Thai Journal of **Math**ematics Volume 18 Number 4 (2020) Pages 1917–1931

http://thaijmath.in.cmu.ac.th

Quadratic Transformations of Multivariate Semi-Copulas

Prakassawat Boonmee¹ and Pharunyou Chanthorn^{2,*}

¹ Graduate Degree Program in Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand

e-mail : therdsak_b@cmu.ac.th

² Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand e-mail : Pharunyou.Chanthorn@cmu.ac.th

Abstract In this study, we introduce a construction of semi-copulas via a composition of multivariate semi-copulas with a quadratic polynomial. Obviously, such compositions will not always result in a semi-copula. Our main focus is to provide a characterization of such polynomials in terms of their coefficients. We found that the set of those coefficients forms a convex set with a linear boundary. We also found that several such transformations that are not a convex combination of semi-copulas.

MSC: 62H05

Keywords: semi-copula; quadratic transformation; quadratic construction; quadratic polynomial

Submission date: 25.09.2020 / Acceptance date: 13.11.2020

1. INTRODUCTION

In recent years, semi-copulas have attracted growing interest. Semi-copulas are used in several areas such as lifetime dependence [1, 2] and analysis related to aging function [3, 4]. Especially in statistics, survival analysis gives certain important methods which apply for analyzing the expected duration of times until one or more events happen. Furthermore, concepts of semi-copulas also appear in several separate works such as [5-8]and analytical aspects of semi-copulas are also examined in [9-11].

In literature (for instances, [9, 10, 12–16]), new constructions of semi-copulas are introduced to obtain varieties of semi-copulas. Several works focuses on transformations T_P which have the form

$$T_P(S_1, ..., S_k)(x, y) = P(x, y, S_1(x, y), ..., S_k(x, y))$$

where P is a polynomial. In other words, T_P transforms semi-copulas S_1, \ldots, S_k into a new semi-copula $T_P(S_1, \ldots, S_k)$. Note that many constructions of other related objects have also been studied.

^{*}Corresponding author.

In 2015, Kolesárová et al. [12] characterize linear functions P(x, y, z) = ax + by + cz + dsuch that $T_P(A)$ remains an aggregation function for any bivariate aggregation function A. This occurs under the condition that P is a weighted arithmetic means, i.e., P(x, y, z) = ax + by + cz where $a, b, c \ge 0$ and a + b + c = 1. This fact can be extended to obtain that $T_P(A_1, \ldots, A_k)$ is an aggregation function for any aggregation functions A_1, \ldots, A_k if and only if the polynomial function P is an aggregation function. Also, the characterization of quadratic aggregation functions has been done in [18]. Moreover, Kolesárová et al. [12] also characterize quadratic polynomial functions P such that T_p is a transformation of bivariate semi-copulas and quasi-copulas. In particular, they show that the following statements are equivalent for any quadratic polynomial P(x, y, z).

(1) the polynomial P can be written as

$$P(x, y, z) = cz^{2} + dxy - cxz - cyz + (1 + c - d)z$$

where $0 \le d \le 1, d - c \ge 0, 1 + c - d \ge 0$ and $1 - c - d \ge 0$;
(2) $T_{P}(Q)$ is a quasi-copula for any bivariate quasi-copula Q .

Similar characterization of copula transformations is also provided in [13]. For k > 1, Wisadwongsa and Tasena [19] characterize quadratic polynomial functions P such that T_P is a transformation of two bivariate copulas. Later, this result has been extended to the case of any polynomial functions in [16]. However, all these results only provide a characterization in the case of bivariate (semi-, quasi-) copulas.

In this work, we are interested in characterizing quadratic transformation of multivariate semi-copulas, i.e., characterizing quadratic polynomial P such that

$$T_P(S_1, ..., S_k)(x_1, ..., x_n) = P(x_1, ..., x_n, S_1(x_1, ..., x_n), ..., S_k(x_1, ..., x_n))$$

remains a semi-copula for any semi-copulas S_1, \ldots, S_k . When k=1, this is also done in [17]. We are able to show that the set of such quadratic functions is convex with linear boundary. We also characterize its extreme points in the case $k \leq 2$. For the case k = 1, we show that the set has exactly 2 extreme points for all n > 2. This result is quite different from that of Kolesárová et al. [12] where they show that there are 4 extreme points when n = 2. For the case k = 2, we show that there are $5 \cdot 2^n - 2$ extreme points. For k > 2, characterization of extreme points seem to be very complicated. In fact, we would conjecture that the number of extreme points is $O(k^n)$.

In the next section, we present basic notations and terms essential to this work. We also characterize quadratic transformations of semi-copulas. The characterization of the transformation T_P is provided in term of coefficients of quadratic polynomial P (see Theorem 2.8).

2. QUADRATIC TRANSFORMATIONS OF SEMI-COPULAS

Definition 2.1. [20] A function $S : [0,1]^n \to [0,1]$ is said to be an *n*-dimensional semicopula (or a semi-copula) if it satisfies the followings:

- (1) $S(x_1, ..., x_n) = x_i$ if $x_j = 1$ for all $j \neq i$;
- (2) S is nondecreasing in each place; i.e., for each $(x_1, \ldots, x_n) \in [0, 1]^n$ and any $y_i \in [0, 1]$ with $x_i \leq y_i$,

 $S(x_1, ..., y_i, ..., x_n) - S(x_1, ..., x_i, ..., x_n) \ge 0.$

An *n*-dimensional semi-copula with n > 2 will also be called a multivariate semi-copulas.

We denote the collection of all *n*-dimensional semi-copulas by \mathscr{S}_n . Note that the set \mathscr{S}_n actually contains maximum and minimum elements.

i

Example 2.2. The function $L: [0,1]^n \to [0,1]$ defined by

$$L(x_1, ..., x_n) = \begin{cases} x_i & \text{if } x_j = 1 \text{ for all } j \neq \\ 0 & \text{otherwise} \end{cases}$$

is a semi-copula. Another semi-copula is the function $M: [0,1]^n \to [0,1]$ defined via

$$M(x_1, ..., x_n) = \min\{x_1, ..., x_n\}.$$

Moreover, $L(x_1, ..., x_n) \leq S(x_1, ..., x_n) \leq M(x_1, ..., x_n)$ for all $S \in \mathscr{S}_n$.

