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1. Introduction

One of the most important tools for solving equations is the method of finding fixed
points of mappings. The well-known Banach contraction principle guarantees that every
contraction on a complete metric space has a unique fixed point. The existence of fixed
point theorems for a nonexpansive mapping, as a relaxation notion of contractions, in
CAT(κ) spaces was proved by Kirk [1, 2] for κ ≤ 0, and by Espánola and Fernández-León
[3] for κ > 0. Note that every CAT(κ′) space is a CAT(κ) space whenever κ′ < κ. In
particular, results in CAT(0) spaces can immediately be applied to CAT(κ) spaces with
κ ≤ 0. Moreover, CAT(κ) spaces with positive κ can be treated as CAT(1) spaces by
changing the scale of the space; see [4–15] for more details. It therefore suffices to focus
only on CAT(1) spaces.

In 2011, Pia̧tek [16] presented the following result in the setting of CAT(1) spaces.

Theorem 1.1. Let X be a complete CAT(1) space, and T : X → X be a nonexpansive
mapping such that F(T ) := {x ∈ X : x = Tx} 6= ∅. Let u ∈ X and suppose that
d(u,F(T )) ≤ π/4. Denote q := PF(T )u, where PF(T ) is the metric projection from X onto

F(T ). Then for each t ∈ (0, 1), there exists a unique fixed point xt ∈ B(q, π/4) of the
contraction x 7→ tf(x)⊕ (1− t)Tx on B(q, π/4), that is,

xt = tu⊕ (1− t)Txt.
In addition, the net {xt} converges strongly to q := PF(T )u as t→ 0+.
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In 2014, based on Browder’s type convergence theorems [17], a nonexpansive semigroup
could be reduced to a single nonexpansive mapping in the framework of CAT(1) spaces
as follows:

Theorem 1.2. Let X be a complete CAT(1) space, and T : X → X be a nonexpansive
mapping such that F(T ) 6= ∅. Let u ∈ X and suppose that d(u,F(T )) < π/4. Let {xn} be
a sequence in X defined by

xn = αnu⊕ (1− αn)Txn for all n ∈ N,
where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0. Then {xn} converges strongly
to PF(T )u.

In this paper, we present an existence and convergence theorem for a nonexpansive
mapping on a complete CAT(1) space, which supplements Pia̧tek’s result. Furthermore,
we prove a strong convergent theorem for Browder’s type iterations of a nonexpansive
mapping, which improve Theorem 1.2. Moudafi’s viscosity type methods of a nonex-
pansive mapping with a spherical contraction are discussed in the framework of CAT(1)
spaces. Finally, we consider results in the setting of CAT(κ) spaces with a real number
κ.

2. Preliminaries

Let X be a geodesic space. A geodesic triangle 4(u, v, w) consists of three points
u, v, w ∈ X and all the images of each geodesic part joining two of them. For a triangle
4(u, v, w) in X satisfying d(u, v) + d(v, w) + d(w, u) < 2π, we can find the comparison
triangle 4(u, v, w) in the unit sphere S2 in R3; that is, each corresponding edge has the
same length as that of original triangle. If for any p, q ∈ 4(u, v, w) and their corresponding
comparison points p, q ∈ 4(u, v, w), the inequality d(p, q) ≤ dS2(p, q) holds, then we call
X a CAT(1) space.

Let (X, d) be a CAT(1) space. Given a point t ∈ [0, 1] and two points v, w ∈ X such
that d(v, w) < π, we use the notation tv ⊕ (1 − t)w for a unique point u in the unique
geodesic segment [v, w] such that

d(u, v) = (1− t)d(v, w) and d(u,w) = td(v, w).

A subset C of X is called convex if tv⊕(1−t)w ∈ C for all v, w ∈ C such that d(v, w) < π.
The following lemma yields a crucial inequality in CAT(1) spaces, which plays an

important role in this paper.

Lemma 2.1 ([18, Corollary 2.2]). Let t ∈ [0, 1] and u, v, w be three points in a CAT(1)
space (X, d) such that d(u, v) + d(v, w) + d(w, u) < 2π. Then

cos d(tv ⊕ (1− t)w, u) sin d(v, w)

≥ cos d(v, u) sin(td(v, w)) + cos d(w, u) sin((1− t)d(v, w)).

