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Abstract In this paper, a suitable analytical technique has been introduced based on the principles of the

homotopy perturbation method and the residue harmonic balance method. The proposed technique has
been applied to obtain approximate higher-order angular frequencies and corresponding periodic solutions

of the strongly nonlinear oscillator with a cubic and harmonic restoring force. Dissimilar other harmonic

balance methods, all the earlier residual errors are presented in the approximate solutions to enhance
the accuracy. The expressions of the frequency-amplitude relationship are obtained in a novel analytical

way. It is highly remarkable that the second-order approximate solutions produce better than previously

existing results and almost similar as compared with the corresponding numerical solutions (considered
to be exact). The high accuracy and simple solution procedure are the merits of the proposed technique

which could also be applied to other nonlinear oscillatory problems arising in science and engineering.
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1. Introduction

The study of strongly nonlinear oscillators is of great importance in the field of physics,
applied mathematics, dynamics of structures, vibrations in nonlinear mechanics and en-
gineering [1, 2]. Most phenomena in nature are nonlinear and they are described by
nonlinear equations. In general, obtaining the exact solution of the nonlinear equations
is tremendously difficult and this perception has led to intensive research over many
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decades. Recently, researchers are using either analytical techniques or numerical meth-
ods or a combination of both to obtain approximate solutions. A few nonlinear systems
can be solved explicitly, and the numerical method, especially, the Runge-Kutta fourth-
order method is frequently used to calculated approximate solutions. The numerical
method is not always fruitful especially in the area of stiff differential equations, chaotic
differential equations and hyperchaotic differential equations. It is a big challenge to the
numerical method still now. In this situation, many researchers have been showing an
intensifying interest in the field of analytical techniques to derive approximate solutions
of the strongly nonlinear oscillatory problems. The most commonly used analytical tech-
niques for solving nonlinear oscillatory problems is perturbation method [3–5], which is
the most versatile tools available in nonlinear analysis of engineering problems, and they
are constantly being developed and applied to ever more complex problems. However, the
standard perturbation methods have many limitations, and they do not yield for strongly
nonlinear oscillators.

As a result, to overcome the limitations of standard perturbation technique, many
new analytical techniques have been investigated these days. Among of them, the energy
balance method [6, 7], the optimal iteration method [8], the VIM-Pade´ technique [9],
the algebraic method [10], the Quintication Method [11], He’s frequency-amplitude for-
mulation [12] and an iterative approach [13] have been paid much attention to determine
approximate periodic solutions of strongly nonlinear oscillatory problems. In fact, to the
best of our knowledge, in most of these methods, only the first-order approximation has
been considered which does not give sufficient accuracy in the obtained results. The har-
monic balance method (HBM) [14–18] is a general analytical technique for calculating
approximate periodic solutions of strongly nonlinear oscillatory problems. However, a
set of complicated higher-order nonlinear algebraic equations appear when the HBM is
applied. In the case of the large amplitude of the oscillation, it is tremendously difficult
and cumbersome to solve analytically these nonlinear algebraic equations.

To overcome these aforementioned issues, a suitable analytical technique namely the
global residue harmonic balance method (GRHBM) has been investigated. The GRHBM
was the first introduced by Ju and Xue [19, 20]. Afterwards, Ju [21, 22] has also used the
GRHBM to obtain approximate periodic solutions to a nonlinear oscillator with discon-
tinuity and Helmholtz-Duffing oscillator. Recently, Mohammadian [23], Mohammadian
et al. [24, 25] and Cveticanin and Ismail [26] have applied the GRHBM to determine
approximate periodic solutions to nonlinear oscillatory systems arising in engineering
problems. In this paper, we have employed the GRHBM to attain approximate angular
frequencies and corresponding periodic solutions to the strongly nonlinear oscillator with
cubic and harmonic restoring force. The higher-order approximations (mainly second-
order approximation) have been obtained. The comparison of the approximated results
with previously existing and corresponding exact solutions have been shown. It is found
that the proposed technique gives excellent agreement. A simple solution procedure with
high accuracy in the results obtained from the benchmark problem reveals the novelty,
reliability and wider applicability to the proposed analytical technique.
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2. Review of the Global Residue Harmonic Balance Method

Consider a general second-order nonlinear oscillator with odd-nonlinearity [19, 20],
which can be described as

f(x, ẋ, ẍ) = 0, x(0) = A, ẋ(0) = 0. (2.1)

where ẋ = dx/dt, A is the amplitude of the oscillations and f(x, ẋ, ẍ) is a nonlinear
analytical function.