Remark 2.3. Since every semi-copula S is nondecreasing, we get

$$0 \le S(x_1, ..., 0, ..., x_n) \le S(1, ..., 1, 0, 1, ..., 1) = 0.$$

In other words, $S(x_1, ..., x_n) = 0$ when $x_i = 0$ for some *i*.

Given a natural number k, we define a function $T_P: \mathscr{S}_n^k \to \mathscr{F}$ by

$$T_P(S_1, ..., S_k)(x_1, ..., x_n) = P(x_1, ..., x_n, S_1(x_1, ..., x_n), ..., S_k(x_1, ..., x_n))$$

for each $(x_1, ..., x_n) \in [0, 1]^n$ and $(S_1, ..., S_k) \in \mathscr{S}_n^k$ where P is a quadratic polynomial from \mathbb{R}^{n+k} to \mathbb{R} expressed as

$$P(x_1, ..., x_n, z_1, ..., z_k) = \sum_{p=1}^k \sum_{q=1}^k a_{pq} z_p z_q + \sum_{i=1}^n \sum_{q=1}^k b_{iq} x_i z_q + \sum_{p=1}^k c_q z_q + \sum_{i=1}^n \sum_{j=1}^n d_{ij} x_i x_j + \sum_{i=1}^n e_i x_i + f$$
(2.1)

where $a_{pq} = a_{qp}$ for all p, q.

Notice that $T_p(S_1, \ldots, S_k)$ is differentiable at $(x_1, \ldots, x_n) \in (0, 1)^n$ whenever S_1, \ldots, S_k are all differentiable at (x_1, \ldots, x_n) . This simply follows from the chain rule.

Definition 2.4. Let P be a quadratic polynomial. The function T_P is called a *transformation of k multivariate semi-copulas* if $T_P(S_1, ..., S_k)$ is a semi-copula whenever $S_1, ..., S_k$ are semi-copulas.

Examples of transformations of k multivariate semi-copulas are convex combinations $K_{\vec{c}}$ of k multivariate semi-copulas. This corresponds with the case of linear function P, that is, the case where the coefficients $a_{pq} = b_{iq} = d_{ij} = e_i = f = 0$. It is interesting to know whether an actual quadratic transformation exist and how we can characterize them. To do this, we will first prove the following lemmas.

Lemma 2.5. Assume T_P is a transformation of k multivariate semi-copulas. We obtain the followings:

(1)
$$f = e_i = d_{ij} = 0$$
 for all $i, j;$
(2) $\sum_{q=1}^k b_{iq} = -\sum_{p=1}^k \sum_{q=1}^k a_{pq}$ for all $i;$
(3) $(n-1) \sum_{p=1}^k \sum_{q=1}^k a_{pq} - \sum_{p=1}^k c_p + 1 = 0;$
(4) $b_{iq} \ge 0$ for all $i, q;$

(5) $c_q \ge 0$ for all q.

Proof. Assume that the function $T_P(S_1, ..., S_k) : [0, 1]^n \to [0, 1]$ is in the form

$$T_P(S_1, ..., S_k)(x_1, ..., x_n) = \sum_{p=1}^k \sum_{q=1}^k a_{pq} S_p(x_1, ..., x_n) S_q(x_1, ..., x_n) + \sum_{i=1}^n \sum_{q=1}^k b_{iq} x_i S_q(x_1, ..., x_n) + \sum_{p=1}^k c_q S_q(x_1, ..., x_n) + \sum_{i=1}^n \sum_{j=1}^n d_{ij} x_i x_j + \sum_{i=1}^n e_i x_i + f$$

is a semi-copula for all semi-copulas S_1, \ldots, S_k . Following the fact that the value of a semi-copula is zero whenever one of its arguments is zero,

- $0 = T_P(S_1, \ldots, S_k)(0, \ldots, 0) = f;$
- $0 = T_P(S_1, \dots, S_k)(0, \dots, 0, x_i, 0, \dots, 0) = d_{ii}x_ix_i + e_ix_i;$
- $0 = T_P(S_1, \dots, S_k)(0, \dots, 0, x_i, 0, \dots, 0, x_j, 0, \dots, 0)$ = $d_{ii}x_i^2 + d_{jj}x_j^2 + d_{ij}x_ix_j + e_ix_i + e_jx_j.$

for all x_i and x_j between zero and one. Consequently, $d_{ij} = 0 = e_i = f$ for all i, j and the proof of 1. is done. Now we know that

$$T_P(S_1, ..., S_k)(x_1, ..., x_n) = \sum_{p=1}^k \sum_{q=1}^k a_{pq} S_p(x_1, ..., x_n) S_q(x_1, ..., x_n) + \sum_{i=1}^n \sum_{q=1}^k b_{iq} x_i S_q(x_1, ..., x_n) + \sum_{q=1}^k c_q S_q(x_1, ..., x_n).$$

Next, we will show 2. and 3. Since $T_P(S_1, ..., S_k)(x_1, 1, ..., 1) = x_1$ for all $x_1 \in [0, 1]$, we have

$$x_{1} = x_{1}^{2} \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} + x_{1}^{2} \sum_{q=1}^{k} b_{1q} + x_{1} \sum_{i=2}^{n} \sum_{q=1}^{k} b_{iq} + x_{1} \sum_{q=1}^{k} c_{q},$$

$$1 = x_{1} \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} + x_{1} \sum_{q=1}^{k} b_{1q} + \sum_{i=2}^{n} \sum_{q=1}^{k} b_{iq} + \sum_{q=1}^{k} c_{q},$$
(2.2)

and

$$1 = \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} + \sum_{q=1}^{k} b_{1q} + \sum_{i=2}^{n} \sum_{q=1}^{k} b_{iq} + \sum_{q=1}^{k} c_q.$$
 (2.3)