Throughout the rest of this section, we do assume that X is a complete CAT(1) space
such that d(u, v) < π/2 for all u, v ∈ X.
Proposition 2.2. Suppose that C is a closed and convex subset of X and {xn} is a
sequence in X such that radC({xn}) := infx∈C supn d(xn, x) < π/2. Suppose that g :
C → [0, 1] is defined by

g(x) := lim inf
n→∞

cos d(x, xn) for all x ∈ C.
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Then g is upper semicontinuous and there exists a unique element x̂ ∈ C such that

g(x̂) = max
x∈C

g(x).

Moreover, if x ∈ C, then

g(x) ≤ cos d(x, x̂) · g(x̂).

Proof. Since radC({xn}) < π/2, we have α := supx∈C g(x) > 0. In particular, there
exists a sequence {zn} in C such that limm g(zm) = α. We prove that {zm} is a Cauchy
sequence. To see this, we may assume that zm 6= zk for all m 6= k. Since C is convex, it
follows that g

(
1
2zm ⊕

1
2zk
)

is meaningful and not exceeding α. We apply the preceding
lemma for zm, zk, xn and t := 1/2 to obtain the following

cos d

(
1

2
zm ⊕

1

2
zk, xn

)
sin d(zm, zk)

≥ cos d(zm, xn) sin
1

2
d(zm, zk) + cos d(zk, xn) sin

1

2
d(zm, zk).

Hence

cos d

(
1

2
zm ⊕

1

2
zk, xn

)
· 2 cos

1

2
d(zm, zk) ≥ cos d(zm, xn) + cos d(zk, xn).

This implies that

α · 2 cos
1

2
d(zm, zk) ≥ g

(
1

2
zm ⊕

1

2
zk

)
· 2 cos

1

2
d(zm, zk)

= lim inf
n→∞

cos d

(
1

2
zm ⊕

1

2
zk, xn

)
· 2 cos

1

2
d(zm, zk)

≥ lim inf
n→∞

cos d(zm, xn) + lim inf
n→∞

cos d(zk, xn).

Now taking m, k → ∞ gives limm,k→∞ cos 1
2d(zm, zk) = 1 because α > 0. This implies

that {zm} is a Cauchy sequence and hence limm→∞ zm = x̂ for some x̂ ∈ C. Since the
cosine function is decreasing, it follows that g is upper semicontinuous and hence g(x̂) = α.
Now, we prove the uniqueness. Suppose that there exists another element x′ ∈ C such
that g(x′) = α. We repeat the proof above for a sequence {wm} where w2m−1 : x̂ and
w2m := x′ for all n ≥ 1. Since limm→∞ g(wm) = α, we can conclude that {wn} is a
Cauchy sequence and this implies that x′ = x̂. This completes the first assertion of the
proposition.

Finally, let x ∈ C and let t ∈ (0, 1). It follows that tx ⊕ (1 − t)x̂ ∈ C and hence
g(tx⊕ (1− t)x̂) ≤ g(x̂). Note that

cos d(tx⊕ (1− t)x̂, xn) sin d(x, x̂)

≥ cos d(x, xn) sin td(x, x̂) + cos d(x̂, xn) sin(1− t)d(x, x̂).

In particular, g(x̂) ≥ g(x) sin td(x, x̂)+g(x̂) sin(1− t)d(x, x̂). The desired inequality holds
trivially if x = x̂. We now assume that x 6= x̂. Hence

g(x̂)
1− sin(1− t)d(x, x̂)

td(x, x̂)
≥ g(x)

sin td(x, x̂)

td(x, x̂)
.

Letting t ↓ 0 gives the result.

As a consequence of this result, we immediately have the following one.
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Proposition 2.3. Let C be a nonempty closed convex subset of X such that d(v, C) :=
infw∈C d(v, w) < π/2 for all v ∈ X. Then the metric projection PC from X onto C is well
defined; that is, for each v ∈ X, there exists a unique point PCv ∈ C satisfying

d(v, PCv) = inf
w∈C

d(v, w).

If u ∈ X and w ∈ C, then

w = PCu if and only if cos d(u, v) ≤ cos d(u,w) cos d(v, w) for all v ∈ C,

where PC is the metric projection from X onto C.

A mapping T : X → X is said to be:

• spherically Lipschitz if there exists a constant L > 0 such that

sin
d(Tv, Tw)

2
≤ L sin

d(v, w)

2
for all v, w ∈ X.