Suppose ω is the angular frequency of the system which is further to be determined.
By defining a new independent variable replacing the time variable τ = ωt, Eq. (2.1) can
be transformed into:

f(x, ωx′, ω2x′′) = 0, x(0) = A, x′(0) = 0. (2.2)

where x′ = dx/dτ .
It is considered that the periodic solution does exist, it may be better to approximate

the solution x(τ) by such a set of trigonometric functions:

{cos((2k − 1)τ), k = 1, 2, 3, ...} (2.3)

The initial approximate solution according to the Eq. (2.3), satisfying the initial condi-
tions in Eq. (2.2), can be considered as:

x(0)(τ) = A cos(τ), τ = ω(0)t, (2.4)

and the parameter ω(0) can be determined. Substituting Eq. (2.4) into Eq. (2.2), one
could obtain the following residual:

R0(τ) = f(x(0), ω(0)x
′
(0), ω

2
(0)x

′′
(0)). (2.5)

If R0(τ) = 0, then x0(τ) happens to be the exact solution. Generally, such a case will not
arise for nonlinear problems.

Eq. (2.5) should not contain secular terms of cos(τ). Equating the coefficients of
cos(τ) equal to zero, we can determine the unknown constant ω(0) and taking it as the
approximation ω0. Hence, the zero-order approximation x0 can be written as:

x0(τ) = A cos(τ), τ = ω0t. (2.6)

This yields the initial residual

R0(τ) = f(x0, ω0x
′
0, ω

2
0x
′′
0). (2.7)

In the following, we consider the kth-order approximation (k = 1, 2, 3, ...) which can be
shown as:

x(τ) = x(k−1)(τ) + pxk(τ), ω2 = ω2
(k−1) + pωk, k = 1, 2, 3, ..., (2.8)

where p is the embedding parameter with values in the interval [0, 1], and the kth-order
approximate solutions of x(τ) and ω can be obtained by taking p = 1.

By using Eqs. (2.6) and (2.7), the first-order approximation and frequency can be
written as:

x(τ) = x0(τ) + p x1(τ), ω2 = ω2
0 + p ω1. (2.9)

Inserting Eq. (2.6) into Eq. (2.2) and equating the coefficients of p, one could get

F1 (τ, ω1, x1(τ)) ,

(
ω1

∂

∂(ω2)
+ x′′1

∂

∂x′′
+ x′1

∂

∂x′
+ x1

∂

∂x

)
f0. (2.10)
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where ∂f0/∂x denotes that ∂f/∂x is to be evaluated at the zero-order approximation
after differentiation etc. It is noted that Eq. (2.10) is linear with respect to ω1 and x1.
Noting that the solution has the form of Eq. (2.3), can be expressed as:

x1(τ) = C1 (cos(τ)− cos(3τ)) (2.11)

From Eq. (2.11) into Eq. (2.10), we consider the following equation.

F1 (τ, ω1, x1(τ)) +R0(τ) = 0. (2.12)

Hence, all the residual errors of the zero-order approximation R0(τ) are introduced into
Eq. (2.12) which would improve the accuracy.

The left hand side of Eq. (2.12) should not contain the terms cos(τ) and cos(3τ) based
on Galerkin technique. Letting their coefficients be zeros, one could obtain two linear
equations containing two unknowns ω1 and C1. Then the two unknown constants can be
solved easily. Thus, the first-order approximation can be obtained as:

x(1)(τ) = x0(τ) + x1(τ), ω2
(1) = ω2

0 + ω1, τ = ω(1)t , (2.13)

where x0(τ) and x1(τ) are denoted by Eqs. (2.6) and (2.11) respectively.
For high order approximation can be obtained by the iterate method in Eq. (2.8).
To determine the unknown parameters a2i+1,k(i = 2, ..., k) and ωk, substituting Eq.