Subtracting equation (2.2) from (2.3), we obtain that

$$0 = (1 - x_1) \left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} + \sum_{q=1}^{k} b_{1q} \right]$$

for all $x_1 \in [0, 1]$. Thus, $\sum_{q=1}^k b_{1q} = -\sum_{p=1}^k \sum_{q=1}^k a_{pq}$. Similar to the previous argument, we obtain

$$\sum_{q=1}^{k} b_{iq} = -\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} \text{ for all } i.$$

This proves 2. Substitute $\sum_{q=1}^{k} b_{iq} = -\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq}$ into the equations (2.3), we get $(n-1)\sum_{k=1}^{k} \sum_{p=1}^{k} a_{pq} - \sum_{k=1}^{k} c_{p} + 1 = 0.$

$$(n-1)\sum_{p=1}^{\kappa}\sum_{q=1}^{\kappa}a_{pq} - \sum_{p=1}^{\kappa}c_p + 1 = 0$$

Thus, we obtain 3.

Note that coefficients of $z_p z_q$ and $z_q z_p$ on the quadratic polynomial P are the same by assumptions, that is, $a_{pq} = a_{qp}$ for all p, q. To show 4. and 5., let $S_q = M$ and $S_p = L$ for $p \neq q$. We have

$$\frac{\partial T_P(S_1, \dots, S_k)}{\partial x_{\alpha}}(x_1, \dots, x_n) = 2 \sum_{p=1}^k \sum_{q=1}^k a_{pq} S_p(x_1, \dots, x_n) \frac{\partial S_q}{\partial x_{\alpha}} + \sum_{i=1}^n \sum_{q=1}^k b_{iq} x_i \frac{\partial S_q}{x_{\alpha}}$$
$$+ \sum_{q=1}^k b_{\alpha q} S_q(x_1, \dots, x_n) + \sum_{q=1}^k c_q \frac{\partial S_q}{\partial x_{\alpha}}$$
$$= \sum_{q=1}^k \frac{\partial S_q}{\partial x_{\alpha}} \left(\sum_{p=1}^k 2a_{pq} S_p(x_1, \dots, x_n) + \sum_{i=1}^n b_{iq} x_i + c_q \right)$$
$$+ \sum_{q=1}^k b_{\alpha q} S_q(x_1, \dots, x_n)$$
(2.4)

whenever $0 < x_i < 1$ and $x_i \neq x_\alpha$ for all $i \neq \alpha$. Since $T_P(S_1, ..., S_k)$ is nondecreasing, we obtain $\frac{\partial T_P(S_1, ..., S_k)}{\partial x_\alpha} \geq 0$ whenever the partial derivative exists. Combining this with the equation (2.4), we have

$$0 \leq \frac{\partial T_P(S_1, \dots, S_k)}{\partial x_\alpha}(x_1, \dots, x_n)$$
$$= \frac{\partial M}{\partial x_\alpha}(x_1, \dots, x_n) \left(2a_{qq}M(x_1, \dots, x_n) + \sum_{i=1}^n b_{iq}x_i + c_q\right) + b_{\alpha q}M(x_1, \dots, x_n)$$

whenever $\frac{\partial M}{\partial x_{\alpha}}(x_1, \ldots, x_n)$ exists where $0 < x_i < 1$ and $x_i \neq x_{\alpha}$ for all $i \neq \alpha$. When $x_{\alpha} > \min\{x_1, x_2, \ldots, x_n\}$, for example, when $x_{\alpha} = 0.5$ and $x_i = 0.25$ for all $i \neq \alpha$, we have $\frac{\partial M}{\partial x_{\alpha}}(x_1, \ldots, x_n) = 0$, and hence, $b_{\alpha q} \geq 0$. When $x_{\alpha} < \min\{x_1, \ldots, x_{\alpha-1}, x_{\alpha+1}, \ldots, x_n\}$, on the other hands, we have $\frac{\partial M}{\partial x_{\alpha}}(x_1, \ldots, x_n) = 1$, and

$$0 \le \frac{\partial T_P(S_1, \dots, S_k)}{\partial x_\alpha}(x_1, \dots, x_n) = \left(2a_{qq}x_\alpha + \sum_{i=1}^n b_{iq}x_i + c_q\right) + b_{\alpha q}x_\alpha$$

Letting $x_{\alpha} \to 0$ follows by $x_i \to 0$ for all $i \neq \alpha$ yields $c_q \ge 0$.

Lemma 2.6. Let a_{pq} , b_{iq} and c_q be arbitrary numbers. Assume that $b_{iq} \ge 0$ for all i, q. Denote $a \land b := \min\{a, b\}$ and $a \lor b := \max\{a, b\}$. The following statements are equivalent;

(1) For any semi-copula S_1, \ldots, S_k which are differentiable almost everywhere on $(0,1)^n$ and any $\vec{x} \in (0,1)^n$ such that S_1, \ldots, S_k are differentiable at \vec{x} , we have

$$2\sum_{p=1}^{k} a_{pq} S_p(\vec{x}) + \sum_{i=1}^{n} b_{iq} x_i + c_q \ge 0$$

for each $q \in \{1, ..., k\}$;

(2) $c_q \ge 0$ and $2\sum_{p=1}^{k} (a_{pq} \land 0) + \sum_{i=1}^{n} b_{iq} + c_q \ge 0$ for each $q \in \{1, \ldots, k\}$; (3) For any semi-copula S_1, \ldots, S_k and any $\vec{x} \in [0, 1]^n$, we have

$$2\sum_{p=1}^{k} a_{pq} S_p(\vec{x}) + \sum_{i=1}^{n} b_{iq} x_i + c_q \ge 0$$

for each $q \in \{1, \ldots, k\}$.

