ISSN 1686-0209

Quadratic Transformations of Multivariate Semi-Copulas

Prakassawat Boonmee ${ }^{1}$ and Pharunyou Chanthorn ${ }^{2, *}$
${ }^{1}$ Graduate Degree Program in Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
e-mail : therdsak_b@cmu.ac.th
${ }^{2}$ Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
e-mail : Pharunyou.Chanthorn@cmu.ac.th

Abstract

In this study, we introduce a construction of semi-copulas via a composition of multivariate semi-copulas with a quadratic polynomial. Obviously, such compositions will not always result in a semicopula. Our main focus is to provide a characterization of such polynomials in terms of their coefficients. We found that the set of those coefficients forms a convex set with a linear boundary. We also found that several such transformations that are not a convex combination of semi-copulas.

MSC: 62H05
Keywords: semi-copula; quadratic transformation; quadratic construction; quadratic polynomial

1. Introduction

In recent years, semi-copulas have attracted growing interest. Semi-copulas are used in several areas such as lifetime dependence [1, 2] and analysis related to aging function $[3,4]$. Especially in statistics, survival analysis gives certain important methods which apply for analyzing the expected duration of times until one or more events happen. Furthermore, concepts of semi-copulas also appear in several separate works such as [5-8] and analytical aspects of semi-copulas are also examined in [9-11].

In literature (for instances, $[9,10,12-16]$), new constructions of semi-copulas are introduced to obtain varieties of semi-copulas. Several works focuses on transformations T_{P} which have the form

$$
T_{P}\left(S_{1}, \ldots, S_{k}\right)(x, y)=P\left(x, y, S_{1}(x, y), \ldots, S_{k}(x, y)\right)
$$

where P is a polynomial. In other words, T_{P} transforms semi-copulas S_{1}, \ldots, S_{k} into a new semi-copula $T_{P}\left(S_{1}, \ldots, S_{k}\right)$. Note that many constructions of other related objects have also been studied.

[^0]In 2015, Kolesárová et al. [12] characterize linear functions $P(x, y, z)=a x+b y+c z+d$ such that $T_{P}(A)$ remains an aggregation function for any bivariate aggregation function A. This occurs under the condition that P is a weighted arithmetic means, i.e., $P(x, y, z)=$ $a x+b y+c z$ where $a, b, c \geq 0$ and $a+b+c=1$. This fact can be extended to obtain that $T_{P}\left(A_{1}, \ldots, A_{k}\right)$ is an aggregation function for any aggregation functions A_{1}, \ldots, A_{k} if and only if the polynomial function P is an aggregation function. Also, the characterization of quadratic aggregation functions has been done in [18]. Moreover, Kolesárová et al. [12] also characterize quadratic polynomial functions P such that T_{p} is a transformation of bivariate semi-copulas and quasi-copulas. In particular, they show that the following statements are equivalent for any quadratic polynomial $P(x, y, z)$.
(1) the polynomial P can be written as

$$
P(x, y, z)=c z^{2}+d x y-c x z-c y z+(1+c-d) z
$$

where $0 \leq d \leq 1, d-c \geq 0,1+c-d \geq 0$ and $1-c-d \geq 0$;
(2) $T_{P}(Q)$ is a quasi-copula for any bivariate quasi-copula Q.

Similar characterization of copula transformations is also provided in [13]. For $k>1$, Wisadwongsa and Tasena [19] characterize quadratic polynomial functions P such that T_{P} is a transformation of two bivariate copulas. Later, this result has been extended to the case of any polynomial functions in [16]. However, all these results only provide a characterization in the case of bivariate (semi-, quasi-) copulas.

In this work, we are interested in characterizing quadratic transformation of multivariate semi-copulas, i.e., characterizing quadratic polynomial P such that

$$
T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}, \ldots, x_{n}, S_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, S_{k}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

remains a semi-copula for any semi-copulas S_{1}, \ldots, S_{k}. When $\mathrm{k}=1$, this is also done in [17]. We are able to show that the set of such quadratic functions is convex with linear boundary. We also characterize its extreme points in the case $k \leq 2$. For the case $k=1$, we show that the set has exactly 2 extreme points for all $n>2$. This result is quite different from that of Kolesárová et al. [12] where they show that there are 4 extreme points when $n=2$. For the case $k=2$, we show that there are $5 \cdot 2^{n}-2$ extreme points. For $k>2$, characterization of extreme points seem to be very complicated. In fact, we would conjecture that the number of extreme points is $O\left(k^{n}\right)$.

In the next section, we present basic notations and terms essential to this work. We also characterize quadratic transformations of semi-copulas. The characterization of the transformation T_{P} is provided in term of coefficients of quadratic polynomial P (see Theorem 2.8).

2. Quadratic Transformations of Semi-Copulas

Definition 2.1. [20] A function $S:[0,1]^{n} \rightarrow[0,1]$ is said to be an n-dimensional semicopula (or a semi-copula) if it satisfies the followings:
(1) $S\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ if $x_{j}=1$ for all $j \neq i$;
(2) S is nondecreasing in each place; i.e., for each $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$ and any $y_{i} \in[0,1]$ with $x_{i} \leq y_{i}$,

$$
S\left(x_{1}, \ldots, y_{i}, \ldots, x_{n}\right)-S\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right) \geq 0
$$

An n-dimensional semi-copula with $n>2$ will also be called a multivariate semi-copulas.

