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1. INTRODUCTION

In recent years, semi-copulas have attracted growing interest. Semi-copulas are used
in several areas such as lifetime dependence [1, 2] and analysis related to aging function
[3, 4]. Especially in statistics, survival analysis gives certain important methods which
apply for analyzing the expected duration of times until one or more events happen.
Furthermore, concepts of semi-copulas also appear in several separate works such as [5—8]
and analytical aspects of semi-copulas are also examined in [9—11].

In literature (for instances, [9, 10, 12—16]), new constructions of semi-copulas are in-
troduced to obtain varieties of semi-copulas. Several works focuses on transformations
Tp which have the form

Tp(Sy,....,Sk)(x,y) = P(x,y,S1(x,y), ..., Sk(z,v))

where P is a polynomial. In other words, Tp transforms semi-copulas Si,..., S into a
new semi-copula Tp (S, ..., Sk). Note that many constructions of other related objects
have also been studied.
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In 2015, Kolesdrova et al. [12] characterize linear functions P (z,y, z) = ax+by+cz+d
such that Tp (A) remains an aggregation function for any bivariate aggregation function A.
This occurs under the condition that P is a weighted arithmetic means, i.e., P (x,y,2) =
ax + by + ¢z where a,b,c > 0 and a + b+ ¢ = 1. This fact can be extended to obtain that
Tp(Ai, ..., Ax) is an aggregation function for any aggregation functions Ay, ..., Ay if and
only if the polynomial function P is an aggregation function. Also, the characterization
of quadratic aggregation functions has been done in [18]. Moreover, Kolesdrova et al.
[12] also characterize quadratic polynomial functions P such that T, is a transformation
of bivariate semi-copulas and quasi-copulas. In particular, they show that the following
statements are equivalent for any quadratic polynomial P(x,y, z).

(1) the polynomial P can be written as
Pla,y,2) = ¢ + day — vz — cyz + (1 + e — )

where 0 <d<1,d—c>0,14c—d>0and 1 —c—d > 0;
(2) Tp(Q) is a quasi-copula for any bivariate quasi-copula Q.

Similar characterization of copula transformations is also provided in [13]. For k > 1,
Wisadwongsa and Tasena [19] characterize quadratic polynomial functions P such that
Tp is a transformation of two bivariate copulas. Later, this result has been extended to
the case of any polynomial functions in [16]. However, all these results only provide a
characterization in the case of bivariate (semi-, quasi-) copulas.

In this work, we are interested in characterizing quadratic transformation of multivari-
ate semi-copulas, i.e., characterizing quadratic polynomial P such that

Tp(S1, .y Sk) (@1, ooy Xy) = P21, 0oy Ty S1(T15 ooy Ti)y ooy Sk(T14 ooy 1))

remains a semi-copula for any semi-copulas Sy, ...,S;. When k=1, this is also done in
[17]. We are able to show that the set of such quadratic functions is convex with linear
boundary. We also characterize its extreme points in the case k < 2. For the case k =1,
we show that the set has exactly 2 extreme points for all n > 2. This result is quite
different from that of Kolesdrova et al. [12] where they show that there are 4 extreme
points when n = 2. For the case k = 2, we show that there are 5 - 2" — 2 extreme points.
For k > 2, characterization of extreme points seem to be very complicated. In fact, we
would conjecture that the number of extreme points is O (k™).

In the next section, we present basic notations and terms essential to this work. We
also characterize quadratic transformations of semi-copulas. The characterization of the
transformation Tp is provided in term of coeflicients of quadratic polynomial P (see
Theorem 2.8).

2. QUADRATIC TRANSFORMATIONS OF SEMI-COPULAS
Definition 2.1. [20] A function S : [0,1]™ — [0, 1] is said to be an n-dimensional semi-
copula (or a semi-copula) if it satisfies the followings:
(1) S(z1,...,xp) = x; if z; =1 for all j # i
(2) S is nondecreasing in each place; i.e., for each (z1,...,2,) € [0,1]" and any
y; € [0,1] with z; < y;,
S(T1y ey Yiy ooy Tn) — S(T1y ooy Ty ey Ty) > 0.

