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1. Introduction

In recent years, semi-copulas have attracted growing interest. Semi-copulas are used
in several areas such as lifetime dependence [1, 2] and analysis related to aging function
[3, 4]. Especially in statistics, survival analysis gives certain important methods which
apply for analyzing the expected duration of times until one or more events happen.
Furthermore, concepts of semi-copulas also appear in several separate works such as [5–8]
and analytical aspects of semi-copulas are also examined in [9–11].

In literature (for instances, [9, 10, 12–16]), new constructions of semi-copulas are in-
troduced to obtain varieties of semi-copulas. Several works focuses on transformations
TP which have the form

TP (S1, ..., Sk)(x, y) = P (x, y, S1(x, y), ..., Sk(x, y))

where P is a polynomial. In other words, TP transforms semi-copulas S1, . . . , Sk into a
new semi-copula TP (S1, ..., Sk). Note that many constructions of other related objects
have also been studied.
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In 2015, Kolesárová et al. [12] characterize linear functions P (x, y, z) = ax+by+cz+d
such that TP (A) remains an aggregation function for any bivariate aggregation functionA.
This occurs under the condition that P is a weighted arithmetic means, i.e., P (x, y, z) =
ax+ by+ cz where a, b, c ≥ 0 and a+ b+ c = 1. This fact can be extended to obtain that
TP (A1, ..., Ak) is an aggregation function for any aggregation functions A1, . . . , Ak if and
only if the polynomial function P is an aggregation function. Also, the characterization
of quadratic aggregation functions has been done in [18]. Moreover, Kolesárová et al.
[12] also characterize quadratic polynomial functions P such that Tp is a transformation
of bivariate semi-copulas and quasi-copulas. In particular, they show that the following
statements are equivalent for any quadratic polynomial P (x, y, z).

(1) the polynomial P can be written as

P (x, y, z) = cz2 + dxy − cxz − cyz + (1 + c− d)z

where 0 ≤ d ≤ 1, d− c ≥ 0, 1 + c− d ≥ 0 and 1− c− d ≥ 0;
(2) TP (Q) is a quasi-copula for any bivariate quasi-copula Q.

Similar characterization of copula transformations is also provided in [13]. For k > 1,
Wisadwongsa and Tasena [19] characterize quadratic polynomial functions P such that
TP is a transformation of two bivariate copulas. Later, this result has been extended to
the case of any polynomial functions in [16]. However, all these results only provide a
characterization in the case of bivariate (semi-, quasi-) copulas.

In this work, we are interested in characterizing quadratic transformation of multivari-
ate semi-copulas, i.e., characterizing quadratic polynomial P such that

TP (S1, ..., Sk)(x1, ..., xn) = P (x1, ..., xn, S1(x1, ..., xn), ..., Sk(x1, ..., xn))

remains a semi-copula for any semi-copulas S1, . . . , Sk. When k=1, this is also done in
[17]. We are able to show that the set of such quadratic functions is convex with linear
boundary. We also characterize its extreme points in the case k ≤ 2. For the case k = 1,
we show that the set has exactly 2 extreme points for all n > 2. This result is quite
different from that of Kolesárová et al. [12] where they show that there are 4 extreme
points when n = 2. For the case k = 2, we show that there are 5 · 2n − 2 extreme points.
For k > 2, characterization of extreme points seem to be very complicated. In fact, we
would conjecture that the number of extreme points is O (kn).

In the next section, we present basic notations and terms essential to this work. We
also characterize quadratic transformations of semi-copulas. The characterization of the
transformation TP is provided in term of coefficients of quadratic polynomial P (see
Theorem 2.8).

2. Quadratic Transformations of Semi-Copulas

Definition 2.1. [20] A function S : [0, 1]n → [0, 1] is said to be an n-dimensional semi-
copula (or a semi-copula) if it satisfies the followings:

(1) S(x1, ..., xn) = xi if xj = 1 for all j 6= i;
(2) S is nondecreasing in each place; i.e., for each (x1, . . . , xn) ∈ [0, 1]n and any
yi ∈ [0, 1] with xi ≤ yi,

S(x1, ..., yi, ..., xn)− S(x1, ..., xi, ..., xn) ≥ 0.