We denote the collection of all n-dimensional semi-copulas by \mathscr{S}_{n}. Note that the set \mathscr{S}_{n} actually contains maximum and minimum elements.
Example 2.2. The function $L:[0,1]^{n} \rightarrow[0,1]$ defined by

$$
L\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}x_{i} & \text { if } x_{j}=1 \text { for all } j \neq i \\ 0 & \text { otherwise }\end{cases}
$$

is a semi-copula. Another semi-copula is the function $M:[0,1]^{n} \rightarrow[0,1]$ defined via

$$
M\left(x_{1}, \ldots, x_{n}\right)=\min \left\{x_{1}, \ldots, x_{n}\right\}
$$

Moreover, $L\left(x_{1}, \ldots, x_{n}\right) \leq S\left(x_{1}, \ldots, x_{n}\right) \leq M\left(x_{1}, \ldots, x_{n}\right)$ for all $S \in \mathscr{S}_{n}$.
Remark 2.3. Since every semi-copula S is nondecreasing, we get

$$
0 \leq S\left(x_{1}, \ldots, 0, \ldots, x_{n}\right) \leq S(1, \ldots, 1,0,1, \ldots, 1)=0
$$

In other words, $S\left(x_{1}, \ldots, x_{n}\right)=0$ when $x_{i}=0$ for some i.
Given a natural number k, we define a function $T_{P}: \mathscr{S}_{n}^{k} \rightarrow \mathscr{F}$ by

$$
T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, \ldots, x_{n}\right)=P\left(x_{1}, \ldots, x_{n}, S_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, S_{k}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

for each $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$ and $\left(S_{1}, \ldots, S_{k}\right) \in \mathscr{S}_{n}^{k}$ where P is a quadratic polynomial from \mathbb{R}^{n+k} to \mathbb{R} expressed as

$$
\begin{align*}
P\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{k}\right)= & \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} z_{p} z_{q}+\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} z_{q}+\sum_{p=1}^{k} c_{q} z_{q} \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} x_{i} x_{j}+\sum_{i=1}^{n} e_{i} x_{i}+f \tag{2.1}
\end{align*}
$$

where $a_{p q}=a_{q p}$ for all p, q.
Notice that $T_{p}\left(S_{1}, \ldots, S_{k}\right)$ is differentiable at $\left(x_{1}, \ldots, x_{n}\right) \in(0,1)^{n}$ whenever S_{1}, \ldots, S_{k} are all differentiable at $\left(x_{1}, \ldots, x_{n}\right)$. This simply follows from the chain rule.
Definition 2.4. Let P be a quadratic polynomial. The function T_{P} is called a transformation of k multivariate semi-copulas if $T_{P}\left(S_{1}, \ldots, S_{k}\right)$ is a semi-copula whenever S_{1}, \ldots, S_{k} are semi-copulas.

Examples of transformations of k multivariate semi-copulas are convex combinations $K_{\vec{c}}$ of k multivariate semi-copulas. This corresponds with the case of linear function P, that is, the case where the coefficients $a_{p q}=b_{i q}=d_{i j}=e_{i}=f=0$. It is interesting to know whether an actual quadratic transformation exist and how we can characterize them. To do this, we will first prove the following lemmas.
Lemma 2.5. Assume T_{P} is a transformation of k multivariate semi-copulas. We obtain the followings:
(1) $f=e_{i}=d_{i j}=0$ for all i, j;
(2) $\sum_{q=1}^{k} b_{i q}=-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}$ for all i;
(3) $(n-1) \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}-\sum_{p=1}^{k} c_{p}+1=0$;
(4) $b_{i q} \geq 0$ for all i, q;
(5) $c_{q} \geq 0$ for all q.

Proof. Assume that the function $T_{P}\left(S_{1}, \ldots, S_{k}\right):[0,1]^{n} \rightarrow[0,1]$ is in the form

$$
\begin{aligned}
T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, \ldots, x_{n}\right)= & \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(x_{1}, \ldots, x_{n}\right) S_{q}\left(x_{1}, \ldots, x_{n}\right) \\
& +\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} S_{q}\left(x_{1}, \ldots, x_{n}\right)+\sum_{p=1}^{k} c_{q} S_{q}\left(x_{1}, \ldots, x_{n}\right) \\
& +\sum_{i=1}^{n} \sum_{j=1}^{n} d_{i j} x_{i} x_{j}+\sum_{i=1}^{n} e_{i} x_{i}+f
\end{aligned}
$$

is a semi-copula for all semi-copulas S_{1}, \ldots, S_{k}. Following the fact that the value of a semi-copula is zero whenever one of its arguments is zero,

$$
\begin{aligned}
& \bullet 0=T_{P}\left(S_{1}, \ldots, S_{k}\right)(0, \ldots, 0)=f \\
& \bullet 0=T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right)=d_{i i} x_{i} x_{i}+e_{i} x_{i} ; \\
& \bullet 0=T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(0, \ldots, 0, x_{i}, 0, \ldots, 0, x_{j}, 0, \ldots, 0\right) \\
& =d_{i i} x_{i}^{2}+d_{j j} x_{j}^{2}+d_{i j} x_{i} x_{j}+e_{i} x_{i}+e_{j} x_{j} .
\end{aligned}
$$

for all x_{i} and x_{j} between zero and one. Consequently, $d_{i j}=0=e_{i}=f$ for all i, j and the proof of 1 . is done. Now we know that

$$
\begin{aligned}
T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, \ldots, x_{n}\right)= & \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(x_{1}, \ldots, x_{n}\right) S_{q}\left(x_{1}, \ldots, x_{n}\right) \\
& +\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} S_{q}\left(x_{1}, \ldots, x_{n}\right)+\sum_{q=1}^{k} c_{q} S_{q}\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Next, we will show 2. and 3. Since $T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, 1, \ldots, 1\right)=x_{1}$ for all $x_{1} \in[0,1]$, we have

$$
\begin{align*}
x_{1} & =x_{1}^{2} \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}+x_{1}^{2} \sum_{q=1}^{k} b_{1 q}+x_{1} \sum_{i=2}^{n} \sum_{q=1}^{k} b_{i q}+x_{1} \sum_{q=1}^{k} c_{q}, \\
1 & =x_{1} \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}+x_{1} \sum_{q=1}^{k} b_{1 q}+\sum_{i=2}^{n} \sum_{q=1}^{k} b_{i q}+\sum_{q=1}^{k} c_{q}, \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
1=\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}+\sum_{q=1}^{k} b_{1 q}+\sum_{i=2}^{n} \sum_{q=1}^{k} b_{i q}+\sum_{q=1}^{k} c_{q} . \tag{2.3}
\end{equation*}
$$