An n-dimensional semi-copula with n > 2 will also be called a multivariate semi-copulas.



Quadratic Transformations of Multivariate Semi-Copulas 1919

We denote the collection of all n-dimensional semi-copulas by .#,. Note that the set .7,
actually contains maximum and minimum elements.

Example 2.2. The function L : [0,1]™ — [0, 1] defined by

[ @ ifxzj=1forallj#i
L(xy, ..., zn) _{ 0 otherwise

is a semi-copula. Another semi-copula is the function M : [0,1]™ — [0,1] defined via
M(xq1,...,x,) = min{zy, ..., z, }.
Moreover, L(x1,...,2pn) < S(21, ..., xp) < M(21,...,x,) for all S € .7,.
Remark 2.3. Since every semi-copula S is nondecreasing, we get
0< S, 0, 2) < S(1,...,1,0,1, ..., 1) = 0.
In other words, S(z1,...,2,) = 0 when a; = 0 for some i.
Given a natural number k, we define a function Tp : #* — .F by
Tp(S1, .y Sk)(@1, ey @) = P (21, ooy Ty S1(X15 o0y T )y ooy Sk(X 1,5 0y )

for each (z1,...,7,) € [0,1]" and (S4,...,Sk) € .#* where P is a quadratic polynomial
from R™** to R expressed as

E K
P21y ey @y 21, ooy 2) = Z Zapquzq + Z Zbquizq + Z CqZq

p=1qg=1 =1 g=1
n n
+ZZd”l‘1$] —|—Z€i$i + f (2.1)
i=1 j=1 i=1
where a,; = agp for all p, q.
Notice that T,,(S1, .. ., Sk) is differentiable at (x1, ..., 2,) € (0,1)" whenever S,. .., Sk
are all differentiable at (x1,...,2,). This simply follows from the chain rule.

Definition 2.4. Let P be a quadratic polynomial. The function Tp is called a transfor-
mation of k multivariate semi-copulas if Tp(S1, ..., Sk) is a semi-copula whenever Sy, ..., S
are semi-copulas.

Examples of transformations of & multivariate semi-copulas are convex combinations
Kz of k multivariate semi-copulas. This corresponds with the case of linear function P,
that is, the case where the coefficients apq = bjq = d;j = e; = f = 0. It is interesting
to know whether an actual quadratic transformation exist and how we can characterize
them. To do this, we will first prove the following lemmas.

Lemma 2.5. Assume Tp is a transformation of k multivariate semi-copulas. We obtain
the followings:
(1) f=e =di; =0 foralli,j;
E k k .
(2) Zq 1 iq =- Zp 1 Zq 1 Qpq for all i;

(3) (n—1 ZZapq Zcp+1_0

p=1gqg=1
(4) biq =2 0 for all i, g;
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(5) cq >0 for all q.
Proof. Assume that the function Tp(Si, ..., S%) : [0,1]" — [0,1] is in the form

k k
Tp(S1, oy SE) (@1, s Tn) = D Y OpgSp(@1, ey ) Sg(T1, oony )

p=1q=1
n k
+ Z Z biqriSq(x1, ...y Tp) + Z cqSq(T1,y ey )
i=1 g=1
D9 SRS SNy
i=1 j=1
is a semi-copula for all semi-copulas Si,...,Sk. Following the fact that the value of a

semi-copula is zero whenever one of its arguments is zero,

e 0= Tp(Sl,...,S’k)(O,...,O) = f,

e 0=Tp(S1,...,5)0,...,0,24,0,...,0) = djyz;x; + e;x;;

e 0=Tp(51,...,5%)(0,...,0,2;,0,...,0,2,,0,...,0)

= dul'lz -+ djj(ﬂ? -+ dijitil'j +e;x; + ejxj.
for all x; and z; between zero and one. Consequently, d;; = 0 = e¢; = f for all 7,5 and
the proof of 1. is done. Now we know that

k kK
Tp(S1, s S s @) = D> pgSp(1, v ) Sq (21, o0y )

n k
+Zzbiq‘”i5 (21, +Zcq (L1, ey ).