An n-dimensional semi-copula with n > 2 will also be called a multivariate semi-copulas.



Quadratic Transformations of Multivariate Semi-Copulas 1919

We denote the collection of all n-dimensional semi-copulas by Sn. Note that the set Sn

actually contains maximum and minimum elements.

Example 2.2. The function L : [0, 1]n → [0, 1] defined by

L(x1, ..., xn) =

{
xi if xj = 1 for all j 6= i
0 otherwise

is a semi-copula. Another semi-copula is the function M : [0, 1]n → [0, 1] defined via

M(x1, ..., xn) = min{x1, ..., xn}.
Moreover, L(x1, ..., xn) ≤ S(x1, ..., xn) ≤M(x1, ..., xn) for all S ∈ Sn.

Remark 2.3. Since every semi-copula S is nondecreasing, we get

0 ≤ S(x1, ..., 0, ..., xn) ≤ S(1, ..., 1, 0, 1, ..., 1) = 0.

In other words, S(x1, ..., xn) = 0 when xi = 0 for some i.

Given a natural number k, we define a function TP : S k
n → F by

TP (S1, ..., Sk)(x1, ..., xn) = P (x1, ..., xn, S1(x1, ..., xn), ..., Sk(x1, ..., xn))

for each (x1, ..., xn) ∈ [0, 1]n and (S1, ..., Sk) ∈ S k
n where P is a quadratic polynomial

from Rn+k to R expressed as

P (x1, ..., xn, z1, ..., zk) =

k∑
p=1

k∑
q=1

apqzpzq +

n∑
i=1

k∑
q=1

biqxizq +

k∑
p=1

cqzq

+

n∑
i=1

n∑
j=1

dijxixj +

n∑
i=1

eixi + f (2.1)

where apq = aqp for all p, q.
Notice that Tp(S1, . . . , Sk) is differentiable at (x1, . . . , xn) ∈ (0, 1)n whenever S1, . . . , Sk

are all differentiable at (x1, . . . , xn). This simply follows from the chain rule.

Definition 2.4. Let P be a quadratic polynomial. The function TP is called a transfor-
mation of k multivariate semi-copulas if TP (S1, ..., Sk) is a semi-copula whenever S1, ..., Sk
are semi-copulas.

Examples of transformations of k multivariate semi-copulas are convex combinations
K~c of k multivariate semi-copulas. This corresponds with the case of linear function P ,
that is, the case where the coefficients apq = biq = dij = ei = f = 0. It is interesting
to know whether an actual quadratic transformation exist and how we can characterize
them. To do this, we will first prove the following lemmas.

Lemma 2.5. Assume TP is a transformation of k multivariate semi-copulas. We obtain
the followings:

(1) f = ei = dij = 0 for all i, j;

(2)
∑k
q=1 biq = −

∑k
p=1

∑k
q=1 apq for all i;

(3) (n− 1)

k∑
p=1

k∑
q=1

apq −
k∑
p=1

cp + 1 = 0;

(4) biq ≥ 0 for all i, q;
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(5) cq ≥ 0 for all q.

Proof. Assume that the function TP (S1, ..., Sk) : [0, 1]n → [0, 1] is in the form

TP (S1, ..., Sk)(x1, ..., xn) =

k∑
p=1

k∑
q=1

apqSp(x1, ..., xn)Sq(x1, ..., xn)

+

n∑
i=1

k∑
q=1

biqxiSq(x1, ..., xn) +

k∑
p=1

cqSq(x1, ..., xn)

+

n∑
i=1

n∑
j=1

dijxixj +

n∑
i=1

eixi + f

is a semi-copula for all semi-copulas S1, . . . , Sk. Following the fact that the value of a
semi-copula is zero whenever one of its arguments is zero,

• 0 = TP (S1, . . . , Sk)(0, . . . , 0) = f ;
• 0 = TP (S1, . . . , Sk)(0, . . . , 0, xi, 0, . . . , 0) = diixixi + eixi;
• 0 = TP (S1, . . . , Sk)(0, . . . , 0, xi, 0, . . . , 0, xj , 0, . . . , 0)
= diix

2
i + djjx

2
j + dijxixj + eixi + ejxj .

for all xi and xj between zero and one. Consequently, dij = 0 = ei = f for all i, j and
the proof of 1. is done. Now we know that

TP (S1, ..., Sk)(x1, ..., xn) =

k∑
p=1

k∑
q=1

apqSp(x1, ..., xn)Sq(x1, ..., xn)

+

n∑
i=1

k∑
q=1

biqxiSq(x1, ..., xn) +

k∑
q=1

cqSq(x1, ..., xn).