(2.8) into Eq. (2.2) and collecting the coefficients of the p, one could yield:

Fk (τ, ωk, xk(τ)) ,

(
ωk

∂

∂(ω2)
+ x′′k

∂

∂x′′
+ x′k

∂

∂x′
+ xk

∂

∂x

)
fk−1. (2.14)

Eq. (2.14) is linear with respect to ωk and xk.
Substituting the x(k−1)(τ) and ω(k−1)(τ) from Eq. (2.8) into Eq. (2.2), one yields the

following residual:

Rk−1(τ) = f
(
x(k−1), ω(k−1)x

′
(k−1), ω

2
(k−1)x

′′
(k−1)

)
. (2.15)

Considering the following equation

Fk (τ, ωk, xk(τ)) +Rk−1(τ) = 0. (2.16)

Eliminating the secular terms of cos(τ), cos(3τ), ..., and cos((2k+ 1)τ), there is the same
number of linear equations for the same number of unknowns a3k, a5k, . . . ,a2k+1,k and
ωk.

Then, the kth-order approximate analytical solution and frequency can be obtained
as:

xk(τ) = xk−1(τ) + xk(τ), ω2
(k) = ω2

(k−1) + ωk. (2.17)

3. Formulation of the Problem

A strongly nonlinear oscillator with a cubic and harmonic restoring force represents
a system consisting of a mass resting on a spring with cubic and quintic nonlinearity
as shown in Figure 1, where M is the mass, K is the linear spring stiffness coefficient,
b sin(x) is the driving force and x(t) is the system response.
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Figure 1. Geometric Structure of the Problem.

The strongly nonlinear oscillator with cubic and harmonic restoring force modelled by
the following governing nonlinear differential equation [7–9, 15] is as follows

ẍ+ x+ ax3 + b sinx, x(0) = A, ẋ(0) = 0, (3.1)

where a and b are constants.
Re-write Eq. (3.1) by introducing the independent variable τ = ωt can be written as:

ω2x′′ + x+ ax3 + b

(
x+

x3

4
+
x5

24

)
= 0. (3.2)

3.1. Zeroth-Order Analytical Approximation

A practical example of the strongly nonlinear oscillator with cubic and harmonic restor-
ing force is presented to illustrate the solution step, accuracy and effectiveness of the global
residue harmonic balance method.

Firstly, the zero-order approximate solution can be assumed as:

x0(τ) = A cos(τ). (3.3)

Substituting Eq. (3.3) into Eq. (3.2) and equating the coefficient of cos(τ) equal to zero,
the zero-order analytical approximate solution of Eq. (3.2), can be obtained as:

x = A cos

(√
8 + 6aA2 + 8b− bA2

8
t

)
. (3.4)

Now, substituting Eq. (3.3) into Eq. (3.2), we obtain the residual error for the zero-order
approximation as:

R0(τ) =
1

24

(
6aA2 − bA3

)
cos(3τ). (3.5)

3.2. First-Order Analytical Approximation

In order to obtain the first-order analytical approximation, let us consider:

x(τ) = A cos(τ) + p (C1 (cos(τ)− cos(3τ))) , ω2 = ω2
0 + p ω1, (3.6)
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where C1 and ω1 are two unknown constants will be determined later.

Now, Substituting Eq. (3.6) into Eq. (3.2) and considering the coefficients of p, we
obtain a function as F1 (τ, ω1, x1). Let us consider the following equation:

F1 (τ, ω1, x1) +R0(τ) = 0, (3.7)

In Eq. (3.7), equating the coefficients of cos(τ) and cos(3τ) equal to zero, one could obtain
two linear equations. Now solving these equations, two unknown constants C1 and ω1,
can be obtained as:

C1 = − A3(6a− b)
24(8 + 6aA2 + 8b− bA2)

, ω1 = − A4(6a− b)2

192(8 + 6aA2 + 8b− bA2)
. (3.8)

Therefore, the first-order approximate solution of Eq. (3.2) can be expressed as:

x(τ) =

(
A− A3(6a− b)