Next, we will show 2. and 3. Since Tp(Sh, ..., Sk)(z1,1,...,1) = x; for all z; € [0,1],
we have

k k
:mfzzapq""iﬁzblq‘f'fl Zzbzq+xlch7

p=1qg=1 = =2 q=1

=

1fxlzZaqur:z:lelq+ZZblq+Zcq, (2.2)

p=1g=1 i=2 q=1
and

k
Zapq+2blq+Zszq+Zcq (2.3)

1qg=1 q=1 i=2 q=1

Mw

p

Subtracting equation (2.2) from (2.3), we obtain that

0=(1—a1) [ZZan—f—Zblq]

p=1g=1
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for all 2y € [0,1]. Thus, 22:1 big = — Z’;Zl Z’;Zl apq- Similar to the previous argument,
we obtain

k kok

Zbiq = — ZZ(LW for all 3.

qg=1 p=1qg=1

This proves 2. Substitute S % g=1big = — ZI;:I 2521 apq into the equations (2.3), we get
ko k k
(n—1) ZZaquZcerl:O.
p=1qg=1 p=1

Thus, we obtain 3.

Note that coefficients of z,z, and z;z, on the quadratic polynomial P are the same by
assumptions, that is, apq = aqp for all p,q. To show 4. and 5., let S, = M and S, = L
for p # q. We have

Tp(Sh, ..., S b
o0 a58) (1 00) 23" ) 20 4 305 b 2
a p=1q=1 i=1 g=1
k k
oS,
+;baq5q(x1,...,xn)+;cq%z

E n
— Z % <Z 2apqu(a:‘1, ey a:n) +Z biqxi + Cq)

q=1 p=1 =1
k
+ ) bagSq(w1, .. ) (2.4)
q=1

whenever 0 < x; < 1 and x; # z,, for all i # a.
Since Tp(S1, ..., Sk) is nondecreasing, we obtain > 0 whenever the partial
derivative exists. Combining this with the equation (2. 4) we have

9Tp(S1,...,5k)
0%

OTp(Si, ..., Sp)
o< ———= vy Ty
> axa (.’171, , T )
oM -
= (T1y .y ) <2aqu(x1, ey Tp) Z bigTi + cq> + bagM (21, ..., Tp)
@ i=1
whenever %(ml,...,xn) exists where 0 < z; < 1 and z; # x, for all i # a. When
ZTo > min{zy, 2, . .., 2y}, for example, when 2z, = 0.5 and x; = 0.25 for all ¢ # «, we have
3916\4 (x1,...,xy) = 0, and hence, byq > 0. When z, < min{z1,...,2a—1,ZTat1,...,Zn}, ON

gM (1,...,2,) = 1, and

0< w(%wwmn) = <

the other hands, we have

O0xy

Letting z, — 0 follows by xz; — 0 for all ¢ # « yields ¢, > 0. [

n
204q% o + Z biqw; + cq> + bagTa

i=1
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Lemma 2.6. Let apq, biq and ¢ be arbitrary numbers. Assume that bjg > 0 for all i,q.
Denote aAb := min{a, b} and aVb := max{a,b}. The following statements are equivalent;

(1) For any semi-copula Si,..., Sk which are differentiable almost everywhere on
(0,1)" and any ¥ € (0,1)" such that Sy,...,Sk are differentiable at ¥, we have

k n
2 Z ApqSp(Z) + Z bigri + ¢4 >0
p=1

i=1
for each g € {1,...,k};
(2) ¢q >0 and 22’;:1(%(1 ANO)+ 37 big +cq >0 for each g € {1,... k};
(3) For any semi-copula Sy, ..., Sk and any T € [0,1]", we have

k n
ZZapqu(f) + sz‘qﬂﬁi +c¢>0
p=1

i=1
for each g € {1,...,k}.