Proof. Assume that 1. holds. For each index p, we set $S_p = \begin{cases} L & \text{if } a_{pq} > 0 \\ M & \text{if } a_{pq} \leq 0 \end{cases}$. Then S_1, \ldots, S_k are differentiable on the set of $\vec{x} = (x_1, \ldots, x_n)$ such that $0 < x_i < 1$ and $x_i \neq x_j$ for all $i \neq j$. Therefore, they are differentiable almost everywhere. Moreover,

$$2\sum_{p=1}^{k} a_{pq} S_p(\vec{x}) + \sum_{i=1}^{n} b_{iq} x_i + c_q = 2\sum_{p=1}^{k} (a_{pq} \wedge 0) M(\vec{x}) + \sum_{i=1}^{n} b_{iq} x_i + c_q$$

for all such \vec{x} . Set $x \in (0, 1)$ and

$$\vec{x}_m = \left(x + \frac{1}{nm}(1-x), x + \frac{2}{nm}(1-x), \dots, x + \frac{1}{m}(1-x)\right).$$

Then we must have

 $2\sum_{p=1}^{k} (a_{pq} \wedge 0) M(\vec{x}_m) + \sum_{i=1}^{n} b_{iq} \left(x + \frac{i}{nm} (1-x) \right) + c_q > 0.$

Let $n \to \infty$ yields $2 \sum_{p=1}^{k} (a_{pq} \land 0) M(x, x, \dots, x) + x \sum_{i=1}^{n} b_{iq} + c_q > 0$. Let $x \to 0$ and $x \to 1$ yields 2. as desired.

Next, assume that 2. holds. Because of the maximum property of the semi-copula M, and the assumption $b_{iq} \ge 0$ for all i, we have

$$2\sum_{p=1}^{k} a_{pq} S_p(\vec{x}) + \sum_{i=1}^{n} b_{iq} x_i + c_q$$

$$\geq 2\sum_{p=1}^{k} (a_{pq} \wedge 0) S_p(\vec{x}) + \sum_{i=1}^{n} b_{iq} x_i + c_q$$

$$\geq 2\sum_{p=1}^{k} (a_{pq} \wedge 0) M(\vec{x}) + \sum_{i=1}^{n} b_{iq} M(\vec{x}) + c_q$$

$$= M(\vec{x}) \left(2\sum_{p=1}^{k} (a_{pq} \wedge 0) + \sum_{i=1}^{n} b_{iq} + c_q \right) + (1 - M(\vec{x})) c_q$$

$$\geq 0$$

where S_1, \ldots, S_k are semi-copulas and $\vec{x} \in [0, 1]^n$.

Finally, it is obvious that 3. implies 1.

Theorem 2.7. Let P be a quadratic polynomial. If T_P is a transformation of k multivariate semi-copulas, then the following statements hold:

(1) $f = e_i = d_{ij} = 0$ for all i, j;(2) $\sum_{q=1}^{k} b_{iq} = -\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq}$ for all i;(3) $(n-1) \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} - \sum_{p=1}^{k} c_p + 1 = 0;$ (4) $b_{iq} \ge 0$ for all i and q;(5) $c_q \ge 0$ for all q;(6) $2 \sum_{p=1}^{k} (a_{pq} \land 0) + \sum_{i=1}^{n} b_{iq} + c_q \ge 0$ for all q.

Proof. Assume that T_P is a transformation of k multivariate semi-copulas. By Lemma 2.5, we will show only 6. Let S_1, S_2, \ldots, S_k be semi-copulas which are differentiable almost everywhere on $(0,1)^n$ and $\vec{a} = (a_1, a_2, \ldots, a_n) \in (0,1)^n$ such that S_1, \ldots, S_k are differentiable at \vec{a} . Thus, $T_P(S_1, \ldots, S_k)$ is a semi-copula by the assumption. Since P is a quadratic function, the transformation $T_p(S_1, \ldots, S_k)$ must be differentiable at \vec{a} . Moreover, $\frac{\partial S_1}{\partial x_\alpha}(\vec{a}), \frac{\partial S_2}{\partial x_\alpha}(\vec{a}), \ldots, \frac{\partial S_k}{\partial x_\alpha}(\vec{a})$ and $\frac{\partial T_p(S_1, \ldots, S_k)}{\partial x_\alpha}$ exist for all $\alpha = 1, 2, \ldots, n$. Let $q \in \{1, 2, \ldots, k\}$ and $0 < \varepsilon < \frac{1}{2} \left(\min_i a_i \land \left[1 - \max_i a_i \right] \right)$. For each $p \neq q$, set

$$S_{p,\varepsilon}\left(\vec{x}\right) = \begin{cases} M\left(\vec{x}\right) & \text{if } \max_{i} x_{i} = 1\\ S_{p}\left(\vec{a} - \varepsilon \vec{1}\right) & \text{if } \vec{a} - \varepsilon \vec{1} \le \vec{x} < \vec{1}\\ 0 & \text{otherwise.} \end{cases}$$

Then $S_{p,\varepsilon}$ are semi-copulas which satisfy $\frac{\partial S_{p,\varepsilon}}{\partial x_{\alpha}}(\vec{a}) = 0$ and

$$0 \leq \frac{\partial T_P(S_{1,\varepsilon}, \dots, S_{q-1,\varepsilon}, S_q, S_{q+1,\varepsilon}, \dots, S_{k,\varepsilon})}{\partial x_{\alpha}} (\vec{a})$$
$$= \frac{\partial S_q}{\partial x_{\alpha}} (\vec{a}) \left(\sum_{p \neq q} 2a_{pq} S_p \left(\vec{a} - \varepsilon \vec{1} \right) + 2a_{qq} S_q \left(\vec{a} \right) + \sum_{i=1}^n b_{iq} a_i + c_q \right)$$
$$+ b_{\alpha q} S_q \left(\vec{a} \right) + \sum_{p \neq q} b_{\alpha p} S_p (\vec{a} - \varepsilon \vec{1}).$$

Letting $\varepsilon \to 0$ yields

$$\frac{\partial S_q}{\partial x_{\alpha}}\left(\vec{a}\right)\left(\sum_{p=1}^k 2a_{pq}S_p\left(\vec{a}\right) + \sum_{i=1}^n b_{iq}a_i + c_q\right) + b_{\alpha q}S_q\left(\vec{a}\right) + \sum_{p\neq q} b_{\alpha p}S_p\left(\vec{a}\right) \ge 0. \quad (2.5)$$