24(8 + 6aA2 + 8b− bA2)

)
cos(τ) (3.9)

+
A3(6a− b)

24(8 + 6aA2 + 8b− bA2)
cos(3τ),

and the angular frequency is:

ω =

√
8 + 6aA2 + 8b− bA2

8
− A4(6a− b)2

192(8 + 6aA2 + 8b− bA2)
. (3.10)

3.3. Second-Order Analytical Approximation

Let us consider a second-order approximation solution in the following form:

x(τ) = (A+ C1) cos(τ)− C1 cos(3τ)

+ p (C2 (cos(τ)− cos(3τ)) + C3 (cos(τ)− cos(5τ))) , (3.11)

ω2 = ω2
0 + ω1 + pω2,

where C2, C3, and ω2, are three unknown constants which are further to be determined.
By utilizing the same mathematical manipulation (as discussed in the previous section),

one could obtain the residual error R1(τ), the approximate frequency ω2 and the constants
C2, and C3 are respectively:

R1 = −3

4
aA2C2 +

1

8
bA2C2 −

3

4
aAC2

2 +
1

8
bAC2

2 (3.12)
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ω2 = −(A4(6a− b)∆1(A2∆1 − 24∆2)(180a2A12∆4
1 − 60aA12b∆4

1 + 5A12b2∆4
1

−10368a2A10∆3
1∆2 + 3456aA10b∆3

1∆2 − 288A10b2∆3
1∆2 + 1512aA10∆4

1∆2

−252A10b∆4
1∆2 + 69120aA6∆2

1∆2
2 + 248832a2A8∆2

1∆2
2 − 11520A6b∆2

1∆2
2

+69120aA6b∆2
1∆2

2 − 248832a2A8∆2
1∆2

2 − 11520A6b2∆2
1∆2

2 + 6912A8b2∆2
1∆2

2

−50112aA8∆3
1∆2

2 + 8352A8b∆3
1∆2

2 + 1296A8∆4
1∆2

2 − 1658880aA4∆1∆3
2

+276480A4b∆1∆3
2 − 1658880aA4b∆1∆3

2 + 829440aA6b∆1∆3
2

+276480A4b2∆1∆3
2 − 69120A6b2∆1∆3

2 + 276480A4∆2
1∆3

2 + 544320aA6∆2
1∆3

2

+276480A4b∆2
1∆3

2 − 90720A6b∆2
1∆3

2 + 5308416∆2
2 + 15925248aA2∆4

2

+8957952a2A4∆4
2 + 10616832b∆4

2 − 2654208A2b∆4
2 + 15925248aA2b∆4

2

−2985984aA4b∆4
2 + 5308416b2∆4

2 − 2654208A2b2∆4
2 + 248832A4b2∆4

2

+1202688aA4∆1∆4
2 − 200448A4b∆1∆4

2 − 62208A4∆2
1∆4

2 − 6635520∆5
2

−13934592aA2∆5
2 − 6635520b∆5

2 + 2322432A2b∆5
2 + 746496∆6

2))