Next, we will show 2. and 3. Since TP (S1, ..., Sk)(x1, 1, ..., 1) = x1 for all x1 ∈ [0, 1],
we have

x1 = x21

k∑
p=1

k∑
q=1

apq + x21

k∑
q=1

b1q + x1

n∑
i=2

k∑
q=1

biq + x1

k∑
q=1

cq,

1 = x1

k∑
p=1

k∑
q=1

apq + x1

k∑
q=1

b1q +

n∑
i=2

k∑
q=1

biq +

k∑
q=1

cq, (2.2)

and

1 =

k∑
p=1

k∑
q=1

apq +

k∑
q=1

b1q +

n∑
i=2

k∑
q=1

biq +

k∑
q=1

cq. (2.3)

Subtracting equation (2.2) from (2.3), we obtain that

0 = (1− x1)

[
k∑
p=1

k∑
q=1

apq +

k∑
q=1

b1q

]
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for all x1 ∈ [0, 1]. Thus,
∑k
q=1 b1q = −

∑k
p=1

∑k
q=1 apq. Similar to the previous argument,

we obtain
k∑
q=1

biq = −
k∑
p=1

k∑
q=1

apq for all i.

This proves 2. Substitute
∑k
q=1 biq = −

∑k
p=1

∑k
q=1 apq into the equations (2.3), we get

(n− 1)

k∑
p=1

k∑
q=1

apq −
k∑
p=1

cp + 1 = 0.

Thus, we obtain 3.
Note that coefficients of zpzq and zqzp on the quadratic polynomial P are the same by

assumptions, that is, apq = aqp for all p, q. To show 4. and 5., let Sq = M and Sp = L
for p 6= q. We have

∂TP (S1, ..., Sk)

∂xα
(x1, ..., xn) = 2

k∑
p=1

k∑
q=1

apqSp(x1, ..., xn)
∂Sq
∂xα

+

n∑
i=1

k∑
q=1

biqxi
∂Sq
xα

+

k∑
q=1

bαqSq(x1, ..., xn) +

k∑
q=1

cq
∂Sq
∂xα

=

k∑
q=1

∂Sq
∂xα

(
k∑
p=1

2apqSp(x1, ..., xn) +

n∑
i=1

biqxi + cq

)

+

k∑
q=1

bαqSq(x1, ..., xn) (2.4)

whenever 0 < xi < 1 and xi 6= xα for all i 6= α.

Since TP (S1, ..., Sk) is nondecreasing, we obtain ∂TP (S1,...,Sk)
∂xα

≥ 0 whenever the partial

derivative exists. Combining this with the equation (2.4), we have

0 ≤ ∂TP (S1, ..., Sk)

∂xα
(x1, ..., xn)

=
∂M

∂xα
(x1, ..., xn)

(
2aqqM(x1, ..., xn) +

n∑
i=1

biqxi + cq

)
+ bαqM(x1, ..., xn)

whenever ∂M
∂xα

(x1, . . . , xn) exists where 0 < xi < 1 and xi 6= xα for all i 6= α. When

xα > min{x1, x2, . . . , xn}, for example, when xα = 0.5 and xi = 0.25 for all i 6= α, we have
∂M
∂xα

(x1, ..., xn) = 0, and hence, bαq ≥ 0. When xα < min{x1, . . . , xα−1, xα+1, . . . , xn}, on

the other hands, we have ∂M
∂xα

(x1, ..., xn) = 1, and

0 ≤ ∂TP (S1, ..., Sk)

∂xα
(x1, ..., xn) =

(
2aqqxα +

n∑
i=1

biqxi + cq

)
+ bαqxα

Letting xα → 0 follows by xi → 0 for all i 6= α yields cq ≥ 0.
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Lemma 2.6. Let apq, biq and cq be arbitrary numbers. Assume that biq ≥ 0 for all i, q.
Denote a∧b := min{a, b} and a∨b := max{a, b}. The following statements are equivalent;