Subtracting equation (2.2) from (2.3), we obtain that

$$
0=\left(1-x_{1}\right)\left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}+\sum_{q=1}^{k} b_{1 q}\right]
$$

for all $x_{1} \in[0,1]$. Thus, $\sum_{q=1}^{k} b_{1 q}=-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}$. Similar to the previous argument, we obtain

$$
\sum_{q=1}^{k} b_{i q}=-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} \text { for all } i
$$

This proves 2. Substitute $\sum_{q=1}^{k} b_{i q}=-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}$ into the equations (2.3), we get

$$
(n-1) \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}-\sum_{p=1}^{k} c_{p}+1=0 .
$$

Thus, we obtain 3.
Note that coefficients of $z_{p} z_{q}$ and $z_{q} z_{p}$ on the quadratic polynomial P are the same by assumptions, that is, $a_{p q}=a_{q p}$ for all p, q. To show 4. and 5., let $S_{q}=M$ and $S_{p}=L$ for $p \neq q$. We have

$$
\begin{align*}
\frac{\partial T_{P}\left(S_{1}, \ldots, S_{k}\right)}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)= & 2 \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(x_{1}, \ldots, x_{n}\right) \frac{\partial S_{q}}{\partial x_{\alpha}}+\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} \frac{\partial S_{q}}{x_{\alpha}} \\
& +\sum_{q=1}^{k} b_{\alpha q} S_{q}\left(x_{1}, \ldots, x_{n}\right)+\sum_{q=1}^{k} c_{q} \frac{\partial S_{q}}{\partial x_{\alpha}} \\
= & \sum_{q=1}^{k} \frac{\partial S_{q}}{\partial x_{\alpha}}\left(\sum_{p=1}^{k} 2 a_{p q} S_{p}\left(x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q}\right) \\
& +\sum_{q=1}^{k} b_{\alpha q} S_{q}\left(x_{1}, \ldots, x_{n}\right) \tag{2.4}
\end{align*}
$$

whenever $0<x_{i}<1$ and $x_{i} \neq x_{\alpha}$ for all $i \neq \alpha$.
Since $T_{P}\left(S_{1}, \ldots, S_{k}\right)$ is nondecreasing, we obtain $\frac{\partial T_{P}\left(S_{1}, \ldots, S_{k}\right)}{\partial x_{\alpha}} \geq 0$ whenever the partial derivative exists. Combining this with the equation (2.4), we have

$$
\begin{aligned}
0 & \leq \frac{\partial T_{P}\left(S_{1}, \ldots, S_{k}\right)}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right) \\
& =\frac{\partial M}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)\left(2 a_{q q} M\left(x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q}\right)+b_{\alpha q} M\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

whenever $\frac{\partial M}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)$ exists where $0<x_{i}<1$ and $x_{i} \neq x_{\alpha}$ for all $i \neq \alpha$. When $x_{\alpha}>\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, for example, when $x_{\alpha}=0.5$ and $x_{i}=0.25$ for all $i \neq \alpha$, we have $\frac{\partial M}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)=0$, and hence, $b_{\alpha q} \geq 0$. When $x_{\alpha}<\min \left\{x_{1}, \ldots, x_{\alpha-1}, x_{\alpha+1}, \ldots, x_{n}\right\}$, on the other hands, we have $\frac{\partial M}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)=1$, and

$$
0 \leq \frac{\partial T_{P}\left(S_{1}, \ldots, S_{k}\right)}{\partial x_{\alpha}}\left(x_{1}, \ldots, x_{n}\right)=\left(2 a_{q q} x_{\alpha}+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q}\right)+b_{\alpha q} x_{\alpha}
$$

Letting $x_{\alpha} \rightarrow 0$ follows by $x_{i} \rightarrow 0$ for all $i \neq \alpha$ yields $c_{q} \geq 0$.

Lemma 2.6. Let $a_{p q}, b_{i q}$ and c_{q} be arbitrary numbers. Assume that $b_{i q} \geq 0$ for all i, q. Denote $a \wedge b:=\min \{a, b\}$ and $a \vee b:=\max \{a, b\}$. The following statements are equivalent;
(1) For any semi-copula S_{1}, \ldots, S_{k} which are differentiable almost everywhere on $(0,1)^{n}$ and any $\vec{x} \in(0,1)^{n}$ such that S_{1}, \ldots, S_{k} are differentiable at \vec{x}, we have
$2 \sum_{p=1}^{k} a_{p q} S_{p}(\vec{x})+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q} \geq 0$
for each $q \in\{1, \ldots, k\}$;
(2) $c_{q} \geq 0$ and $2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right)+\sum_{i=1}^{n} b_{i q}+c_{q} \geq 0$ for each $q \in\{1, \ldots, k\}$;
(3) For any semi-copula S_{1}, \ldots, S_{k} and any $\vec{x} \in[0,1]^{n}$, we have

$$
2 \sum_{p=1}^{k} a_{p q} S_{p}(\vec{x})+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q} \geq 0
$$

for each $q \in\{1, \ldots, k\}$.
Proof. Assume that 1. holds. For each index p, we set $S_{p}=\left\{\begin{array}{ll}L & \text { if } a_{p q}>0 \\ M & \text { if } a_{p q} \leq 0\end{array}\right.$. Then S_{1}, \ldots, S_{k} are differentiable on the set of $\vec{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that $0<x_{i}<1$ and $x_{i} \neq x_{j}$ for all $i \neq j$. Therefore, they are differentiable almost everywhere. Moreover,

$$
2 \sum_{p=1}^{k} a_{p q} S_{p}(\vec{x})+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q}=2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right) M(\vec{x})+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q}
$$

for all such \vec{x}. Set $x \in(0,1)$ and

$$
\vec{x}_{m}=\left(x+\frac{1}{n m}(1-x), x+\frac{2}{n m}(1-x), \ldots, x+\frac{1}{m}(1-x)\right) .
$$