/(96∆2(4140a2A14∆5
1 − 1380aA14b∆5

1 + 115A14b2∆5
1 − 176256a2A12∆4

1∆2

+58752aA12b∆4
1∆2 − 4896A12b2∆4

1∆2 + 82800aA12∆5
1∆2 − 13800A12b∆5

1∆2

+1188864aA8∆3
1∆2

2 + 2623104a2A12∆3
1∆2

2 − 198144A8b∆3
1∆2

2

+1188864aA8b∆3
1∆2

2 − 874368aA10b∆3
1∆2

2 − 198144A8b2∆3
1∆2

2

+72864A10b2∆3
1∆2

2 − 1619136aA10∆4
1∆2

2 + 269856A10b∆4
1∆2

2

−21565440aA6∆2
1∆3

2 − 10202112a2A8∆2
1∆3

2 + 3594240A6b∆2
1∆3

2

−21565440aA6b∆2
1∆3

2 + 3400704aA8b∆2
1∆3

2 + 3594240A6b2∆2
1∆3

2

−283392A8b2∆2
1∆3

2 + 11059200A6∆3
1∆3

2 + 6804864aA8∆3
1∆3

2

+11059200A6b∆3
1∆3

2 − 1134144A8b∆3
1∆3

2 + 1555200A8∆4
1∆3

2

+84934656A2∆1∆4
2 + 95551488aA4∆1∆4

2 − 53747712a2A66∆1∆4
2

+169869312A2b∆1∆4
2 − 15925248A4b∆1∆4

2 + 95551488aA4b∆1∆4
2

+17915904aA6b∆1∆4
2 + 84934656A2b2∆1∆4

2 − 15925248A4b2∆1∆4
2

−1492992A6b2∆1∆4
2 + 45121536A4∆2

1∆4
2 + 81658368aA6∆2

1∆4
2

+45121536A4b∆2
1∆4

2−13609728A6b∆2
1∆4

2+254803968∆5
2+573308928aA2∆5

2

+286654464a2A4∆5
2 + 509607936b∆5

2 − 95551488A2b∆5
2+573308928aA2b∆5

2

−95551488aA4b∆5
2 + 254803968b2∆5

2 − 95551488A2b2∆5
2 + 7962624A4b2∆5

2

−265420800A2∆1∆5
2 − 211009536aA4∆1∆5

2 − 265420800A2b∆1∆5
2

+35168256A4b∆1∆5
2 − 74649600A4∆2

1∆5
2 − 1082916864∆6

2

−1027178496aA2∆6
2 − 1082916864b∆6

2 + 171196416A2b∆6
2 + 895795200∆7

2))

C2 = (A7(6a− b)∆2
1(A2∆1 − 24∆2)(102aA6∆2

1 − 17A6b∆2
1 − 3600aA4∆1∆2

+600A4b∆1∆2 + 108A4∆2
1∆2 + 20736∆2

2 + 43200aA2∆2
2 + 20736b∆2

2

−7200A2b∆2
2 − 2592∆3

2))/(4140a2A14∆5
1 − 1380aA14b∆5

1 + 115A14b2∆5
1

−176256a2A12∆2
1∆2 + 58752aA12b∆4

1∆2 − 4896A12b2∆4
1∆2+82800aA12∆5

1∆2

−13800A12b∆5
1∆2+1188864aA8∆3

1∆2
2+2623104a2A10∆3

1∆2
2−198144A8b∆3

1∆2
2

+1188864aA8b∆3
1∆2

2 − 874368aA10b∆3
1∆2

2−198144Aˆ8b2∆3
1∆2

2
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+72864A10b2∆3
1∆2

2 − 1619136aA10∆4
1∆2

2 + 269856A10b∆4
1∆2

2

−21565440aA6∆2
1∆3

2 − 10202112a2A8∆2
1∆3

2 + 3594240A6b∆2
1∆3

2

−21565440aA6b∆2
1∆3

2 + 3400704aA8b∆2
1∆3

2 + 3594240A6b2∆2
1∆3

2

−283392A8b2∆2
1∆3

2 + 11059200A6∆2
1∆3

2 + 6804864aA8∆2
1∆3

2

+11059200A6b∆2
1∆3

2 − 1134144A8b∆2
1∆3

2 + 1555200A8∆4
1∆3

2

+84934656A2∆1∆4
2 + 95551488aA4∆1∆4

2 − 53747712a2A6∆1∆4
2

+169869312A2b∆1∆4
2 − 15925248A4b∆1∆4

2 + 95551488aA4b∆1∆4
2

+17915904aA6b∆1∆4
2 + 84934656A2b2∆1∆4

2 − 15925248A4b2∆1∆4
2

−1492992A6b2∆1∆4
2 + 45121536A4∆2

1∆4
2 + 81658368aA6∆2

1∆4
2

+45121536A4b∆2
1∆4

2 − 13609728A6b∆2
1∆4

2 + 254803968∆5
2

+573308928aA2∆5
2 + 286654464a2A4∆5

2 + 509607936b∆5
2

−95551488A2b∆5
2 + 573308928aA2b∆5

2 − 95551488aA4b∆5
2

+254803968b2∆5
2 − 95551488A2b2∆5

2 + 7962624A4b2∆5
2

−265420800A2∆1∆5
2 − 211009536aA4∆1∆5

2 − 265420800A2b∆1∆5
2

+35168256A4b∆1∆5
2−74649600A4∆2

1∆5
2−1082916864∆6

2−1027178496aA2∆6
2

−1082916864b∆6
2 + 171196416A2b∆6

2 + 895795200∆7
2)