(1) For any semi-copula S1, . . . , Sk which are differentiable almost everywhere on
(0, 1)

n
and any ~x ∈ (0, 1)

n
such that S1, . . . , Sk are differentiable at ~x, we have

2

k∑
p=1

apqSp(~x) +

n∑
i=1

biqxi + cq ≥ 0

for each q ∈ {1, . . . , k};
(2) cq ≥ 0 and 2

∑k
p=1(apq ∧ 0) +

∑n
i=1 biq + cq ≥ 0 for each q ∈ {1, . . . , k};

(3) For any semi-copula S1, . . . , Sk and any ~x ∈ [0, 1]
n

, we have

2

k∑
p=1

apqSp(~x) +

n∑
i=1

biqxi + cq ≥ 0

for each q ∈ {1, . . . , k}.

Proof. Assume that 1. holds. For each index p, we set Sp =

{
L if apq > 0

M if apq ≤ 0
. Then

S1, . . . , Sk are differentiable on the set of ~x = (x1, . . . , xn) such that 0 < xi < 1 and
xi 6= xj for all i 6= j. Therefore, they are differentiable almost everywhere. Moreover,

2

k∑
p=1

apqSp(~x) +

n∑
i=1

biqxi + cq = 2

k∑
p=1

(apq ∧ 0)M(~x) +

n∑
i=1

biqxi + cq

for all such ~x. Set x ∈ (0, 1) and

~xm =

(
x+

1

nm
(1− x), x+

2

nm
(1− x), . . . , x+

1

m
(1− x)

)
.

Then we must have
2
∑k
p=1(apq ∧ 0)M(~xm) +

∑n
i=1 biq

(
x+ i

nm (1− x)
)

+ cq > 0.

Let n→∞ yields 2
∑k
p=1(apq ∧ 0)M(x, x, . . . , x) + x

∑n
i=1 biq + cq > 0.

Let x→ 0 and x→ 1 yields 2. as desired.
Next, assume that 2. holds. Because of the maximum property of the semi-copula M ,

and the assumption biq ≥ 0 for all i, we have

2
k∑
p=1

apqSp(~x) +
n∑
i=1

biqxi + cq

≥ 2

k∑
p=1

(apq ∧ 0)Sp(~x) +

n∑
i=1

biqxi + cq

≥ 2

k∑
p=1

(apq ∧ 0)M(~x) +

n∑
i=1

biqM(~x) + cq

= M(~x)

(
2

k∑
p=1

(apq ∧ 0) +

n∑
i=1

biq + cq

)
+ (1−M(~x)) cq

≥ 0
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where S1, . . . , Sk are semi-copulas and ~x ∈ [0, 1]
n
.

Finally, it is obvious that 3. implies 1.

Theorem 2.7. Let P be a quadratic polynomial. If TP is a transformation of k multi-
variate semi-copulas, then the following statements hold:

(1) f = ei = dij = 0 for all i, j;

(2)
∑k
q=1 biq = −

∑k
p=1

∑k
q=1 apq for all i;

(3) (n− 1)
∑k
p=1

∑k
q=1 apq −

∑k
p=1 cp + 1 = 0;

(4) biq ≥ 0 for all i and q;
(5) cq ≥ 0 for all q;

(6) 2
∑k
p=1(apq ∧ 0) +

∑n
i=1 biq + cq ≥ 0 for all q.

Proof. Assume that TP is a transformation of k multivariate semi-copulas. By Lemma
2.5, we will show only 6. Let S1, S2, . . . , Sk be semi-copulas which are differentiable
almost everywhere on (0, 1)

n
and ~a = (a1, a2, . . . , an) ∈ (0, 1)

n
such that S1, . . . , Sk are

differentiable at ~a. Thus, TP (S1, . . . , Sk) is a semi-copula by the assumption. Since P is
a quadratic function, the transformation Tp(S1, . . . , Sk) must be differentiable at ~a.