• spherical contraction if it is spherically Lipschitz with Lipschitz constant L < 1.
• nonexpansive if it is spherically Lipschitz with Lipschitz constant L = 1, that
is, d(Tv, Tw) ≤ d(v, w) for all v, w ∈ X.

The following lemma is extracted from [19, Proposition 3.4], and so the proof is omitted.

Lemma 2.4. Let C be a nonempty closed convex subset of X and M := diamX < π/2.
Then the metric projection PC is spherically Lipschitz with the Lipschitz constant L =
secM, that is,

sin
d(PCv, PCw)

2
≤ secM · sin d(v, w)

2
for all v, w ∈ X.

The following lemmas are also required for our main results.

Lemma 2.5 ([20, Lemma 2.3]). Let u, v, w be three points in a CAT(1) space (Y, d) such
that d(v, u) ≤ π/2 and d(w, u) ≤ π/2, and let t ∈ [0, 1]. Then

cos d(tv ⊕ (1− t)w, u) ≥ t cos d(v, u) + (1− t) cos d(w, u).

Moreover, we have d(tv ⊕ (1− t)w, u) ≤ max{d(v, u), d(w, u)} [21, Lemma 3.4].

Lemma 2.6 ([22, Lemma 5.4]). Let u, v, w be three points in a CAT(1) space (Y, d) such
that d(u, v)+d(v, w)+d(w, u) < 2π. Let x := tu⊕ (1− t)v and y := tu⊕ (1− t)w for some
t ∈ [0, 1]. If d(u, v) ≤ M , d(u,w) ≤ M , and sin((1− t)M) ≤ sinM for some M ∈ (0, π),
then

d(x, y) ≤ sin(1− t)M
sinM

d(v, w).

Lemma 2.7 ([23, Lemma 2.5]). Let {an} and {cn} be sequences of nonnegative real
numbers, {bn} be a sequence of real numbers, and {βn} be a sequence of real numbers in
[0, 1] such that

an+1 ≤ (1− βn)an + βnbn + cn

for all n ∈ N. If lim supn→∞ bn ≤ 0,
∑∞
n=1 cn <∞, and

∑∞
n=1 βn =∞, then limn→∞ an =

0.
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3. Main Results

From now on, we do assume that X is a complete CAT(1) space such that d(u, v) < π/2
for all u, v ∈ X. Recall that a sequence {vn} ⊂ X is said to be an approximating fixed
point sequence of a mapping T : X → X if

lim
n→∞

d(vn, T vn) = 0.

An approximating fixed point sequence plays an important role in the study of fixed
points of nonexpansive mappings. We prove that every nonexpansive mapping admits an
approximating fixed point sequence.

Proposition 3.1. Let T : X → X be a nonexpansive mapping and u ∈ X be fixed. Given
a point t ∈ (0, 1), define St : X → X by

Stx := tu⊕ (1− t)Tx for x ∈ X.
Then St has a unique fixed point xt ∈ X, that is,

xt = tu⊕ (1− t)Txt. (3.1)

In this case, we have d(xt, Txt)→ 0 as t→ 0+.

Proof. Let x, y ∈ X and t ∈ (0, 1). By Lemma 2.6, we obtain

d(Stx, Sty) = d(tu⊕ (1− t)Tx, tu⊕ (1− t)Ty)

≤
(

sin
(1− t)π

2

)
d(Tx, Ty)

≤
(

sin
(1− t)π

2

)
d(x, y).

Then St is a contraction. It follows from Banach contraction principle that there exists
exactly one point xt ∈ X such that

xt = tu⊕ (1− t)Txt.
Consequently, we have limt→0+ d (xt, Txt) = limt→0+ td (u, Txt) = 0, and the proof is
finished.

As an immediate consequence of Proposition 3.1, we obtain the following result.

Corollary 3.2. Every nonexpansive mapping T : X → X has an approximating fixed
point sequence.

Let `∞ denote the Banach space of bounded real sequences. Recall that a continuous
linear functional µ on `∞ is said to be a Banach limit if ‖µ‖ = µ(1, 1, . . . ) = 1 and
µn(an) = µn(an+1) for all {an} ∈ `∞.

We now present the existence and convergence theorem for a nonexpansive mapping
in complete CAT(1) spaces.