C3 = −(A5(6a− b)∆1(A2∆1 − 24∆2)(138aA8∆3
1 − 23A8b∆3

1 − 2880aA6∆2
1∆2

+480A6b∆2
1∆2 + 18432A2∆1∆2

2 + 19008aA4∆1∆2
2 + 18432A2b∆1∆2

2

−3168A4b∆1∆2
2 + 2592A4∆2

1∆2
2 + 55296∆2

2 + 41472aA2∆2
2 + 55296b∆3

2

−6912A2b∆3
2 − 62208∆4

2)/(4140a2A14∆5
1 − 1380aA14b∆5

1 + 115A14b2∆5
1

−176256a2A12∆4
1∆2 + 58752aA12b∆4

1∆2−4896A12b2∆4
1∆2+82800aA12∆5

1∆2

−13800A12b∆5
1∆2 + 1188864aA8∆3

1∆2
2 + 2623104a2A10∆3

1∆2
2

−198144A8b∆3
1∆2

2 + 1188864aA8b∆3
1∆2

2 − 874368aA10b∆3
1∆2

2

−198144A8b2∆3
1∆2

2 + 72864A10b2∆3
1∆2

2 − 1619136aAˆ10∆4
1∆2

2

+269856Aˆ10b∆4
1∆2

2 − 21565440aA6∆2
1∆3

2 − 10202112a2A8∆2
1∆3

2

+3594240A6b∆2
1∆3

2 − 40aA6b∆2
1∆3

2 + 3400704aA8b∆2
1∆3

2

+3594240A6b2∆2
1∆3

2 − 283392A8b2∆2
1∆3

2 + 11059200A6∆3
1∆3

2

+6804864aA8∆3
1∆3

2 + 11059200A6b∆3
1∆3

2 − 1134144Aˆ8b∆3
1∆3

2

+1555200A8∆4
1∆3

2 + 84934656A2∆1∆4
2 + 95551488aA4∆1∆4

2

−53747712a2A6∆1∆4
2 + 169869312A2b∆1∆4

2 − 15925248A4b∆1∆4
2

+95551488aA4b∆1∆4
2 + 17915904aA6b∆1∆4

2 + 84934656A2b2∆1∆4
2

−15925248A4b2∆1∆4
2 − 1492992A6b2∆1∆4

2 + 45121536A4∆2
1∆4

2

+81658368aA6∆2
1∆4

2 + 45121536A4b∆2
1∆4

2 − 13609728A6b∆2
1∆4

2

+254803968∆5
2 + 573308928aA2∆5

2 + 286654464a2A4∆5
2

+509607936b∆5
2 − 95551488A2b∆5

2 + 573308928aA2b∆5
2

−95551488aA4b∆5
2 + 254803968b2∆5

2 − 95551488A2b2∆5
2

+7962624A4b2∆5
2 − 265420800A2∆1∆5

2 − 211009536aA2∆1∆5
2
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−265420800A2b∆1∆5
2 + 35168256A4b∆1∆5

2 − 74649600A4∆5
1∆2

2

−1082916864∆6
2 − 1027178496aA2∆6

2 − 1082916864b∆6
2

+171196416A2b∆6
2 + 895795200∆7

2)

where

∆1 = 6a− b, ∆2 = 8 + 6aA2 + 8b−A2b.