L ifap, >0
M ifap <0
S1,...,S, are differentiable on the set of & = (z1,...,2,) such that 0 < z; < 1 and
x; # x4 for all i # j. Therefore, they are differentiable almost everywhere. Moreover,

Proof. Assume that 1. holds. For each index p, we set S, = . Then

k n k n
2 Z ApgSp(Z) + Z big; +cq =2 Z(apq A0)M(Z) + Z biqi + ¢4
p=1 i=1 p=1

i=1
for all such Z. Set x € (0,1) and

1 2 1
7 = S d-—a) et —(—gz),.. c+—(1-2)).
Z (x—f—nm( x) x+nm( x) x—|—m( x))

Theg we must have ‘
2 Zp=1(apq ANO)YM (%) + Z?zl big (x + (1 - x)) +cq > 0.

Let n — oo yields 2 E’;:l(apq NOM (z,@,...,2)+x Y i big+cqg > 0.
Let  — 0 and = — 1 yields 2. as desired.

Next, assume that 2. holds. Because of the maximum property of the semi-copula M,
and the assumption b;, > 0 for all 7, we have

k n
2 Z%qsp(f) + Z bigi + ¢4
p=1 =

1=1

=

22 Z (apg N 0) Sp(7) + Z bigTi + ¢4

=1

p=1
k n
>2) (apg AO)M(Z) + > bigM (&) + ¢
i=1

k n
= M (&) (22 (apg AO)+ > big +cq> + (1= M(@))e,
p=1

=1
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where Si,..., Sy are semi-copulas and Z € [0,1]".
Finally, it is obvious that 3. implies 1. [

Theorem 2.7. Let P be a quadratic polynomial. If Tp is a transformation of k multi-
variate semi-copulas, then the following statements hold:

(1) f == dij = OkaT alllc i, J;
(2) Zq:l big = — Zp:l Zq:l apq for all i;
k k k
(3) (n—1) Zp:l Zq:l Gpq — szl cp+1=0;
(4) big >0 for all i and q;
(5) cq >0 for all q;
(6) 2% (apg AO) + 30 big +cq > 0 for all q.

Proof. Assume that Tp is a transformation of k£ multivariate semi-copulas. By Lemma
2.5, we will show only 6. Let S1,S55,...,5; be semi-copulas which are differentiable
almost everywhere on (0,1)" and @ = (a1,a2,...,a,) € (0,1)" such that Si,..., Sy are
differentiable at @. Thus, Tp(S1,...,Sk) is a semi-copula by the assumption. Since P is
a quadratic function, the transformation T,,(S1, ..., Sk) must be differentiable at a.

- - Si,..,8
Moreover, gf; (@), gfi (@),..., gsk( @) and W

Let g€ {1,2,...,k}and 0 < ¢ < 1 3 (min a; N [1—max ai]). For each p # g, set
3 7

exist for all a =1,2,...n

M (%) if max x; =1
Spe (F) =48

)

=1

,,(a'—gf) ifG—el <7 <

0 otherwise.

Then S, . are semi-copulas which satisfy asp = (@) = 0 and

8TP (Sl,sa ) Sqfl,s, qu Squl,Ea ) Sk,s)
0xq

8:5& Z 2a,4Sp (a — 81) + 2a445, (@) + Z biqai + ¢4
p#q i=1
+bagSq (@) + Y bapSp(d@ — €1).
p#q

0<

Letting € — 0 yields

—=4(a@) (Z 20,45y +szqaz +cq> +bagSq (@) + Y bapSy(d) > 0. (2.5)

i=1 P#q

Now, set Sym.a (Z) = (215, + £10) (&) - Pm.a (2)
for all Z € [0,1]™ where
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& (_,)_{1 ifmlaxxizl
e - [(m (xa - (1 - i) ) + (1 - *) (1- aa)) \/0] A1 otherwise.