Theorem 3.3. Let T, u be as in the preceding proposition. For each t ∈ (0, 1) let xt be a
net given by (3.1). Then F(T ) 6= ∅ if and only if

radX({xt}) := inf
z∈X

sup
t∈(0,1)

d(xt, z) < π/2.
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In this case, the following statements hold:

(i) q := limt→0+ xt exists and it is a unique fixed point of T which is nearest to u.
(ii) If µ is a Banach limit and {yn} is a and all approximating fixed point sequences

of T , then cos d(u, q) ≥ µn cos d(u, yn).

Proof. Suppose first that F(T ) 6= ∅. Fix p ∈ F (T ) and let t ∈ (0, 1). It follows from
Lemma 2.5 and the nonexpansiveness of T that

cos d(xt, p) = cos d(tu⊕ (1− t)Txt, p)
≥ t cos d(u, p) + (1− t) cos d(Txt, p)

≥ t cos d(u, p) + (1− t) cos d(xt, p).

This implies that cos d(xt, p) ≥ cos d(u, p). It follows that d(xt, p) ≤ d(u, p) < π/2, and
hence radX({xt}) < π/2.

Conversely, suppose that radX({xt}) < π/2. Let {tk} be any sequence in (0, 1) such
that limk→∞ tk = 0 and we define g : X → [0, 1] by

g(z) := lim inf
k→∞

cos d(xtk , z) for all z ∈ X.

Then Proposition 2.2 guaruntees that there exists a unique element ẑ ∈ X such that
g(ẑ) = maxz∈C g(z). Finally, we prove that ẑ = T ẑ. To see this, it suffices to prove that
g(T ẑ) = g(ẑ). In fact, it follows from the following argument

g(ẑ) ≥ g(T ẑ) = lim inf
k→∞

cos d(xtk , T ẑ)

≥ lim inf
k→∞

cos(d(xtk , Txtk) + d(Txtk , T ẑ))

≥ lim inf
k→∞

cos(d(xtk , Txtk) + d(xtk , ẑ))

= lim inf
k→∞

cos d(xtk , ẑ) = g(ẑ).

This implies that ẑ = T ẑ, and hence F(T ) 6= ∅.
To prove Statements (i) and (ii), it suffices to show that

cos d(u, ẑ) ≥ µn cos d(u, yn)

for all Banach limits µ and for all approximating fixed point sequence {yn}. In fact, it
follows from this statement that ẑ is a unique fixed point of T which is nearest to u.

To this end, let {yn} ⊂ X be such that limn→∞ d(yn, T yn) = 0 and let µ be a Banach
limit. We may assume that Txtk 6= u for all k. (Otherwise, we obtain that ẑ = u and we
are done.) By Lemma 2.1, we have

cos d(yn, xtk) sin d(u, Txtk)

= cos d(yn, tku⊕ (1− tk)Txtk) sin d(u, Txtk)

≥ cos d(yn, u) sin tkd(u, Txtk) + cos d(yn, Txtk) sin(1− tk)d(u, Txtk)

≥ cos d(yn, u) sin tkd(u, Txtk)

+ cos (d(yn, Tyn) + d(Tyn, Txtk)) sin(1− tk)d(u, Txtk)

≥ cos d(yn, u) sin tkd(u, Txtk)

+ cos (d(yn, Tyn) + d(yn, xtk)) sin(1− tk)d(u, Txtk).
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This implies that

sin d(u, Txtk)µn cos d(yn, xtk) ≥ sin tkd(u, Txtk)µn cos d(yn, u)

+ sin(1− tk)d(u, Txtk)µn cos d(yn, xtk).

Hence, we have

sin d(u, Txtk)− sin(1− tk)d(u, Txtk)

tkd(u, Txtk)
µn cos d(yn, xtk)

≥ sin tkd(u, Txtk)

tkd(u, Txtk)
µn cos d(yn, u).

Note that

lim
k→∞

sin d(u, Txtk)− sin(1− tk)d(u, Txtk)

tkd(u, Txtk)

= lim
k→∞

2 cos(1− tk
2 )d(u, Txtk) sin tk

2 d(u, Txtk)

tkd(u, Txtk)
= cos d(u, ẑ).

Hence
cos d(u, ẑ)µn cos d(yn, ẑ) ≥ µn cos d(yn, u).

Consequently, cos d(u, ẑ) ≥ µn cos d(yn, u), as desired.

Corollary 3.4. Let T : X → X be a nonexpansive mapping and f : X → X be a spherical
contraction with a constant k. Suppose that M := diamX < π/2 and k < cosM. Define
a net {xt} in X by

xt = tf(xt)⊕ (1− t)Txt for t ∈ (0, 1).