Therefore, the second-order approximate solution of Eq. (3.2), can be written as:

x(τ) = (A+ C1 + C2 + C3) cos(τ)− (C1 + C2) cos(3τ)− C3 cos(5τ), (3.13)

and the second-order approximate angular frequency is:

ω =
√
ω2
0 + ω1 + p ω2. (3.14)

4. Numerical Results and Discussion

To demonstrate and verify the accuracy of the proposed technique, we have compared
the approximated periodic solutions with existing and exact solutions. Table 1 to Table 2;
give the comparison between approximated solutions with existing and exact solutions for
different values of initial amplitude A and the constants a and b take the value as unity.
A comparison between the approximated solutions and the phase plan trajectory with
Runge-Kutta fourth-order solutions (consider to be exact) are plotted in Figures (2-4)
for different values of initial amplitude A and the constants a and b . It is noteworthy
that the second-order approximate solutions are almost similar to the exact solutions.
Excellent accuracy and the straightforward solution procedure that guaranteed us the
proposed analytical technique is better applicable and highly efficient for solving strongly
nonlinear problems arising in science and engineering.

Table 1. The comparison between first, second order approximate so-
lutions with the existing and corresponding Runge-Kutta forth-order so-
lutions for a = 1, b = 1 and A0 = π

18

t 1st(HBM)[15] 1st [present] 2nd (HBM)[15] 2nd [present] xRK4

0 0.174532 0.174533 0.174532 0.174532 0.174532
0.5 0.132306 0.132218 0.132217 0.132217 0.132217
1 0.026059 0.0260194 0.026019 0.026019 0.026019
1.5 −0.092797 −0.0926925 −0.092692 −0.092692 −0.092692
2 −0.166751 −0.166728 −0.166728 −0.166728 −0.166728
2.5 −0.160017 −0.159977 −0.159977 −0.159977 −0.159977
3 −0.075853 −0.0757579 −0.075757 −0.075757 −0.075757
3.5 0.045014 0.0449468 0.044946 0.044946 0.044946
4 0.144100 0.144027 0.144027 0.144027 0.144027
4.5 0.173458 0.173456 0.173455 0.173455 0.173455
5 0.118883 0.118785 0.118785 0.118785 0.118785
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Table 2. The comparison between first, second order approximate so-
lutions with the existing and corresponding Runge-Kutta forth-order so-
lutions for a = 1, b = 1 and A0 = π

6 .

t 1st(HBM)[15] 1st [present] 2nd (HBM)[15] 2nd [present] xRK4

0 0.523598 0.523599 0.523598 0.523599 0.523598
0.5 0.387797 0.385529 0.385528 0.38552 0.385519
1 0.050838 0.0502743 0.050273 0.050277 0.050276
1.5 −0.312492 −0.309726 −0.309725 −0.309721 −0.309721
2 −0.513726 −0.513435 −0.513434 −0.513432 −0.513432
2.5 −0.448480 −0.44704 −0.447039 −0.447031 −0.447029
3 −0.150597 −0.149066 −0.149063 −0.149071 −0.149069
3.5 0.225402 0.222673 0.222674 0.222673 0.222674
4 0.484482 0.483411 0.483411 0.483402 0.483403
4.5 0.492250 0.491655 0.491654 0.49165 0.491648
5 0.244678 0.242603 0.242600 0.242607 0.242603

Figure 2. A comparison of the approximate solutions and the phase
plan trajectory (dashed line) with corresponding exact solutions (solid
line) for A = π/18, a = 1 and b = 1.

Figure 3. A comparison of the approximate solutions and the phase
plan trajectory (dashed line) with corresponding exact solutions (solid
line) for A = π/6, a = 1 and b = 1.
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Figure 4. A comparison of the approximate solutions and the phase
plan trajectory (dashed line) with corresponding exact solutions (solid
line) for A = 1, a = 0.1 and b = 0.1.

5. Conclusions

A suitable analytical technique namely the global residue harmonic balance method
has been used to determine approximate periodic solutions of the strongly nonlinear
oscillator with a cubic and harmonic restoring force. In this problem, the second-order
approximate solutions show an excellent agreement as compared with the corresponding
exact solutions. The solution procedure of the proposed technique is straightforward and
simple. High accuracy in results and simple solution procedure reveal the versatility of the
proposed technique. Based on the above findings it can be concluded that the proposed
technique can be considered as a very potential and an efficient alternative to the existing
methods for approximating strongly nonlinear oscillatory problems.
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