Moreover, ∂S1

∂xα
(~a), ∂S2

∂xα
(~a), . . . , ∂Sk∂xα

(~a) and
∂Tp(S1,...,Sk)

∂xα
exist for all α = 1, 2, . . . n.

Let q ∈ {1, 2, . . . , k} and 0 < ε < 1
2

(
min
i

ai ∧
[
1−max

i
ai

])
. For each p 6= q, set

Sp,ε (~x) =


M (~x) if max

i
xi = 1

Sp

(
~a− ε~1

)
if ~a− ε~1 ≤ ~x < ~1

0 otherwise.

Then Sp,ε are semi-copulas which satisfy
∂Sp,ε
∂xα

(~a) = 0 and

0 ≤∂TP (S1,ε, . . . , Sq−1,ε, Sq, Sq+1,ε, . . . , Sk,ε)

∂xα
(~a)

=
∂Sq
∂xα

(~a)

∑
p 6=q

2apqSp

(
~a− ε~1

)
+ 2aqqSq (~a) +

n∑
i=1

biqai + cq


+ bαqSq (~a) +

∑
p 6=q

bαpSp(~a− ε~1).

Letting ε→ 0 yields

∂Sq
∂xα

(~a)

(
k∑
p=1

2apqSp (~a) +

n∑
i=1

biqai + cq

)
+ bαqSq (~a) +

∑
p 6=q

bαpSp(~a) ≥ 0. (2.5)

Now, set Sq,m,α (~x) =
(
m−1
m Sq + 1

mΠ
)

(~x) · φm,α (~x)
for all ~x ∈ [0, 1]n where
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φm,α (~x) =

{
1 if max

i
xi = 1[(

m
(
xα −

(
1− 1

m

)
aα
)
+
(
1− 1

m

)
(1− aα)

)
∨ 0
]
∧ 1 otherwise.

Since φm,α is nondecreasing and Sq,m,α is also a semi-copula. Moreover, we get Sq,m,α (~a)→
Sq (~a) while

∂Sq,m,α
∂xα

(~a) =
m

2

(
m− 1

m
Sq (~a) +

1

m
Π (~a)

)
+

1

2

∂
(
m−1
m Sq + 1

mΠ
)

∂xα
(~a)→∞

when m→∞ where
∏

(~a) = a1a2 · · · an. Replacing Sq by Sq,m,α into the inequality (2.5)
yields

∂Sq,m,α
∂xα

(~a)

∑
p 6=q

2apqSp (~a) + 2aqqSq,m,α (~a) +

n∑
i=1

biqai + cq


≥ −bαqSq,m,α (~a)−

∑
p 6=q

bαpSp(~a)

Therefore,

k∑
p=1

2apqSp (~a) +

n∑
i=1

biqai + cq = lim
m→∞

∑
p 6=q

2apqSp (~a) + 2aqqSm,α (~a)

+

n∑
i=1

biqai + cq

≥ lim
m→∞

−bαqSq,m,α (~a)−
∑
p 6=q bαpSp(~a)

∂Sq,m,α
∂xα

(~a)

= 0.

By Lemma 2.6, we get 6.

Next, we will prove the converse of Theorem 2.7. In other words, will show that
conditions 1.-6. are sufficient to guarantee that TP is a transformation of k multivariate
semi-copulas.

Theorem 2.8. Let P be a quadratic polynomial. Then TP is a transformation of k
multivariate semi-copulas if the following statements hold:

(1) f = ei = dij = 0 for all i, j;

(2)
∑k
q=1 biq = −

∑k
p=1

∑k
q=1 apq for all i;

(3) (n− 1)
∑k
p=1

∑k
q=1 apq −

∑k
p=1 cp + 1 = 0;

(4) biq ≥ 0 for all i and q;
(5) cq ≥ 0 for all q;

(6) 2
∑k
p=1(apq ∧ 0) +

∑n
i=1 biq + cq ≥ 0 for all q.
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Proof. Assume that 1.-6. hold. To show that TP is a transformation of k multivariate
semi-copulas, let S1, . . . , Sk be semi-copulas and xα ∈ [0, 1]. We consider

TP (S1, ..., Sk)(1, ..., 1, xα, 1, ..., 1) = x2α

k∑
p=1

k∑
q=1

apq + x2α

k∑
q=1

aαq

+ xα

n∑
i=1,i6=α

k∑
q=1

biq + xα

k∑
q=1

cq.