Then we must have
$2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right) M\left(\vec{x}_{m}\right)+\sum_{i=1}^{n} b_{i q}\left(x+\frac{i}{n m}(1-x)\right)+c_{q}>0$.
Let $n \rightarrow \infty$ yields $2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right) M(x, x, \ldots, x)+x \sum_{i=1}^{n} b_{i q}+c_{q}>0$.
Let $x \rightarrow 0$ and $x \rightarrow 1$ yields 2 . as desired.
Next, assume that 2. holds. Because of the maximum property of the semi-copula M, and the assumption $b_{i q} \geq 0$ for all i, we have

$$
\begin{aligned}
& 2 \sum_{p=1}^{k} a_{p q} S_{p}(\vec{x})+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q} \\
& \quad \geq 2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right) S_{p}(\vec{x})+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q} \\
& \quad \geq 2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right) M(\vec{x})+\sum_{i=1}^{n} b_{i q} M(\vec{x})+c_{q} \\
& \quad=M(\vec{x})\left(2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right)+\sum_{i=1}^{n} b_{i q}+c_{q}\right)+(1-M(\vec{x})) c_{q}
\end{aligned}
$$

$$
\geq 0
$$

where S_{1}, \ldots, S_{k} are semi-copulas and $\vec{x} \in[0,1]^{n}$.
Finally, it is obvious that 3. implies 1.

Theorem 2.7. Let P be a quadratic polynomial. If T_{P} is a transformation of k multivariate semi-copulas, then the following statements hold:
(1) $f=e_{i}=d_{i j}=0$ for all i, j;
(2) $\sum_{q=1}^{k} b_{i q}=-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}$ for all i;
(3) $(n-1) \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}-\sum_{p=1}^{k} c_{p}+1=0$;
(4) $b_{i q} \geq 0$ for all i and q;
(5) $c_{q} \geq 0$ for all q;
(6) $2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right)+\sum_{i=1}^{n} b_{i q}+c_{q} \geq 0$ for all q.

Proof. Assume that T_{P} is a transformation of k multivariate semi-copulas. By Lemma 2.5 , we will show only 6 . Let $S_{1}, S_{2}, \ldots, S_{k}$ be semi-copulas which are differentiable almost everywhere on $(0,1)^{n}$ and $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in(0,1)^{n}$ such that S_{1}, \ldots, S_{k} are differentiable at \vec{a}. Thus, $T_{P}\left(S_{1}, \ldots, S_{k}\right)$ is a semi-copula by the assumption. Since P is a quadratic function, the transformation $T_{p}\left(S_{1}, \ldots, S_{k}\right)$ must be differentiable at \vec{a}.
Moreover, $\frac{\partial S_{1}}{\partial x_{\alpha}}(\vec{a}), \frac{\partial S_{2}}{\partial x_{\alpha}}(\vec{a}), \ldots, \frac{\partial S_{k}}{\partial x_{\alpha}}(\vec{a})$ and $\frac{\partial T_{p}\left(S_{1}, \ldots, S_{k}\right)}{\partial x_{\alpha}}$ exist for all $\alpha=1,2, \ldots n$.
Let $q \in\{1,2, \ldots, k\}$ and $0<\varepsilon<\frac{1}{2}\left(\min _{i} a_{i} \wedge\left[1-\max _{i} a_{i}\right]\right)$. For each $p \neq q$, set

$$
S_{p, \varepsilon}(\vec{x})= \begin{cases}M(\vec{x}) & \text { if } \max _{i} x_{i}=1 \\ S_{p}(\vec{a}-\varepsilon \overrightarrow{1}) & \text { if } \vec{a}-\varepsilon \overrightarrow{1} \leq \vec{x}<\overrightarrow{1} \\ 0 & \text { otherwise }\end{cases}
$$

Then $S_{p, \varepsilon}$ are semi-copulas which satisfy $\frac{\partial S_{p, \varepsilon}}{\partial x_{\alpha}}(\vec{a})=0$ and

$$
\begin{aligned}
0 \leq & \frac{\partial T_{P}\left(S_{1, \varepsilon}, \ldots, S_{q-1, \varepsilon}, S_{q}, S_{q+1, \varepsilon}, \ldots, S_{k, \varepsilon}\right)}{\partial x_{\alpha}}(\vec{a}) \\
= & \frac{\partial S_{q}}{\partial x_{\alpha}}(\vec{a})\left(\sum_{p \neq q} 2 a_{p q} S_{p}(\vec{a}-\varepsilon \overrightarrow{1})+2 a_{q q} S_{q}(\vec{a})+\sum_{i=1}^{n} b_{i q} a_{i}+c_{q}\right) \\
& +b_{\alpha q} S_{q}(\vec{a})+\sum_{p \neq q} b_{\alpha p} S_{p}(\vec{a}-\varepsilon \overrightarrow{1}) .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$ yields

$$
\begin{equation*}
\frac{\partial S_{q}}{\partial x_{\alpha}}(\vec{a})\left(\sum_{p=1}^{k} 2 a_{p q} S_{p}(\vec{a})+\sum_{i=1}^{n} b_{i q} a_{i}+c_{q}\right)+b_{\alpha q} S_{q}(\vec{a})+\sum_{p \neq q} b_{\alpha p} S_{p}(\vec{a}) \geq 0 \tag{2.5}
\end{equation*}
$$

Now, set $S_{q, m, \alpha}(\vec{x})=\left(\frac{m-1}{m} S_{q}+\frac{1}{m} \Pi\right)(\vec{x}) \cdot \phi_{m, \alpha}(\vec{x})$
for all $\vec{x} \in[0,1]^{n}$ where

$$
\phi_{m, \alpha}(\vec{x})= \begin{cases}1 & \text { if } \max _{i} x_{i}=1 \\ {\left[\left(m\left(x_{\alpha}-\left(1-\frac{1}{m}\right) a_{\alpha}\right)+\left(1-\frac{1}{m}\right)\left(1-a_{\alpha}\right)\right) \vee 0\right] \wedge 1} & \text { otherwise }\end{cases}
$$