Then the net {xt} converges strongly to the point x̂ = PF f(x̂).

Proof. Note that F(T ) is a nonempty closed and convex subset of X. Given a point
t ∈ (0, 1), define St : X → X by

Stx := tf(x)⊕ (1− t)Tx for x ∈ X.
Let x, y ∈ X. Note that d(f(x), f(y)) ≤ kd(x, y). By Lemma 2.6, we have

d(Stx, Sty) ≤ d(Stx, tf(y)⊕ (1− t)Tx) + d(tf(y)⊕ (1− t)Tx, Sty)

≤ sin tM

sinM
d(f(x), f(y)) +

sin(1− t)M
sinM

d(Tx, Ty)

≤ k sin tM + sin(1− t)M
sinM

d(x, y)

≤ cosM sin tM + sinM cos tM − cosM sin tM

sinM
d(x, y)

= cos tM · d(x, y).

Then St is a contraction, and hence, xt is well-defined. It follows from Lemma 2.4 that

sin
d(PF(T )f(x), PF(T )f(y))

2
≤ 1

cosM
sin

d(f(x), f(y))

2
≤ k

cosM
sin

d(x, y)

2
≤ sin

kd(x, y)

2 cosM
.

This implies that PF(T ) ◦ f is a contraction, so there exists a unique fixed point x̂ of
PF(T ) ◦ f. Define a net {yt} by

yt = tf(x̂)⊕ (1− t)Tyt for all t ∈ (0, 1).
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The strong convergence of {yt} to x̂ is assured by Theorem 3.3 (i). For each t ∈ (0, 1), it
follows from Lemma 2.6 that

d(xt, yt) ≤
sin tM

sinM
d(f(xt), f(x̂)) +

sin(1− t)M
sinM

d(Txt, T yt)

≤ sin tM

sinM
(d(f(xt), f(yt)) + d(f(yt), f(x̂)) +

sin(1− t)M
sinM

d(xt, yt)

≤ k sin tM

sinM
d(yt, x̂) +

(
k sin tM

sinM
+

sin(1− t)M
sinM

)
d(xt, yt),

which implies that(
sinM − sin(1− t)M

tM
− k sin tM

tM

)
d(xt, yt) ≤

k sin tM

tM
d(yt, x̂).

Since k < cosM , we have

lim
t→0+

(
sinM − sin(1− t)M

tM
− k sin tM

tM

)
= cosM − k > 0.

Consequently, we obtain limt→0+ d(xt, yt) = 0 and the proof is finished.

Next, we present a Browder’s type convergence theorem for a nonexpansive mapping
in X.

Theorem 3.5. Let T : X → X be a nonexpansive mapping such that F(T ) 6= ∅. Let
u ∈ X be fixed and {xn} be a sequence in X defined by

xn = αnu⊕ (1− αn)Txn for all n ∈ N,
where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0. Then {xn} converges strongly
to PF(T )u.

Proof. Let Unx := αnu ⊕ (1 − αn)Tx for all x ∈ X. By Proposition 3.1, there exists a
unique element xn ∈ X such that

xn = αnu⊕ (1− αn)Txn.

Then we have limn→∞ d(xn, Txn) = limn→∞ αnd(u, Txn) = 0. Note that d(xn, p) ≤
d(u, p) < π/2 for all p ∈ F(T ), and hence,

radX({xn}) := inf
z∈X

sup
n∈N

d(xn, z) < π/2.

Let {xnk
} be a subsequence of {xn} and µ be a Banach limit. Define g : X → [0, 1] by

g(z) := lim
n→∞

cos d(xn, z) for all z ∈ X.

It follows from Proposition 2.2 that there exists a unique element x̂ ∈ X such that g(x̂) =
maxx∈X g(x) and g(x̂) cos d(x, x̂) ≥ g(x) for all x ∈ X. Since limn→∞ d(xn, Txn) = 0 and
T is nonexpansive, we have g(T x̂) ≥ g(x̂) and hence x̂ = T x̂. Let p ∈ F(T ). We now
consider the following estimate

cos d(p, xn) sin d(u, Txn)

= cos d(p, αnu⊕ (1− αn)Txn) sin d(u, Txn)

≥ cos d(p, u) sinαnd(u, Txn) + cos d(p, Txn) sin(1− αn)d(u, Txn)

≥ cos d(p, u) sinαnd(u, Txn) + cos d(p, xn) sin(1− αn)d(u, Txn).
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In particular,

sin d(u, Txn)− sin(1− αn)d(u, Txn)

αnd(u, Txn)
cos d(p, xn) ≥ sinαnd(u, Txn)

αnd(u, Txn)
cos d(p, u).