Since −
∑k
p=1

∑k
q=1 apq =

∑k
q=1 bβq for all β = 1, ..., n, we get

TP (S1, ..., Sk)(1, ..., 1, xα, 1, ..., 1) = xα

 n∑
i=1,i6=α

k∑
q=1

biq +

k∑
q=1

cq


= xα

(
k∑
p=1

k∑
q=1

apq +

n∑
i=1

k∑
q=1

biq +

k∑
q=1

cq

)
= xα.

Next, we will use 6. and Lemma 2.6 (3) to show that TP (S1, .., Sk) is nondecreasing in
each place, i.e.,

∆αTP (S1, ..., Sk) =TP (S1, ..., Sk)(x1, ..., xα + ε, ..., xn)

− TP (S1, ..., Sk)(x1, ..., xα, ..., xn)

≥0

whenever (x1, ..., xα, ..., xn) ∈ [0, 1]n and 0 ≤ ε ≤ 1− xα.
Denote ~xε := (x1, ..., xα + ε, ..., xn) and ~x := (x1, ..., xα, ..., xn).
Since apq = aqp for all p and q, we obtain

k∑
p=1

k∑
q=1

apqSp(~xε)Sq(~x) =

k∑
q=1

k∑
p=1

aqpSq(~xε)Sp(~x) =

k∑
p=1

k∑
q=1

apqSq(~xε)Sp(~x).

Consequently,

∆αTP (S1, ..., Sk) = TP (S1, ..., Sk)(~xε)− TP (S1, ..., Sk)(~x)

=

[
k∑
p=1

k∑
q=1

apqSp(~xε)Sq(~xε) +

n∑
i=1

k∑
q=1

biqxiSq(~xε) + ε

k∑
q=1

bαqSq(~xε)

+

k∑
q=1

cqSq(~xε)

]
−

[
k∑
p=1

k∑
q=1

apqSp(~x)Sq(~x) +

n∑
i=1

k∑
q=1

biqxiSq(~x)

+

k∑
q=1

cqSq(~x)

]
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=

[
k∑
p=1

k∑
q=1

apqSp(~xε)Sq(~xε) −
k∑
p=1

k∑
q=1

apqSp(~xε)Sq(~x)

+

k∑
p=1

k∑
q=1

apqSp(~xε)Sq(~x) −
k∑
p=1

k∑
q=1

apqSp(~x)Sq(~x)

]

+

[
n∑
i=1

k∑
q=1

biqxi [Sq(~xε)− Sq(~x)]

]

+

[
k∑
q=1

cq [Sq(~xε)− Sq(~x)]

]
+ ε

k∑
q=1

bαqSq(~xε)

=

[
k∑
p=1

k∑
q=1

apqSp(~xε) [Sq(~xε)− Sq(~x)] +

k∑
p=1

k∑
q=1

apqSq(~xε)Sp(~x)

−
k∑
p=1

k∑
q=1

apqSp(~x)Sq(~x)

]
+

[
n∑
i=1

k∑
q=1

biqxi [Sq(~xε)− Sq(~x)]

]

+

[
k∑
q=1

cq [Sq(~xε)− Sq(~x)]

]
+ ε

k∑
q=1

bαqSq(~xε)

=

k∑
p=1

k∑
q=1

apq [Sp(~xε) + Sp(~x)] [Sq(~xε)− Sq(~x)]

+

n∑
i=1

k∑
q=1

biqxi[Sq(~xε)− Sq(~x)]

+

k∑
q=1

cq[Sq(~xε)− Sq(~x)] + ε

k∑
q=1

bαqSq(~xε)

≥
k∑
q=1

[Sq(~xε)− Sq(~x)]

[
k∑
p=1

apq [Sp(~xε) + Sp(~x)] +

n∑
i=1

biqxi + cq

]

+
k∑
q=1

εbαq[Sq(~xε)− Sq(~x)]

≥
k∑
q=1

[Sq(~xε)− Sq(~x)]

[
2

k∑
p=1

(apq ∧ 0)Sp(~xε) +

n∑
i=1

biqxi + εbαq + cq

]
≥0.