Since $\phi_{m, \alpha}$ is nondecreasing and $S_{q, m, \alpha}$ is also a semi-copula. Moreover, we get $S_{q, m, \alpha}(\vec{a}) \rightarrow$ $S_{q}(\vec{a})$ while

$$
\frac{\partial S_{q, m, \alpha}}{\partial x_{\alpha}}(\vec{a})=\frac{m}{2}\left(\frac{m-1}{m} S_{q}(\vec{a})+\frac{1}{m} \Pi(\vec{a})\right)+\frac{1}{2} \frac{\partial\left(\frac{m-1}{m} S_{q}+\frac{1}{m} \Pi\right)}{\partial x_{\alpha}}(\vec{a}) \rightarrow \infty
$$

when $m \rightarrow \infty$ where $\prod(\vec{a})=a_{1} a_{2} \cdots a_{n}$. Replacing S_{q} by $S_{q, m, \alpha}$ into the inequality (2.5) yields

$$
\begin{array}{r}
\frac{\partial S_{q, m, \alpha}}{\partial x_{\alpha}}(\vec{a})\left(\sum_{p \neq q} 2 a_{p q} S_{p}(\vec{a})+\right. \\
\left.2 a_{q q} S_{q, m, \alpha}(\vec{a})+\sum_{i=1}^{n} b_{i q} a_{i}+c_{q}\right) \\
\geq-b_{\alpha q} S_{q, m, \alpha}(\vec{a})-\sum_{p \neq q} b_{\alpha p} S_{p}(\vec{a})
\end{array}
$$

Therefore,

$$
\begin{aligned}
\sum_{p=1}^{k} 2 a_{p q} S_{p}(\vec{a})+\sum_{i=1}^{n} b_{i q} a_{i}+c_{q}= & \lim _{m \rightarrow \infty} \sum_{p \neq q} 2 a_{p q} S_{p}(\vec{a})+2 a_{q q} S_{m, \alpha}(\vec{a}) \\
& +\sum_{i=1}^{n} b_{i q} a_{i}+c_{q} \\
\geq & \lim _{m \rightarrow \infty} \frac{-b_{\alpha q} S_{q, m, \alpha}(\vec{a})-\sum_{p \neq q} b_{\alpha p} S_{p}(\vec{a})}{\frac{\partial S_{q, m, \alpha}}{\partial x_{\alpha}}(\vec{a})} \\
= & 0 .
\end{aligned}
$$

By Lemma 2.6, we get 6 .

Next, we will prove the converse of Theorem 2.7. In other words, will show that conditions 1.-6. are sufficient to guarantee that T_{P} is a transformation of k multivariate semi-copulas.

Theorem 2.8. Let P be a quadratic polynomial. Then T_{P} is a transformation of k multivariate semi-copulas if the following statements hold:
(1) $f=e_{i}=d_{i j}=0$ for all i, j;
(2) $\sum_{q=1}^{k} b_{i q}=-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}$ for all i;
(3) $(n-1) \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}-\sum_{p=1}^{k} c_{p}+1=0$;
(4) $b_{i q} \geq 0$ for all i and q;
(5) $c_{q} \geq 0$ for all q;
(6) $2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right)+\sum_{i=1}^{n} b_{i q}+c_{q} \geq 0$ for all q.

Proof. Assume that 1.-6. hold. To show that T_{P} is a transformation of k multivariate semi-copulas, let S_{1}, \ldots, S_{k} be semi-copulas and $x_{\alpha} \in[0,1]$. We consider

$$
\begin{aligned}
T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(1, \ldots, 1, x_{\alpha}, 1, \ldots, 1\right)= & x_{\alpha}^{2} \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}+x_{\alpha}^{2} \sum_{q=1}^{k} a_{\alpha q} \\
& +x_{\alpha} \sum_{i=1, i \neq \alpha}^{n} \sum_{q=1}^{k} b_{i q}+x_{\alpha} \sum_{q=1}^{k} c_{q} .
\end{aligned}
$$

Since $-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}=\sum_{q=1}^{k} b_{\beta q}$ for all $\beta=1, \ldots, n$, we get

$$
\begin{aligned}
T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(1, \ldots, 1, x_{\alpha}, 1, \ldots, 1\right) & =x_{\alpha}\left(\sum_{i=1, i \neq \alpha}^{n} \sum_{q=1}^{k} b_{i q}+\sum_{q=1}^{k} c_{q}\right) \\
& =x_{\alpha}\left(\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}+\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q}+\sum_{q=1}^{k} c_{q}\right) \\
& =x_{\alpha}
\end{aligned}
$$

Next, we will use 6. and Lemma 2.6 (3) to show that $T_{P}\left(S_{1}, . ., S_{k}\right)$ is nondecreasing in each place, i.e.,

$$
\begin{aligned}
\Delta_{\alpha} T_{P}\left(S_{1}, \ldots, S_{k}\right)= & T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, \ldots, x_{\alpha}+\varepsilon, \ldots, x_{n}\right) \\
& -T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(x_{1}, \ldots, x_{\alpha}, \ldots, x_{n}\right)
\end{aligned}
$$

$$
\geq 0
$$

whenever $\left(x_{1}, \ldots, x_{\alpha}, \ldots, x_{n}\right) \in[0,1]^{n}$ and $0 \leq \varepsilon \leq 1-x_{\alpha}$.
Denote $\vec{x}_{\varepsilon}:=\left(x_{1}, \ldots, x_{\alpha}+\varepsilon, \ldots, x_{n}\right)$ and $\vec{x}:=\left(x_{1}, \ldots, x_{\alpha}, \ldots, x_{n}\right)$.
Since $a_{p q}=a_{q p}$ for all p and q, we obtain

$$
\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(\vec{x}_{\varepsilon}\right) S_{q}(\vec{x})=\sum_{q=1}^{k} \sum_{p=1}^{k} a_{q p} S_{q}\left(\vec{x}_{\varepsilon}\right) S_{p}(\vec{x})=\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{q}\left(\vec{x}_{\varepsilon}\right) S_{p}(\vec{x}) .
$$

