, Tx1) and λ1 = inf{d(x, Tx) : x ∈ B(x1, r1) ∩ Tx1, x1 � x}. If x ∈ B(x1, r1)
and x1 � x, then

d(x, Tx) ≤ max{d(x, Tx1), H(Tx1, Tx)}
≤ max{d(x, Tx1), d(x1, x)}
≤ max{d(x, x1), d(x1, Tx1), d(x1, x)} ≤ d(x1, Tx1).

Hence λ1 ≤ r1. Suppose {εn} is a sequence of positive numbers such that limn→∞ εn
= 0. If r1 = λ1, then the proof is completed because in this case either r1 = λ1 = 0
therefore x1 is a fixed point of T in B(x1, r1) or B(x1, r1) is minimal partially T -invariant.
Otherwise, if x ∈ B(x1, r1) ∩ Tx1 and x1 � x, then

d(x, Tx) ≤ max{d(x, Tx1), H(Tx, Tx1)}
≤ H(Tx, Tx1) < d(x, x1) ≤ d(x1, Tx1).

Hence λ1 < r1 < 1. Choose an x2 ∈ B(x1, r1) such that x1 � x2, x2 ∈ Tx1 and
r2 = d(x2, Tx2) < min{λ1 + ε1, r1}. Let λ2 = inf

{
d(x, Tx) | x ∈ B(x2, r2) : x2 � x, x ∈

Tx2
}
. Choose x2 ∈ B(x1, r1) such that there exists a path in G̃ between x1 and x2 and

r2 = d(x2, Tx2) < min{r1, λ1 + ε1}. With the same argemen, if r2 = λ2, then B(x2, r2) is
minimal partially T -invariant. Otherwise, we have λ2 < r2, and choose an x3 ∈ B(x2, r2)
such that x2 � x3, x3 ∈ Tx3 and r3 = d(x3, Tx3) < min{r2, λ2 + ε2}. Having defined
xn ∈ X, let

λn = inf
{
d(x, Tx) : x ∈ B(xn, rn) ∩ Txn, xn � x}.

Then we have λn ≤ rn, and choose an xn+1 ∈ B(xn, rn) such that xn � xn+1, xn+1 ∈
Txn+1 and rn+1 = d(xn+1, Txn+1) < min{rn, λn + εn}. The sequence {xn} is non-
decreasing and {B(xn, rn)} is a descending sequence of non-trivial closed balls. Thus by
assumption, there exists a subsequence {xnk

} of {xn} and z ∈
⋂∞

k=1B(xnk
, rnk

) such
that xnk

� z for all k ≥ 1. Since {rn} is non-increasing, it follows that r = limn→∞ rn
exists. Also, {λn} is non-decreasing and bounded above and so λ := limn→∞ λn also
exists, too. Hence d(z, Tz) ≤ max

{
d(z, xnk

), d(xnk
, T z)

}
≤ rnk

, for all n ≥ 1. Moreover,
λnk

≤ d(z, Tz) ≤ r ≤ rnk+1
≤ λnk

+ εnk
for all k ≥ 1. Letting k → ∞, we see

that d(z, Tz) = λ = r. Set a = inf
{
d(x, Tx) : x ∈ B

(
z, d(z, Tz)

)
∩ Tz, z � x}. Since

z ∈ B(xn, rn) and xn � z for all n ≥ 1, it follows that that d(x, Tx) ≤ d(z, Tz) ≤ rn for
all x ∈ B(z, d(z, Tz)). Hence a ≤ rn for all n ≥ 1. Moreover, since every closed ball in X
is partially T -invariant, we have λn ≤ a for all n ≥ 1. Thus,

a = inf
{
d(x, Tx) : x ∈ B

(
z, d(z, Tz)

)
∩ Tz, z � x} = r = d(z, Tz).

If r = 0, then z is a fixed point of T in B(x, d(x, Tx)), if not, then the closed ball
B(z, d(z, Tz)) is minimal partially T -invariant. Therefore the proof is completed.

Corollary 2.4. Theorem 2.3 remains valid if the partially ordered ultrametric space (X, d)
is replaced by a partially ordered non-Archimedean normed space over a non-Archimedean
valued field K.



1982 Thai J. Math. Vol. 18 (2020) /H. Mamghaderi and H. P. Masiha

References

[1] A.C.M. Van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker, 1978.

[2] C. Petalas, T. Vidalis, A fixed point theorem in Non- Archimedean vector spacs.
Proc. Amer. Math. Soc. 118 (3) (1993) 819–821.

[3] I. Kubiaczyk, A.N. Mostafa, A set-valued fixed point theorem in ultra metric spaces,
Novi Sad J. Math. 26 (2) (1996) 111–115.

[4] M. Mursaleen, H.M. Srivastava, S.K. Sharma, Generalized statistically convergent
sequences of fuzzy numbers, J. Intelligent Fuzzy Systems 30 (2016) 1511–1518.

[5] Q.H. Xu, Y.F. Tang, T. Yang, H.M. Srivastava, Schwarz lemma involving the bound-
ary fixed point, Fixed Point Theory Appl. 84 (2016) 1–8.

[6] S.B. Nadler, Set-valued contraction mappings, Pacific J. Math. 30 (1969) 475–488.


	Introduction and Preliminaries
	Main Results