Now, set $S_{q,m,\alpha}(\vec{x}) = \left(\frac{m-1}{m}S_q + \frac{1}{m}\Pi\right)(\vec{x}) \cdot \phi_{m,\alpha}(\vec{x})$ for all $\vec{x} \in [0,1]^n$ where 1

$$\phi_{m,\alpha}\left(\vec{x}\right) = \begin{cases} 1 & \text{if } \max_{i} x_{i} = \\ \left[\left(m\left(x_{\alpha} - \left(1 - \frac{1}{m}\right)a_{\alpha}\right) + \left(1 - \frac{1}{m}\right)\left(1 - a_{\alpha}\right)\right) \lor 0 \right] \land 1 & \text{otherwise.} \end{cases}$$

Since $\phi_{m,\alpha}$ is nondecreasing and $S_{q,m,\alpha}$ is also a semi-copula. Moreover, we get $S_{q,m,\alpha}(\vec{a}) \rightarrow S_q(\vec{a})$ while

$$\frac{\partial S_{q,m,\alpha}}{\partial x_{\alpha}}\left(\vec{a}\right) = \frac{m}{2} \left(\frac{m-1}{m} S_{q}\left(\vec{a}\right) + \frac{1}{m} \Pi\left(\vec{a}\right)\right) + \frac{1}{2} \frac{\partial \left(\frac{m-1}{m} S_{q} + \frac{1}{m} \Pi\right)}{\partial x_{\alpha}}\left(\vec{a}\right) \to \infty$$

when $m \to \infty$ where $\prod(\vec{a}) = a_1 a_2 \cdots a_n$. Replacing S_q by $S_{q,m,\alpha}$ into the inequality (2.5) yields

$$\frac{\partial S_{q,m,\alpha}}{\partial x_{\alpha}} \left(\vec{a} \right) \left(\sum_{p \neq q} 2a_{pq} S_{p} \left(\vec{a} \right) + 2a_{qq} S_{q,m,\alpha} \left(\vec{a} \right) + \sum_{i=1}^{n} b_{iq} a_{i} + c_{q} \right) \\ \geq -b_{\alpha q} S_{q,m,\alpha} \left(\vec{a} \right) - \sum_{p \neq q} b_{\alpha p} S_{p} \left(\vec{a} \right)$$

Therefore,

$$\sum_{p=1}^{k} 2a_{pq}S_p(\vec{a}) + \sum_{i=1}^{n} b_{iq}a_i + c_q = \lim_{m \to \infty} \sum_{p \neq q} 2a_{pq}S_p(\vec{a}) + 2a_{qq}S_{m,\alpha}(\vec{a}) + \sum_{i=1}^{n} b_{iq}a_i + c_q$$
$$\geq \lim_{m \to \infty} \frac{-b_{\alpha q}S_{q,m,\alpha}(\vec{a}) - \sum_{p \neq q} b_{\alpha p}S_p(\vec{a})}{\frac{\partial S_{q,m,\alpha}}{\partial x_{\alpha}}(\vec{a})} = 0.$$

By Lemma 2.6, we get 6.

Next, we will prove the converse of Theorem 2.7. In other words, will show that conditions 1.-6. are sufficient to guarantee that T_P is a transformation of k multivariate semi-copulas.

Theorem 2.8. Let P be a quadratic polynomial. Then T_P is a transformation of k multivariate semi-copulas if the following statements hold:

(1)
$$f = e_i = d_{ij} = 0$$
 for all $i, j;$
(2) $\sum_{q=1}^k b_{iq} = -\sum_{p=1}^k \sum_{q=1}^k a_{pq}$ for all $i;$
(3) $(n-1) \sum_{p=1}^k \sum_{q=1}^k a_{pq} - \sum_{p=1}^k c_p + 1 = 0;$
(4) $b_{iq} \ge 0$ for all i and $q;$
(5) $c_q \ge 0$ for all $q;$
(6) $2\sum_{p=1}^k (a_{pq} \land 0) + \sum_{i=1}^n b_{iq} + c_q \ge 0$ for all $q.$

Proof. Assume that 1.-6. hold. To show that T_P is a transformation of k multivariate semi-copulas, let S_1, \ldots, S_k be semi-copulas and $x_{\alpha} \in [0, 1]$. We consider

$$\begin{split} T_P(S_1,...,S_k)(1,...,1,x_{\alpha},1,...,1) &= x_{\alpha}^2 \sum_{p=1}^k \sum_{q=1}^k a_{pq} + x_{\alpha}^2 \sum_{q=1}^k a_{\alpha q} \\ &+ x_{\alpha} \sum_{i=1, i \neq \alpha}^n \sum_{q=1}^k b_{iq} + x_{\alpha} \sum_{q=1}^k c_q \end{split}$$

Since $-\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} = \sum_{q=1}^{k} b_{\beta q}$ for all $\beta = 1, ..., n$, we get

$$T_P(S_1, ..., S_k)(1, ..., 1, x_{\alpha}, 1, ..., 1) = x_{\alpha} \left(\sum_{i=1, i \neq \alpha}^n \sum_{q=1}^k b_{iq} + \sum_{q=1}^k c_q \right)$$
$$= x_{\alpha} \left(\sum_{p=1}^k \sum_{q=1}^k a_{pq} + \sum_{i=1}^n \sum_{q=1}^k b_{iq} + \sum_{q=1}^k c_q \right)$$
$$= x_{\alpha}.$$