Since ¢y, o is nondecreasing and Sy, « is also a semi-copula. Moreover, we get Sy .o (&) —
Sy (@) while

0Sqma ;o m (m—1_ 1. 10(2=Ls, + 1)
%(a)_2<sq (a)+mH(a)>+2 R (@) —

m

when m — oo where [[(@) = a1az - - - an. Replacing Sy by Sy m o into the inequality (2.5)
yields

oS @)
;xma ZZapq @) + 2a4qSqm,a ( +qual+cq
« p#£q

> —bagSgm.a (@) = Y bapSy(d)
p7#4q

Therefore,

Z 2a,45p (@) + Z biqa; +cq = "}gn Z 2ap4Sp (@) 4 2a4qSm,o (&)
PF#q

+ Z biqai + Cq

i=1
> 1 _baqu,m,a (5) - Zp;ﬁq bapSp(a)
- mgnoo 954, m,« (é’)
0T o
=0.
By Lemma 2.6, we get 6. =

Next, we will prove the converse of Theorem 2.7. In other words, will show that
conditions 1.-6. are sufficient to guarantee that Tp is a transformation of k£ multivariate
semi-copulas.

Theorem 2.8. Let P be a quadratic polynomial. Then Tp is a transformation of k
multivariate semi-copulas if the following statements hold:

(1) f=e =di; =0 foralli,j;

(2) Sh_ big=—S0 SN apg for all i;

(3) (n = 1) 3051 Xgy tpg = Xpey p +1=0;
(4) big >0 for alli and q;

(5) cq >0 for all ¢;

(6) 22’;:1(apq ANO)+ 37 big +cq >0 for all g.
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Proof. Assume that 1.-6. hold. To show that Tp is a transformation of k multivariate
semi-copulas, let S1,..., Sk be semi-copulas and z,, € [0,1]. We consider

E ok
Tp(S1,...., Sk)(1, ..., 1, 20,1,...,1) =z ZZaqur:E Zaaq

Since — Zﬁzl 2221 (pg = 22:1 bgg for all B =1,...,n, we get

n k
Tp(S1, o S L0, 1 ) =20 | Y big+ > cq

Next, we will use 6. and Lemma 2.6 (3) to show that Tp(S1,..,Sk) is nondecreasing in
each place, i.e.,

AQTP(Sl, ey Sk) :Tp(Sl, e Sk)(.’tl, ey o T &, ,il'n)
— Tp(Sl, ceey Sk)(.’L‘l, ceey Loyy ooy l‘n)
>0

whenever (z1,...,Zq, ..., Tp) € [0,1]" and 0 < e <1 — .

Denote Z. := (21, ..., Lo, + &, ..., Typ) and T :
Since a,, = aqp for all p and ¢, we obtain

kok E ok
Z Z apgSp(Te)Sq(T) = Z Z qpSq(Te)Sp(T) = Z Z pqSq(Te)Sp(T).
p=1qg=1 qg=1p=1 p=1q=1
Consequently,

AyTp(S1, ..., Sk) = Tp(S1, ..., Sk) (@) — Tp(St, ..., Sk)(Z)

k n k k
DN apgSp(@)Sg(E) + D D bigriSe(Fe) + £ bagSe(e)

p=1g=1 i=1 g=1 q=1
k kK n ok
DTN STEHETS 9 St
q=1 p=1g=1 i=1 g=1
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ko k E ok
DD angSp(E)Sy (@) =D apqspw)Sq(f)]
| 2 D b [Sy(#) Sq@)]]
i=1 g=1
k k
3 e 1843 — Sy (@] 2D bugSa(2)
kq_k . E ok
= Z Z apqSp(Ze) [Sq(@e) — Sq(Z)] + Z Z ApqSq(Te)Sp(T)
pfk qfk o p=1q=
=20 angSp(@)Sy(D)| + | DD big [Sy(Fe) — Sg()]
p=1g=1 i=1 g=1
k k
+ Z cq [Sq(Te) = Sq(@)]| +¢ Z bagSq(7e)
g=1 q=1