Therefore, TP (S1, ..., Sk) is a semi-copula.

Remark 2.9. In the case of univariate transformation, that is, the case k = 1, conditions
2. and 4. reduce to bi1 = −a11 ≥ 0 while conditions 3. and 5. reduce to c1 = 1 + (n −
1)a11 ≥ 0. Combining this fact with condition 6. yields 1 + a11 ≥ 0 which is redundant
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since n > 1. Therefore, we can conclude that univariate quadratic transformation must
be in the form

Ta (S) =
an

n− 1
· S ·Mean− a

n− 1
S2 + (1− a)S

where 0 ≤ a ≤ 1 and Mean (x1, . . . , xn) = 1
n

∑n
i=1 xi is the average function. Note that

T0 is the identity map and hence all Ta are convex combinations of the identity map T0
and T1 = 1

n−1T0(n ·Mean − T0). This situation is already different from the univariate
quadratic transformation of bivariate semi-copula. In the latter case, it has been proved
that there are exactly 4 transformations which are not convex combinations of others (see
[13]).

As mentioned before, we are interested in the case of actual quadratic transformations.
This case only appears when the coefficient apq < 0 for some p, q. Otherwise, conditions
2. and 5. will force biq = 0 = apq for all i, p, q. Then conditions 3. and 5. imply that TP is
simply a convex combination of semi-copulas. In the case of univariate transformations,
this reduces to T0 and T1 defined above. For multivariate transformations, the actual
quadratice transformations are given in the following forms.

Definition 2.10. A quadratic transformation TP is said to be proper if the polynomial
P is in the form

P (x1, . . . , xn, z1, . . . , zk) =
1

n− 1

(
n∑
i=1

k∑
q=1

biqxizq −
k∑
p=1

k∑
q=1

apqzpzq

)

where biq ≥ 0 for all i and q,
∑k
p=1

∑k
q=1 apq =

∑k
q=1 biq = 1 for all i, and

∑n
i=1 biq −

2
∑k
p=1 apq ∨ 0 ≥ 0 for all q.

Theorem 2.11. Any quadratic transformation can be written as a convex sum of a proper
quadratic transformation and some K~d.

Proof. Let TP be a quadratic transformation with its coefficients satisfy conditions in

Theorem 3.4. Since
∑k
p=1

∑k
q=1 apq = −

∑k
q=1 biq ≤ 0 and cq ≥ 0 for all q, 0 ≤

∑k
q=1 cq ≤

1. If
∑k
q=1 cq = 0, then TP is proper. If

∑k
q=1 cq = 1, then apq = biq = 0 for all i, p, q.

Therefore, TP = K~c. In the case of 0 <
∑k
q=1 cq < 1, set t =

∑k
q=1 cq,

~d =
1∑k
q=1 cq

(c1, . . . , ck) ,

and

Q (x1, . . . , xn, z1, . . . , zk)

=

 n∑
i=1

k∑
q=1

biq(
1−

∑k
q=1 cq

)xizq − k∑
p=1

k∑
q=1

−apq(
1−

∑k
q=1 cq

)zpzq
 .

Then TQ is a proper quadratic transformation and TP = (1− t)TQ + tK~d.

Note that there is only one proper quadratic transformation of a semi-copula but there
are infinitely many proper quadratic transformations of k semi-copulas when k > 1. In
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fact, it can be shown that the set of proper quadratic transformations of k semi-copulas is
convex with O (kn) extreme points. We will demonstrate this fact in the case that k = 2.
In this case, the polynomial P such that TP is a proper quadratic transformation of 2
semi-copulas must be in the form

P (x1, . . . , xn, z1, z2) =
1

n− 1

[
z1

n∑
i=1

bixi + z2

n∑
i=1

(1− bi)xi

−a11z21 − (1− a11 − a22) z1z2 − a22z22
]

with the conditions that bi ∈ [0, 1] for all i,

[2a11 ∨ 0] + [(1− a11 − a22) ∨ 0] ≤
n∑
i=1

bi,

and

[2a22 ∨ 0] + [(1− a11 − a22) ∨ 0] ≤ n−
n∑
i=1

bi.