Next, we will use 6. and Lemma 2.6 (3) to show that $T_P(S_1, ..., S_k)$ is nondecreasing in each place, i.e.,

$$\Delta_{\alpha} T_{P}(S_{1},...,S_{k}) = T_{P}(S_{1},...,S_{k})(x_{1},...,x_{\alpha} + \varepsilon,...,x_{n}) - T_{P}(S_{1},...,S_{k})(x_{1},...,x_{\alpha},...,x_{n}) \geq 0$$

whenever $(x_1, ..., x_{\alpha}, ..., x_n) \in [0, 1]^n$ and $0 \le \varepsilon \le 1 - x_{\alpha}$. Denote $\vec{x}_{\varepsilon} := (x_1, ..., x_{\alpha} + \varepsilon, ..., x_n)$ and $\vec{x} := (x_1, ..., x_{\alpha}, ..., x_n)$. Since $a_{pq} = a_{qp}$ for all p and q, we obtain

$$\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_p(\vec{x}_{\varepsilon}) S_q(\vec{x}) = \sum_{q=1}^{k} \sum_{p=1}^{k} a_{qp} S_q(\vec{x}_{\varepsilon}) S_p(\vec{x}) = \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_q(\vec{x}_{\varepsilon}) S_p(\vec{x}).$$

Consequently,

$$\begin{split} &\Delta_{\alpha} T_{P}(S_{1},...,S_{k}) = T_{P}(S_{1},...,S_{k})(\vec{x}_{\varepsilon}) - T_{P}(S_{1},...,S_{k})(\vec{x}) \\ &= \left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}_{\varepsilon}) S_{q}(\vec{x}_{\varepsilon}) + \sum_{i=1}^{n} \sum_{q=1}^{k} b_{iq} x_{i} S_{q}(\vec{x}_{\varepsilon}) + \varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}(\vec{x}_{\varepsilon}) \right. \\ &+ \left. \sum_{q=1}^{k} c_{q} S_{q}(\vec{x}_{\varepsilon}) \right] - \left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}) S_{q}(\vec{x}) + \sum_{i=1}^{n} \sum_{q=1}^{k} b_{iq} x_{i} S_{q}(\vec{x}) \right. \\ &+ \left. \sum_{q=1}^{k} c_{q} S_{q}(\vec{x}) \right] \end{split}$$

$$\begin{split} &= \left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}_{\varepsilon}) S_{q}(\vec{x}_{\varepsilon}) - \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}_{\varepsilon}) S_{q}(\vec{x}) \right. \\ &+ \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}_{\varepsilon}) S_{q}(\vec{x}) - \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}) S_{q}(\vec{x}) \right] \\ &+ \left[\sum_{i=1}^{n} \sum_{q=1}^{k} b_{iq} x_{i} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \right] \\ &+ \left[\sum_{i=1}^{k} c_{q} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \right] + \varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}(\vec{x}_{\varepsilon}) \\ &= \left[\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}_{\varepsilon}) \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \right] + \left[\sum_{i=1}^{n} \sum_{q=1}^{k} a_{pq} S_{q}(\vec{x}_{\varepsilon}) S_{p}(\vec{x}) \\ &- \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} S_{p}(\vec{x}) \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \right] + \varepsilon \sum_{q=1}^{k} b_{iq} x_{i} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \\ &+ \left[\sum_{q=1}^{k} c_{q} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \right] + \varepsilon \sum_{q=1}^{k} b_{\alpha q} S_{q}(\vec{x}_{\varepsilon}) \\ &= \sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} \left[S_{p}(\vec{x}_{\varepsilon}) + S_{p}(\vec{x}) \right] \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \\ &+ \sum_{i=1}^{n} \sum_{q=1}^{k} b_{iq} x_{i} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \\ &+ \sum_{q=1}^{n} \sum_{q=1}^{k} b_{iq} x_{i} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \\ &+ \sum_{q=1}^{k} \varepsilon a_{pq} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \\ &= \sum_{q=1}^{k} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \left[\sum_{p=1}^{k} a_{pq} \left[S_{p}(\vec{x}_{\varepsilon}) + S_{p}(\vec{x}) \right] + \sum_{i=1}^{n} b_{iq} x_{i} + c_{q} \right] \\ &+ \sum_{q=1}^{k} \varepsilon b_{\alpha q} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \\ &= \sum_{q=1}^{k} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \left[2 \sum_{p=1}^{k} (a_{pq} \land 0) S_{p}(\vec{x}_{\varepsilon}) + \sum_{i=1}^{n} b_{iq} x_{i} + \varepsilon b_{\alpha q} + c_{q} \right] \\ &= \sum_{q=1}^{k} \left[S_{q}(\vec{x}_{\varepsilon}) - S_{q}(\vec{x}) \right] \right]$$

Therefore, $T_P(S_1, ..., S_k)$ is a semi-copula.

Remark 2.9. In the case of univariate transformation, that is, the case k = 1, conditions 2. and 4. reduce to $b_{i1} = -a_{11} \ge 0$ while conditions 3. and 5. reduce to $c_1 = 1 + (n - 1)a_{11} \ge 0$. Combining this fact with condition 6. yields $1 + a_{11} \ge 0$ which is redundant

since n > 1. Therefore, we can conclude that univariate quadratic transformation must be in the form

$$T_{a}(S) = \frac{an}{n-1} \cdot S \cdot \text{Mean} - \frac{a}{n-1}S^{2} + (1-a)S$$

where $0 \le a \le 1$ and $\operatorname{Mean}(x_1, \ldots, x_n) = \frac{1}{n} \sum_{i=1}^n x_i$ is the average function. Note that T_0 is the identity map and hence all T_a are convex combinations of the identity map T_0 and $T_1 = \frac{1}{n-1}T_0(n \cdot \operatorname{Mean} - T_0)$. This situation is already different from the univariate quadratic transformation of bivariate semi-copula. In the latter case, it has been proved that there are exactly 4 transformations which are not convex combinations of others (see [13]).

As mentioned before, we are interested in the case of actual quadratic transformations. This case only appears when the coefficient $a_{pq} < 0$ for some p, q. Otherwise, conditions 2. and 5. will force $b_{iq} = 0 = a_{pq}$ for all i, p, q. Then conditions 3. and 5. imply that T_P is simply a convex combination of semi-copulas. In the case of univariate transformations, this reduces to T_0 and T_1 defined above. For multivariate transformations, the actual quadratice transformations are given in the following forms.