p=1q=1
n k
+ Z Z biqmi[Sq(Te) — Sq(T)]
i=1 g=1
k k
+ Z cq[Sq(Te) — Se(T)] + € Z bagSq(Ze)
qg=1 qg=1
k k n
2 Z [5¢(@e) — Sq()] [Z apg [Sp(Te) + Sp(@)] + Z bigi + ¢4
=1 =1 =1
q ) p
D ebag[Sg(Fe) = 5y (2)
q=1
k k n
> " [Sg(#:) — Sq()] [2 D (apg NO)SH(Eo) + D bigi + ebag + ¢4
q=1 p=1 i=1
>0.
Therefore, Tp(S1, ..., Sk) is a semi-copula. [

Remark 2.9. In the case of univariate transformation, that is, the case k = 1, conditions
2. and 4. reduce to b;; = —aj; > 0 while conditions 3. and 5. reduce to ¢; =1+ (n —
1)a; > 0. Combining this fact with condition 6. yields 1 4+ a;; > 0 which is redundant



Quadratic Transformations of Multivariate Semi-Copulas 1927

since n > 1. Therefore, we can conclude that univariate quadratic transformation must
be in the form

an
T, (S) = n—

_ 9 g _
. S - Mean nils +(1-a)S

where 0 < a < 1 and Mean (z1,...,z,) = %Z;;l x; is the average function. Note that
Ty is the identity map and hence all T, are convex combinations of the identity map T
and Ty = —5Ty(n - Mean — Tp). This situation is already different from the univariate
quadratic transformation of bivariate semi-copula. In the latter case, it has been proved
that there are exactly 4 transformations which are not convex combinations of others (see

[13])-

As mentioned before, we are interested in the case of actual quadratic transformations.
This case only appears when the coefficient a,, < 0 for some p, g. Otherwise, conditions
2. and 5. will force b;; = 0 = apq for all ¢, p, ¢. Then conditions 3. and 5. imply that Tp is
simply a convex combination of semi-copulas. In the case of univariate transformations,
this reduces to Ty and T defined above. For multivariate transformations, the actual
quadratice transformations are given in the following forms.

Definition 2.10. A quadratic transformation Tp is said to be proper if the polynomial
P is in the form

n k ko k

1

P(x1,...,Tp, 21,5 2) = 1 (Z Z bigizg — Z Zapquzq>
i=1 ¢g=1 p=1g=1

where b;q > 0 for all ¢ and g, Zl;=1 Zl;:l Gpg = SoF biqg = 1 for all i, and Y | b;

q=1
22’;:1 apq V 0> 0 for all q.

Theorem 2.11. Any quadratic transformation can be written as a convex sum of a proper
quadratic transformation and some K ;.

Proof. Let Tp be a quadratic transformation with its coefficients satisfy conditions in
Theorem 3.4. Since Zlgzl 2521 Opg = — 2521 biq < 0andcy; > 0forallg, 0 < Z];:l cq <
1. If E’;Zl ¢q = 0, then Tp is proper. If 21;:1 ¢q = 1, then apy = b;q = 0 for all 4, p, q.
Therefore, Tp = Kz. In the case of 0 < 25:1 cg <1, sett= 25:1 Cqs

- 1
d = — (Cl . Ck)
k ) ) b
Zq:l Cq
and
Q(xla"'7xn7zl7"'azk)
n k —a
= (22 B 9 R T
zlql( qu) P1q1< qu)
Then Ty, is a proper quadratic transformation and Tp = (1 —t) T + tK ;. [

Note that there is only one proper quadratic transformation of a semi-copula but there
are infinitely many proper quadratic transformations of k semi-copulas when £ > 1. In
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fact, it can be shown that the set of proper quadratic transformations of k£ semi-copulas is
convex with O (k™) extreme points. We will demonstrate this fact in the case that k = 2.
In this case, the polynomial P such that Tp is a proper quadratic transformation of 2
semi-copulas must be in the form