Note that

lim inf
n→∞

sin d(u, Txn)− sin(1− αn)d(u, Txn)

αnd(u, Txn)

= lim inf
n→∞

2 cos(1− αn

2 )d(u, Txn) sin αn

2 d(u, Txn)

αnd(u, Txn)

≤ lim inf
n→∞

cos d(u, Txn) = lim inf
n→∞

cos d(u, xn) = g(u).

This implies that
g(u) lim inf

n→∞
cos d(p, xn) ≥ cos d(p, u).

In particular, since x̂ = T x̂, we have

g(u) lim inf
n→∞

cos d(x̂, xn) ≥ cos d(x̂, u).

Note that
g(x̂) cos d(u, x̂) ≥ g(u).

Hence lim infn→∞ cos d(x̂, xn) = 1. In particular, there exists a subsequence {xnk
} of

{xn} such that xnk
→ x̂. This implies that

cos d(u, x̂) cos d(p, x̂) ≥ cos d(p, u) for all p ∈ F(T ).

Hence x̂ = PF(T )u. The conclusion now follows from the double extract subsequence
principle.

Now, we can extend the above theorem to viscosity approximations. To be precise,
the following theorem yields an implication of the Browder’s type convergence theorem
on viscosity approximations in the setting of CAT(1) spaces.

Corollary 3.6. Let T : X → X be a nonexpansive mapping and f : X → X be a spherical
contraction with a constant k. Suppose that M := diamX < π/2 and k < cosM. Define
a sequence {xn} in X by

xn = αnf(xn)⊕ (1− αn)Txn for all n ∈ N,
where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0. Then the sequence {xn}
converges strongly to the point q = PF f(q).

Proof. The proof of this corollary is very similar to that of Corollary 3.4, so the proof is
omitted.

Remark 3.7. The geometric properties of CAT(1) spaces are much more complicated
than that of CAT(0) spaces. Here, we extend and supplement some results as follows.

(1) Our Theorem 3.3 extends Lemma 2.2 of [24] from the framework of CAT(0)
spaces to that of CAT(1) spaces. In addition, the statement (i) of Theorem 3.3 is
more natural than Theorem 3.4 of [16] because the condition d(x1, F (T )) ≤ π/4
is unnatural to assume for finding a fixed point of the mapping T.

(2) Our Corollary 3.4 entends Theorem 3.1 of [25] from the setting of CAT(0)
spaces to that of CAT(1) spaces without the nice projection property.
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4. Results in CAT(κ) Spaces

Throughout this section, we assume that X is a complete CAT(κ) space with a real
number κ such that d(u, v) < Dκ/2 for all u, v ∈ X, where Dκ = ∞ if κ ≤ 0 and
Dκ = π/

√
κ if κ > 0.

Note that (X,
√
κd) is a complete CAT(1) space for any κ > 0 and every CAT(κ′)

space is a CAT(κ) space whenever κ′ < κ. As a consequence, Theorems 3.3 and 3.5 can
be applied to the following two results, respectively.

Theorem 4.1. Let T : X → X be a nonexpansive mapping and fix u ∈ X. For each
t ∈ (0, 1) let xt be a net given by xt = tu⊕ (1− t)Txt. Then F(T ) 6= ∅ if and only if

radX({xt}) := inf
z∈X

sup
t∈(0,1)

d(xt, z) < Dκ/2.

In this case, the following statements hold:

(i) q := limt→0+ xt exists and it is a unique fixed point of T which is nearest to u.
(ii) If µ is a Banach limit and {yn} is a and all approximating fixed point sequences

of T , then cos d(u, q) ≥ µn cos d(u, yn).

Theorem 4.2. Let T : X → X be a nonexpansive mapping such that F(T ) 6= ∅. Let
u ∈ X be fixed and {xn} be a sequence in X defined by

xn = αnu⊕ (1− αn)Txn for all n ∈ N,

where {αn} is a sequence in (0, 1) such that limn→∞ αn = 0. Then {xn} converges strongly
to PF(T )u.
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