Definition 2.10. A quadratic transformation T_P is said to be *proper* if the polynomial P is in the form

$$P(x_1, \dots, x_n, z_1, \dots, z_k) = \frac{1}{n-1} \left(\sum_{i=1}^n \sum_{q=1}^k b_{iq} x_i z_q - \sum_{p=1}^k \sum_{q=1}^k a_{pq} z_p z_q \right)$$

where $b_{iq} \ge 0$ for all *i* and *q*, $\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} = \sum_{q=1}^{k} b_{iq} = 1$ for all *i*, and $\sum_{i=1}^{n} b_{iq} - 2\sum_{p=1}^{k} a_{pq} \lor 0 \ge 0$ for all *q*.

Theorem 2.11. Any quadratic transformation can be written as a convex sum of a proper quadratic transformation and some $K_{\vec{d}}$.

Proof. Let T_P be a quadratic transformation with its coefficients satisfy conditions in Theorem 3.4. Since $\sum_{p=1}^{k} \sum_{q=1}^{k} a_{pq} = -\sum_{q=1}^{k} b_{iq} \leq 0$ and $c_q \geq 0$ for all $q, 0 \leq \sum_{q=1}^{k} c_q \leq 1$. If $\sum_{q=1}^{k} c_q = 0$, then T_P is proper. If $\sum_{q=1}^{k} c_q = 1$, then $a_{pq} = b_{iq} = 0$ for all i, p, q. Therefore, $T_P = K_{\vec{c}}$. In the case of $0 < \sum_{q=1}^{k} c_q < 1$, set $t = \sum_{q=1}^{k} c_q$,

$$\vec{d} = \frac{1}{\sum_{q=1}^{k} c_q} \left(c_1, \dots, c_k \right),$$

and

$$Q(x_1, \dots, x_n, z_1, \dots, z_k) = \left(\sum_{i=1}^n \sum_{q=1}^k \frac{b_{iq}}{\left(1 - \sum_{q=1}^k c_q\right)} x_i z_q - \sum_{p=1}^k \sum_{q=1}^k \frac{-a_{pq}}{\left(1 - \sum_{q=1}^k c_q\right)} z_p z_q\right).$$

Then T_Q is a proper quadratic transformation and $T_P = (1-t)T_Q + tK_{\vec{d}}$.

Note that there is only one proper quadratic transformation of a semi-copula but there are infinitely many proper quadratic transformations of k semi-copulas when k > 1. In

fact, it can be shown that the set of proper quadratic transformations of k semi-copulas is convex with $O(k^n)$ extreme points. We will demonstrate this fact in the case that k = 2. In this case, the polynomial P such that T_P is a proper quadratic transformation of 2 semi-copulas must be in the form

$$P(x_1, \dots, x_n, z_1, z_2) = \frac{1}{n-1} \left[z_1 \sum_{i=1}^n b_i x_i + z_2 \sum_{i=1}^n (1-b_i) x_i -a_{11} z_1^2 - (1-a_{11}-a_{22}) z_1 z_2 - a_{22} z_2^2 \right]$$

with the conditions that $b_i \in [0, 1]$ for all i,

$$[2a_{11} \lor 0] + [(1 - a_{11} - a_{22}) \lor 0] \le \sum_{i=1}^{n} b_i,$$

and

$$[2a_{22} \vee 0] + [(1 - a_{11} - a_{22}) \vee 0] \le n - \sum_{i=1}^{n} b_i.$$

Theorem 2.12. There are exactly $5 \cdot 2^n - 4$ extreme points on the set of proper quadratic transformations of 2 semi-copulas. In fact, the corresponding quadratic polynomials of these extreme points are

$$P_{I,c,d}(x_1, \dots, x_n, z_1, z_2) = \frac{1}{n-1} \left(z_1 \sum_{i \in I} x_i + z_2 \sum_{i \notin I} x_i - cz_1^2 - (1-c-d) z_1 z_2 - dz_2^2 \right)$$

where $I \subseteq \{1, \ldots, n\}$ and (c, d) belongs to the set

$$\left\{ \left(\frac{|I|}{2}, \frac{n-|I|}{2}\right), \left(\frac{1-n-|I|}{2}, \frac{1+n+|I|}{2}\right), \left(\frac{n-1}{2}, \frac{n+1}{2} - |I|\right), \left(0, 1-|I|\right), \left(\frac{|I|}{2}, 1-\frac{|I|}{2}\right) \right\}$$

when the number of elements |I| of I is between 0 and $\frac{n}{2}$, otherwise, (c, d) belongs to the set

$$\left\{ \left(\frac{n-|I|}{2}, \frac{|I|}{2}\right), \left(\frac{1+n+|I|}{2}, \frac{1-n-|I|}{2}\right), \left(\frac{n+1}{2}-|I|, \frac{n-1}{2}\right), \left(1-|I|, 0\right), \left(1-\frac{|I|}{2}, \frac{|I|}{2}\right) \right\}.$$

Proof. First, we will show that any such P can be written as a convex combination of $P_{I,c,d}$ where $2c \vee 0 + (1-c-d) \vee 0 \leq |I|$, and $2d \vee 0 + (1-c-d) \vee 0 \leq n - |I|$.

Let $P_1 = P$ and $I_1 = \{i \mid b_i > 0\}$. If $I_1 = \emptyset$, then $P = P_{I_1,a_{11},a_{22}}$ and we are done. Suppose that $I_1 \neq \emptyset$, let $b = \min\{b_i \mid i \in I_1\}$ and

$$Q_1 = \begin{cases} P_{I_1,|I_1|/2,-(|I_1|-1)/2} & \text{if } |I_1| = n \\ P_{I_1,(|I_1|-1)/2,-(|I_1|-1)/2} & \text{if } |I_1| < n. \end{cases}$$