1 n n
P(.’E17...7l‘n,21722):m [lebixi—l—ZgZ(l—bi)xi
=1 =1

2 2
—a112] — (1 — a1 — az2) 2122 — a2225 ]

with the conditions that b; € [0, 1] for all 4,

n
[2@11 \Y 0] + [(1 — a1 — (122) vV 0} S Zbi,
i=1
and

n

[2&22 \/O] + [(1 — a1 — a22) \/0] S n— Zbl
i=1

Theorem 2.12. There are exactly 5-2™ —4 extreme points on the set of proper quadratic
transformations of 2 semi-copulas. In fact, the corresponding quadratic polynomials of
these extreme points are

PI,c,d (.131,...7377“21722)
1
= 1(ZlZl‘i‘f’ZQin_CZ%_(1_C_d)2122_d2:§>
n iel il

where I C {1,...,n} and (¢,d) belongs to the set

[I| n—|I| 1—n—|I| 14n+|I] n1 nil 1] 1|
{(4hm) (At ety (g ot 1)) 0,1 - (1)), (41— 121)

when the number of elements |I| of I is between 0 and %,
set

{(222 ) (Bt o) (o — 1), 25 = a0, (1= L )

otherwise, (c,d) belongs to the

Proof. First, we will show that any such P can be written as a convex combination of
Prcqwhere2cV0O+(1—c—d)VO<|I|,and 2dVO+ (1 —c—d) V0 <n—]|I|

Let P =Pand I; = {i | b; >0}. If I; = 0, then P = Pp, 4,,.45, a0d we are done.
Suppose that I; # (), let b= min{b; | 7 € I} and

0, = Pry L2, ~(n1-1)/2 if [L]=n
P (n-v2-(n1-y2 i L] <n.

Also, set P, = %_b (P — bQ1). Then
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n

1 " b —b 1—b;
Py (x1,...,00,21,22) = — (lel—bxl + 22 (Z 1_[)%))
=1

i=1

_ 1 an—b‘fﬂ/? 22
n—1 1-b !

(oo ey )

1-9
1 age —b/2+b|L1[ /2 2
n—1 1—b 2
in the case that |I;| = n and
PZ(x17~";xnaZl7Z2)
1 bi—b 1-b;
:n—l zlzil_bxi—i—zQ Zl_bxi—f—in
i€l i€l i¢l

1 a11+b/2—b|11|/2 2 a11+a22
n—l(( % 2+ |1 b 2122
1 (0225/2+b|11|/2> 2

n—1 1-b 2

in the otherwise. It can be checked that both Ty, and Tp, are proper quadratic trans-

formations and P = bQy + (1 — b) P,. Moreover, I, = {z bf:é’ > O} is a proper subset
of I;. Thus, we may repeat this process, say, for m number of times with P;;; in place
of P; until we have I,,, = (). It follows that P must be a convex combination of some Q.

Specifically,

m 1—1
P=bmQi+ Y be [ (1 —by) @i
j=1

where b1y < by < ... < by is the ordering of by, ..., by.

From the above fact, we can see that any extreme point of this set must have either zero
or one as coefficients of all ;z,. To find the extreme points of this set, it is then sufficient
to find extreme points of the set

{Prcda | 2¢v0+(1—c—d)VO<|I|, and 2dVO+ (1 —c—d)VO<n—|I|}

where T C {1,...,n} is fixed. This can simply be done by graphical method. See Figure
1 for the case |I| < §. The case |I| > & simply follows by switching ¢ and d.

For |I| = 0 or n, the number of intersection points reduced to 3 instead of 5. Thus,
there are totally 5 - 2™ — 4 extreme points. [
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N
B 1—n—|{] 14+n+[I\N =]
l—c—d=|I| (4—5—77——5—7 d===
1-n n+1_
2 "2
l—c+d=n—|I|
1+e—d=|I| ¢

l—c—d=n—|I| 2

FIGURE 1. Area of possible ¢ and d when |I| < 3.
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