Consequently,

$$
\begin{aligned}
& \Delta_{\alpha} T_{P}\left(S_{1}, \ldots, S_{k}\right)=T_{P}\left(S_{1}, \ldots, S_{k}\right)\left(\vec{x}_{\varepsilon}\right)-T_{P}\left(S_{1}, \ldots, S_{k}\right)(\vec{x}) \\
& =\left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(\vec{x}_{\varepsilon}\right) S_{q}\left(\vec{x}_{\varepsilon}\right)+\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} S_{q}\left(\vec{x}_{\varepsilon}\right)+\varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}\left(\vec{x}_{\varepsilon}\right)\right. \\
& \left.\quad+\sum_{q=1}^{k} c_{q} S_{q}\left(\vec{x}_{\varepsilon}\right)\right]-\left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}(\vec{x}) S_{q}(\vec{x})+\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} S_{q}(\vec{x})\right. \\
& \left.\quad+\sum_{q=1}^{k} c_{q} S_{q}(\vec{x})\right]
\end{aligned}
$$

$$
\begin{aligned}
&= {\left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(\vec{x}_{\varepsilon}\right) S_{q}\left(\vec{x}_{\varepsilon}\right)-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(\vec{x}_{\varepsilon}\right) S_{q}(\vec{x})\right.} \\
&\left.+\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(\vec{x}_{\varepsilon}\right) S_{q}(\vec{x})-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}(\vec{x}) S_{q}(\vec{x})\right] \\
&+\left[\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]\right] \\
&+\left[\sum_{q=1}^{k} c_{q}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]\right]+\varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}\left(\vec{x}_{\varepsilon}\right) \\
&= {\left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}\left(\vec{x}_{\varepsilon}\right)\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]+\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{q}\left(\vec{x}_{\varepsilon}\right) S_{p}(\vec{x})\right.} \\
&\left.-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} S_{p}(\vec{x}) S_{q}(\vec{x})\right]+\left[\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]\right] \\
&+\left[\sum_{q=1}^{k} c_{q}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]\right]+\varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}\left(\vec{x}_{\varepsilon}\right) \\
&= \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}\left[S_{p}\left(\vec{x}_{\varepsilon}\right)+S_{p}(\vec{x})\right]\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right] \\
&+\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right] \\
&+\sum_{q=1}^{k} c_{q}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]+\varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}\left(\vec{x}_{\varepsilon}\right) \\
& \geq \sum_{q=1}^{k}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]\left[\sum_{p=1}^{k} a_{p q}\left[S_{p}\left(\vec{x}_{\varepsilon}\right)+S_{p}(\vec{x})\right]+\sum_{i=1}^{n} b_{i q} x_{i}+c_{q}\right] \\
&+\sum_{q=1}^{k} \varepsilon b_{\alpha q}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right] \\
& \geq \sum_{q=1}^{k}\left[S_{q}\left(\vec{x}_{\varepsilon}\right)-S_{q}(\vec{x})\right]\left[2 \sum_{p=1}^{k}\left(a_{p q} \wedge 0\right) S_{p}\left(\vec{x}_{\varepsilon}\right)+\sum_{i=1}^{n} b_{i q} x_{i}+\varepsilon b_{\alpha q}+c_{q}\right] \\
& \geq 0 .
\end{aligned}
$$

Therefore, $T_{P}\left(S_{1}, \ldots, S_{k}\right)$ is a semi-copula.
Remark 2.9. In the case of univariate transformation, that is, the case $k=1$, conditions 2. and 4. reduce to $b_{i 1}=-a_{11} \geq 0$ while conditions 3 . and 5 . reduce to $c_{1}=1+(n-$ 1) $a_{11} \geq 0$. Combining this fact with condition 6 . yields $1+a_{11} \geq 0$ which is redundant
since $n>1$. Therefore, we can conclude that univariate quadratic transformation must be in the form

$$
T_{a}(S)=\frac{a n}{n-1} \cdot S \cdot \text { Mean }-\frac{a}{n-1} S^{2}+(1-a) S
$$

where $0 \leq a \leq 1$ and $\operatorname{Mean}\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the average function. Note that T_{0} is the identity map and hence all T_{a} are convex combinations of the identity map T_{0} and $T_{1}=\frac{1}{n-1} T_{0}\left(n \cdot\right.$ Mean $\left.-T_{0}\right)$. This situation is already different from the univariate quadratic transformation of bivariate semi-copula. In the latter case, it has been proved that there are exactly 4 transformations which are not convex combinations of others (see [13]).

As mentioned before, we are interested in the case of actual quadratic transformations. This case only appears when the coefficient $a_{p q}<0$ for some p, q. Otherwise, conditions 2. and 5 . will force $b_{i q}=0=a_{p q}$ for all i, p, q. Then conditions 3 . and 5 . imply that T_{P} is simply a convex combination of semi-copulas. In the case of univariate transformations, this reduces to T_{0} and T_{1} defined above. For multivariate transformations, the actual quadratice transformations are given in the following forms.
Definition 2.10. A quadratic transformation T_{P} is said to be proper if the polynomial P is in the form

$$
P\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{k}\right)=\frac{1}{n-1}\left(\sum_{i=1}^{n} \sum_{q=1}^{k} b_{i q} x_{i} z_{q}-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q} z_{p} z_{q}\right)
$$

where $b_{i q} \geq 0$ for all i and $q, \sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}=\sum_{q=1}^{k} b_{i q}=1$ for all i, and $\sum_{i=1}^{n} b_{i q}-$ $2 \sum_{p=1}^{k} a_{p q} \vee 0 \geq 0$ for all q.

Theorem 2.11. Any quadratic transformation can be written as a convex sum of a proper quadratic transformation and some $K_{\vec{d}}$.