Also, set $P_2 = \frac{1}{1-b} (P_1 - bQ_1)$. Then

$$P_{2}(x_{1},...,x_{n},z_{1},z_{2}) = \frac{1}{n-1} \left(z_{1} \sum_{i=1}^{n} \frac{b_{i}-b}{1-b} x_{i} + z_{2} \left(\sum_{i=1}^{n} \frac{1-b_{i}}{1-b} x_{i} \right) \right)$$
$$- \frac{1}{n-1} \left(\left(\frac{a_{11}-b|I_{1}|/2}{1-b} \right) z_{1}^{2}$$
$$+ \left(1 - \frac{a_{11}+a_{22}-b/2}{1-b} \right) z_{1} z_{2} \right)$$
$$- \frac{1}{n-1} \left(\frac{a_{22}-b/2+b|I_{1}|/2}{1-b} \right) z_{2}^{2}$$

in the case that $|I_1| = n$ and

$$P_{2}(x_{1},...,x_{n},z_{1},z_{2})$$

$$=\frac{1}{n-1}\left(z_{1}\sum_{i\in I_{1}}\frac{b_{i}-b}{1-b}x_{i}+z_{2}\left(\sum_{i\in I_{1}}\frac{1-b_{i}}{1-b}x_{i}+\sum_{i\notin I_{1}}x_{i}\right)\right)$$

$$-\frac{1}{n-1}\left(\left(\frac{a_{11}+b/2-b|I_{1}|/2}{1-b}\right)z_{1}^{2}+\left(1-\frac{a_{11}+a_{22}}{1-b}\right)z_{1}z_{2}\right)$$

$$-\frac{1}{n-1}\left(\frac{a_{22}-b/2+b|I_{1}|/2}{1-b}\right)z_{2}^{2}$$

in the otherwise. It can be checked that both T_{Q_1} and T_{P_2} are proper quadratic transformations and $P = bQ_1 + (1-b)P_2$. Moreover, $I_2 = \left\{i \mid \frac{b_i - b}{1 - b} > 0\right\}$ is a proper subset of I_1 . Thus, we may repeat this process, say, for m number of times with P_{i+1} in place of P_i until we have $I_m = \emptyset$. It follows that P must be a convex combination of some Q_i . Specifically,

$$P = b_{(1)}Q_1 + \sum_{i=i}^m b_{(i)} \prod_{j=1}^{i-1} (1 - b_{(j)}) Q_i$$

where $b_{(1)} < b_{(2)} < ... < b_{(m)}$ is the ordering of $b_1, ..., b_n$.

From the above fact, we can see that any extreme point of this set must have either zero or one as coefficients of all $x_i z_p$. To find the extreme points of this set, it is then sufficient to find extreme points of the set

$$\{P_{I,c,d} \mid 2c \lor 0 + (1-c-d) \lor 0 \le |I|, \text{ and } 2d \lor 0 + (1-c-d) \lor 0 \le n - |I|\}$$

where $I \subseteq \{1, \ldots, n\}$ is fixed. This can simply be done by graphical method. See Figure 1 for the case $|I| \leq \frac{n}{2}$. The case $|I| > \frac{n}{2}$ simply follows by switching c and d.

For |I| = 0 or *n*, the number of intersection points reduced to 3 instead of 5. Thus, there are totally $5 \cdot 2^n - 4$ extreme points.

FIGURE 1. Area of possible c and d when $|I| \leq \frac{n}{2}$.

ACKNOWLEDGEMENTS

This research was supported by Chiang Mai University.

References

- B. Bassan, F. Spizzichino, On some properties of dependence and aging for residual lifetimes in the exchangeable case, Mathematical and Statistical Methods in Reliability (2003) 235–249.
- [2] B. Bassan, F. Spizzichino, Relations among univariate aging, bivariate aging and dependence for exchangeable lifetimes, Journal of Multivariate Analysis 93 (2) (2005) 313–339.
- [3] R. Foschi, F. Spizzichino, Semigroups of Semicopulas and Evolution of Dependence at Increase of Age., EUSFLAT Conf. (2007) 197–203.
- [4] F. Spizzichino, A concept of duality for multivariate exchangeable survival models, Fuzzy Sets and Systems 160 (3) (2009) 325–333.
- [5] R.B. Nelsen, Copulas and quasi-copulas: an introduction to their properties and applications, Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms (2005) 391–413.
- [6] J. Yan, Multivariate modeling with copulas and engineering applications, Springer Handbook of Engineering Statistics (2006) 973–990.
- [7] S. Greco, R. Mesiar, F. Rindone, Generalized product, International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (2014) 289–295.

- [8] M. El-Zekey, V. Novák, R. Mesiar, Semicopula-based EQ-algebras, Fuzzy Sets Systems (submitted) (2008).
- [9] F. Durante, J. Quesada-Molina, C. Sempi, Semicopulas: characterizations and applicability, Kybernetika (2006) 287–302.
- [10] F. Durante, C. Sempi, Copula and semicopula transforms, International Journal of Mathematics and Mathematical Sciences 2005 (4) (2005) 645–655.
- [11] F. Durante, C. Sempi, Semicopulæ, Kybernetika 41 (3) (2005) 315–328.
- [12] K. Anna, M. Radko, On linear and quadratic constructions of aggregation functions, Fuzzy Sets and Systems 268 (2015) 1–14.
- [13] K. Anna, M. Gaspar, M. Radko, Quadratic constructions of copulas, Information Sciences 310 (2015) 69–76.
- [14] A. Dolati, M. Ubeda-Flores, Constructing copulas by means of pairs of order statistics, Kybernetika 45 (6) (2009) 992–1002.
- [15] K. Anna, M. Radko, K. Jana, On a new construction of 1-Lipschitz aggregation functions, quasi-copulas and copulas, Fuzzy Sets and Systems 226 (2013) 19–31.
- [16] T. Santi, Polynomial copula transformations, International Journal of Approximate Reasoning 107 (2019) 65–78.
- [17] B. Prakassawat, T. Santi, Quadratic transformation of multivariate aggregation functions, Dependence Modeling 8 (1) (2020) 254–261.
- [18] T. Santi, Characterization of quadratic aggregation functions, IEEE Transactions on Fuzzy Systems 17 (4) (2019) 824–829.
- [19] W. Suttisak, T. Santi, Bivariate quadratic copula constructions, International Journal of Approximate Reasoning 92 (2018) 1–19.
- [20] D. Fabrizio, S. Fabio, Semi-copulas, capacities and families of level sets, Fuzzy Sets and Systems 161 (2) (2010) 269–276.