Theorem 2.12. There are exactly 5 ·2n−4 extreme points on the set of proper quadratic
transformations of 2 semi-copulas. In fact, the corresponding quadratic polynomials of
these extreme points are

PI,c,d (x1, . . . , xn, z1, z2)

=
1

n− 1

(
z1
∑
i∈I

xi + z2
∑
i/∈I

xi − cz21 − (1− c− d) z1z2 − dz22

)

where I ⊆ {1, . . . , n} and (c, d) belongs to the set{(
|I|
2 ,

n−|I|
2

)
,
(

1−n−|I|
2 , 1+n+|I|2

)
,
(
n−1
2 , n+1

2 − |I|
)
, (0, 1− |I|) ,

(
|I|
2 , 1−

|I|
2

)}
when the number of elements |I| of I is between 0 and n

2 , otherwise, (c, d) belongs to the
set {(

n−|I|
2 , |I|2

)
,
(

1+n+|I|
2 , 1−n−|I|2

)
,
(
n+1
2 − |I| ,

n−1
2

)
, (1− |I| , 0) ,

(
1− |I|2 ,

|I|
2

)}
.

Proof. First, we will show that any such P can be written as a convex combination of
PI,c,d where 2c ∨ 0 + (1− c− d) ∨ 0 ≤ |I|, and 2d ∨ 0 + (1− c− d) ∨ 0 ≤ n− |I|.

Let P1 = P and I1 = {i | bi > 0}. If I1 = ∅, then P = PI1,a11,a22 and we are done.
Suppose that I1 6= ∅, let b = min {bi | i ∈ I1} and

Q1 =

{
PI1,|I1|/2,−(|I1|−1)/2 if |I1| = n

PI1,(|I1|−1)/2,−(|I1|−1)/2 if |I1| < n.

Also, set P2 = 1
1−b (P1 − bQ1). Then
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P2 (x1, . . . , xn, z1, z2) =
1

n− 1

(
z1

n∑
i=1

bi − b
1− b

xi + z2

(
n∑
i=1

1− bi
1− b

xi

))

− 1

n− 1

((
a11 − b |I1| /2

1− b

)
z21

+

(
1− a11 + a22 − b/2

1− b

)
z1z2

)
− 1

n− 1

(
a22 − b/2 + b |I1| /2

1− b

)
z22

in the case that |I1| = n and

P2 (x1, . . . , xn, z1, z2)

=
1

n− 1

z1∑
i∈I1

bi − b
1− b

xi + z2

∑
i∈I1

1− bi
1− b

xi +
∑
i/∈I1

xi


− 1

n− 1

((
a11 + b/2− b |I1| /2

1− b

)
z21 +

(
1− a11 + a22

1− b

)
z1z2

)
− 1

n− 1

(
a22 − b/2 + b |I1| /2

1− b

)
z22

in the otherwise. It can be checked that both TQ1
and TP2

are proper quadratic trans-

formations and P = bQ1 + (1− b)P2. Moreover, I2 =
{
i | bi−b1−b > 0

}
is a proper subset

of I1. Thus, we may repeat this process, say, for m number of times with Pi+1 in place
of Pi until we have Im = ∅. It follows that P must be a convex combination of some Qi.
Specifically,

P = b(1)Q1 +

m∑
i=i

b(i)

i−1∏
j=1

(
1− b(j)

)
Qi

where b(1) < b(2) < . . . < b(m) is the ordering of b1, . . . , bn.

From the above fact, we can see that any extreme point of this set must have either zero
or one as coefficients of all xizp. To find the extreme points of this set, it is then sufficient
to find extreme points of the set

{PI,c,d | 2c ∨ 0 + (1− c− d) ∨ 0 ≤ |I| , and 2d ∨ 0 + (1− c− d) ∨ 0 ≤ n− |I|}

where I ⊆ {1, . . . , n} is fixed. This can simply be done by graphical method. See Figure
1 for the case |I| ≤ n

2 . The case |I| > n
2 simply follows by switching c and d.

For |I| = 0 or n, the number of intersection points reduced to 3 instead of 5. Thus,
there are totally 5 · 2n − 4 extreme points.
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Figure 1. Area of possible c and d when |I| ≤ n
2 .
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