Proof. Let T_{P} be a quadratic transformation with its coefficients satisfy conditions in Theorem 3.4. Since $\sum_{p=1}^{k} \sum_{q=1}^{k} a_{p q}=-\sum_{q=1}^{k} b_{i q} \leq 0$ and $c_{q} \geq 0$ for all $q, 0 \leq \sum_{q=1}^{k} c_{q} \leq$ 1. If $\sum_{q=1}^{k} c_{q}=0$, then T_{P} is proper. If $\sum_{q=1}^{k} c_{q}=1$, then $a_{p q}=b_{i q}=0$ for all i, p, q. Therefore, $T_{P}=K_{\vec{c}}$. In the case of $0<\sum_{q=1}^{k} c_{q}<1$, set $t=\sum_{q=1}^{k} c_{q}$,

$$
\vec{d}=\frac{1}{\sum_{q=1}^{k} c_{q}}\left(c_{1}, \ldots, c_{k}\right)
$$

and

$$
\begin{aligned}
& Q\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{k}\right) \\
& =\left(\sum_{i=1}^{n} \sum_{q=1}^{k} \frac{b_{i q}}{\left(1-\sum_{q=1}^{k} c_{q}\right)} x_{i} z_{q}-\sum_{p=1}^{k} \sum_{q=1}^{k} \frac{-a_{p q}}{\left(1-\sum_{q=1}^{k} c_{q}\right)} z_{p} z_{q}\right) .
\end{aligned}
$$

Then T_{Q} is a proper quadratic transformation and $T_{P}=(1-t) T_{Q}+t K_{\vec{d}}$.

Note that there is only one proper quadratic transformation of a semi-copula but there are infinitely many proper quadratic transformations of k semi-copulas when $k>1$. In
fact, it can be shown that the set of proper quadratic transformations of k semi-copulas is convex with $O\left(k^{n}\right)$ extreme points. We will demonstrate this fact in the case that $k=2$. In this case, the polynomial P such that T_{P} is a proper quadratic transformation of 2 semi-copulas must be in the form

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{n}, z_{1}, z_{2}\right)= & \frac{1}{n-1}\left[z_{1} \sum_{i=1}^{n} b_{i} x_{i}+z_{2} \sum_{i=1}^{n}\left(1-b_{i}\right) x_{i}\right. \\
& \left.-a_{11} z_{1}^{2}-\left(1-a_{11}-a_{22}\right) z_{1} z_{2}-a_{22} z_{2}^{2}\right]
\end{aligned}
$$

with the conditions that $b_{i} \in[0,1]$ for all i,

$$
\left[2 a_{11} \vee 0\right]+\left[\left(1-a_{11}-a_{22}\right) \vee 0\right] \leq \sum_{i=1}^{n} b_{i}
$$

and

$$
\left[2 a_{22} \vee 0\right]+\left[\left(1-a_{11}-a_{22}\right) \vee 0\right] \leq n-\sum_{i=1}^{n} b_{i}
$$

Theorem 2.12. There are exactly $5 \cdot 2^{n}-4$ extreme points on the set of proper quadratic transformations of 2 semi-copulas. In fact, the corresponding quadratic polynomials of these extreme points are

$$
\begin{aligned}
& P_{I, c, d}\left(x_{1}, \ldots, x_{n}, z_{1}, z_{2}\right) \\
& =\frac{1}{n-1}\left(z_{1} \sum_{i \in I} x_{i}+z_{2} \sum_{i \notin I} x_{i}-c z_{1}^{2}-(1-c-d) z_{1} z_{2}-d z_{2}^{2}\right)
\end{aligned}
$$

where $I \subseteq\{1, \ldots, n\}$ and (c, d) belongs to the set

$$
\left\{\left(\frac{|I|}{2}, \frac{n-|I|}{2}\right),\left(\frac{1-n-|I|}{2}, \frac{1+n+|I|}{2}\right),\left(\frac{n-1}{2}, \frac{n+1}{2}-|I|\right),(0,1-|I|),\left(\frac{|I|}{2}, 1-\frac{|I|}{2}\right)\right\}
$$

when the number of elements $|I|$ of I is between 0 and $\frac{n}{2}$, otherwise, (c, d) belongs to the set

$$
\left\{\left(\frac{n-|I|}{2}, \frac{|I|}{2}\right),\left(\frac{1+n+|I|}{2}, \frac{1-n-|I|}{2}\right),\left(\frac{n+1}{2}-|I|, \frac{n-1}{2}\right),(1-|I|, 0),\left(1-\frac{|I|}{2}, \frac{|I|}{2}\right)\right\} .
$$

Proof. First, we will show that any such P can be written as a convex combination of $P_{I, c, d}$ where $2 c \vee 0+(1-c-d) \vee 0 \leq|I|$, and $2 d \vee 0+(1-c-d) \vee 0 \leq n-|I|$.

Let $P_{1}=P$ and $I_{1}=\left\{i \mid b_{i}>0\right\}$. If $I_{1}=\emptyset$, then $P=P_{I_{1}, a_{11}, a_{22}}$ and we are done. Suppose that $I_{1} \neq \emptyset$, let $b=\min \left\{b_{i} \mid i \in I_{1}\right\}$ and

$$
Q_{1}= \begin{cases}P_{I_{1},\left|I_{1}\right| / 2,-\left(\left|I_{1}\right|-1\right) / 2} & \text { if }\left|I_{1}\right|=n \\ P_{I_{1},\left(\left|I_{1}\right|-1\right) / 2,-\left(\left|I_{1}\right|-1\right) / 2} & \text { if }\left|I_{1}\right|<n\end{cases}
$$

Also, set $P_{2}=\frac{1}{1-b}\left(P_{1}-b Q_{1}\right)$. Then

$$
\begin{aligned}
P_{2}\left(x_{1}, \ldots, x_{n}, z_{1}, z_{2}\right)= & \frac{1}{n-1}\left(z_{1} \sum_{i=1}^{n} \frac{b_{i}-b}{1-b} x_{i}+z_{2}\left(\sum_{i=1}^{n} \frac{1-b_{i}}{1-b} x_{i}\right)\right) \\
& -\frac{1}{n-1}\left(\left(\frac{a_{11}-b\left|I_{1}\right| / 2}{1-b}\right) z_{1}^{2}\right. \\
& \left.+\left(1-\frac{a_{11}+a_{22}-b / 2}{1-b}\right) z_{1} z_{2}\right) \\
& -\frac{1}{n-1}\left(\frac{a_{22}-b / 2+b\left|I_{1}\right| / 2}{1-b}\right) z_{2}^{2}
\end{aligned}
$$

in the case that $\left|I_{1}\right|=n$ and

$$
\begin{aligned}
& P_{2}\left(x_{1}, \ldots, x_{n}, z_{1}, z_{2}\right) \\
& = \\
& \frac{1}{n-1}\left(z_{1} \sum_{i \in I_{1}} \frac{b_{i}-b}{1-b} x_{i}+z_{2}\left(\sum_{i \in I_{1}} \frac{1-b_{i}}{1-b} x_{i}+\sum_{i \notin I_{1}} x_{i}\right)\right) \\
& \quad-\frac{1}{n-1}\left(\left(\frac{a_{11}+b / 2-b\left|I_{1}\right| / 2}{1-b}\right) z_{1}^{2}+\left(1-\frac{a_{11}+a_{22}}{1-b}\right) z_{1} z_{2}\right) \\
& \\
& \quad-\frac{1}{n-1}\left(\frac{a_{22}-b / 2+b\left|I_{1}\right| / 2}{1-b}\right) z_{2}^{2}
\end{aligned}
$$

in the otherwise. It can be checked that both $T_{Q_{1}}$ and $T_{P_{2}}$ are proper quadratic transformations and $P=b Q_{1}+(1-b) P_{2}$. Moreover, $I_{2}=\left\{i \left\lvert\, \frac{b_{i}-b}{1-b}>0\right.\right\}$ is a proper subset of I_{1}. Thus, we may repeat this process, say, for m number of times with P_{i+1} in place of P_{i} until we have $I_{m}=\emptyset$. It follows that P must be a convex combination of some Q_{i}. Specifically,

$$
P=b_{(1)} Q_{1}+\sum_{i=i}^{m} b_{(i)} \prod_{j=1}^{i-1}\left(1-b_{(j)}\right) Q_{i}
$$

where $b_{(1)}<b_{(2)}<\ldots<b_{(m)}$ is the ordering of b_{1}, \ldots, b_{n}.
From the above fact, we can see that any extreme point of this set must have either zero or one as coefficients of all $x_{i} z_{p}$. To find the extreme points of this set, it is then sufficient to find extreme points of the set

$$
\left\{P_{I, c, d}|2 c \vee 0+(1-c-d) \vee 0 \leq|I|, \text { and } 2 d \vee 0+(1-c-d) \vee 0 \leq n-|I|\}\right.
$$

where $I \subseteq\{1, \ldots, n\}$ is fixed. This can simply be done by graphical method. See Figure 1 for the case $|I| \leq \frac{n}{2}$. The case $|I|>\frac{n}{2}$ simply follows by switching c and d.

For $|I|=0$ or n, the number of intersection points reduced to 3 instead of 5 . Thus, there are totally $5 \cdot 2^{n}-4$ extreme points.

Figure 1. Area of possible c and d when $|I| \leq \frac{n}{2}$.

Acknowledgements

This research was supported by Chiang Mai University.

References

[1] B. Bassan, F. Spizzichino, On some properties of dependence and aging for residual lifetimes in the exchangeable case, Mathematical and Statistical Methods in Reliability (2003) 235-249.
[2] B. Bassan, F. Spizzichino, Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes, Journal of Multivariate Analysis 93 (2) (2005) 313-339.
[3] R. Foschi, F. Spizzichino, Semigroups of Semicopulas and Evolution of Dependence at Increase of Age., EUSFLAT Conf. (2007) 197-203.
[4] F. Spizzichino, A concept of duality for multivariate exchangeable survival models, Fuzzy Sets and Systems 160 (3) (2009) 325-333.
[5] R.B. Nelsen, Copulas and quasi-copulas: an introduction to their properties and applications, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (2005) 391-413.
[6] J. Yan, Multivariate modeling with copulas and engineering applications, Springer Handbook of Engineering Statistics (2006) 973-990.
[7] S. Greco, R. Mesiar, F. Rindone, Generalized product, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2014) 289-295.
[8] M. El-Zekey, V. Novák, R. Mesiar, Semicopula-based EQ-algebras, Fuzzy Sets Systems (submitted) (2008).
[9] F. Durante, J. Quesada-Molina, C. Sempi, Semicopulas: characterizations and applicability, Kybernetika (2006) 287-302.
[10] F. Durante, C. Sempi, Copula and semicopula transforms, International Journal of Mathematics and Mathematical Sciences 2005 (4) (2005) 645-655.
[11] F. Durante, C. Sempi, Semicopulæ, Kybernetika 41 (3) (2005) 315-328.
[12] K. Anna, M. Radko, On linear and quadratic constructions of aggregation functions, Fuzzy Sets and Systems 268 (2015) 1-14.
[13] K. Anna, M. Gaspar, M. Radko, Quadratic constructions of copulas, Information Sciences 310 (2015) 69-76.
[14] A. Dolati, M. Ubeda-Flores, Constructing copulas by means of pairs of order statistics, Kybernetika 45 (6) (2009) 992-1002.
[15] K. Anna, M. Radko, K. Jana, On a new construction of 1-Lipschitz aggregation functions, quasi-copulas and copulas, Fuzzy Sets and Systems 226 (2013) 19-31.
[16] T. Santi, Polynomial copula transformations, International Journal of Approximate Reasoning 107 (2019) 65-78.
[17] B. Prakassawat, T. Santi, Quadratic transformation of multivariate aggregation functions, Dependence Modeling 8 (1) (2020) 254-261.
[18] T. Santi, Characterization of quadratic aggregation functions, IEEE Transactions on Fuzzy Systems 17 (4) (2019) 824-829.
[19] W. Suttisak, T. Santi, Bivariate quadratic copula constructions, International Journal of Approximate Reasoning 92 (2018) 1-19.
[20] D. Fabrizio, S. Fabio, Semi-copulas, capacities and families of level sets, Fuzzy Sets and Systems 161 (2) (2010) 269-276.

[^0]: *Corresponding author.

