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Abstract Given a weighted complete directed graph on n nodes, the asymmetric traveling salesman

problem (ATSP) is to find a minimum weighted directed cycle of length n. This is a well-studied NP-

hard problem. Sometimes, we require a cycle containing a specific number of nodes. Thus, we concentrate

on finding a minimum weighted directed cycle of length k when k is a positive integer in {2, 3, . . . , n}.
The problem is called the minimum weighted directed k-cycle problem (MWDkCP), a generalization of

ATSP. Nearest neighbour algorithm (NN) and repetitive nearest neighbour algorithm (RNN) for ATSP

are known for good computational results on Euclidean ATSP, but poor performances on some graphs.

We give instances to show that establishing an approximation ratio for NN is impossible, and a result

from NN can be worse than average. We also prove that NN can output a unique maximum weighted

directed k-cycle, and offer a sufficient condition to avoid that scenario. As for RNN, when n 6= k, it has

no approximation ratio and can be worse than average. When n ≥ 4, we obtain a lower bound and an

upper bound for the domination number of RNN.
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1. Introduction

For positive integers n and k where 2 ≤ k ≤ n, the minimum weighted directed k-
cycle problem (MWDkCP) is to find a minimum weighted directed cycle of length k in
a weighted complete directed graph. This problem bears a similarity to a famous NP-
hard problem, the asymmetric traveling salesman problem (ATSP) - if a salesman wants
to visit n houses, find the shortest route that allows him to visit all of these houses
without passing through any houses twice and go back to the starting place. In the graph
theoretical point of view, ATSP is to find a minimum cycle containing all nodes. Thus, it
is a special case of the MWDkCP when k = n. By the NP-hardness of the TSP [1], the
MWDkCP is NP-hard.
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Due to the close relationship of these two problems, it is reasonable to construct heuris-
tics for the MWDkCP by modifying those for ATSP. The most simple ones are greedy-type
heuristics for ATSP. Gutin et. al [2] present the domination analyses for some of them,
and it turns out that they are not good in term of domination number. A basic approach
is to keep adding the cheapest available arcs unless the selected arc forms a cycle of length
less than k or makes the indegree or outdegree of a chosen node greater than 1. Unlike
ATSP, once k − 1 arcs have been chosen, no one can guarantee that adding the kth arc
would give a directed k-cycle. To establish a greedy heuristic for the MWDkCP from
this procedure, more modification is required. Another type of these greedy heuristics
is Nearest neighbour algorithm (NN). For any nodes u and v in Kn, we use w(u, v) to
denote the weight of the arc from u to v. The process begins with choosing a node u1
in Kn, adding the arc from u1 to a nearest node u2, that is w(u1, u2) ≤ w(u1, uj) for
all j ∈ {2, . . . , n}. Repeat this process until k − 1 arcs are selected. Then add the arc
(uk, u1) to form a k-cycle. Repetitive nearest neighbour algorithm (RNN) is to apply NN
starting from every node and output the minimum one among the cycles constructed in
each NN performance. The complexity of NN is O(n2) while that of RNN is O(n3), so
both of them are polynomial-time algorithms. In this study, we concentrate on analyzing
these two heuristics.

There are abundant computational results of NN and RNN for ATSP [3–5]. Even
they work well on graphs satisfying the triangle inequality, the performance in general
are significantly worse. Therefore, it is interesting to analyze these heuristics from a
theoretical point of view. Approximation ratio is the most common method for analyzing
the performance of a heuristic. However, for many combinatorial optimization problems,
establishing a heuristic with a constant approximation ratio is an NP-hard problem [2].
Thus, we also consider other approaches on worst case analysis. We compare whether the
objective function values of the outputs from our heuristics are worse than the average
value of the objective function values of all solutions, another metric for worst cases
analysis [6–9]. Besides, we study the domination numbers [10–12] and the domination
ratio [10, 13], which consider the number of solutions that are not better than the results
from the heuristics.

For any directed graph G, let N(G) denote the node set of G and A(G) denote the arc
set of G. We use In to denote an instance of MWDkCP which is the complete directed
graphs of size n with a weight function w from A(In) to R. For any instance In with a
weight function w, we use the notation C(In) for a k-cycle C in In. For any subgraph
H of In, w(H) is the total weight of all arcs in H. Note that for any instance In, we
can construct a new weight function w′(a) = w(a) − min{w(a) : a ∈ A(In)} + 1 for all
a ∈ A(In). We can see that w′(a) > 0 for all a ∈ A(In) and for any k-cycles CA and CB

in In, w(CA) ≤ w(CB) if and only if w′(CA) ≤ w(CB). Therefore, we can consider only
instances whose weights for all arcs are positive. We use Kn to denote the collection of
all complete directed graphs of size n whose weights for all arcs are positive.

Let H be a heuristic for MWDkCP. For In ∈ Kn, let CM (In) denote a minimum
k-cycle in In and CH (In) a k-cycle with maximum weight among all k-cycles obtained
by applying heuristic H on In. H has an approximation ratio of ε if for any integer

n ≥ 2 and instance In ∈ Kn,
w(CH (In))
w(CM (In))

≤ ε.
Let A (In) be the average value of the weights of all k-cycles in In. H is said to be

not worse than average if for all integer n ≥ 2 and all instance In, w(CH (In)) ≤ A (In).
Otherwise, H is worse than average.
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We use d(In) to denote the number of k-cycles with weight at least w(CH (In)). The
domination number of H is the maximum d(n) ∈ Z+ such that for every In ∈ Kn,
d(In) ≥ d(n). If CA and CB are two k-cycles in In, we says that CA dominates CB or
CA is not worse than CB if w(CA) ≤ w(CB). In other words, we can say that d(n) is the
domination number of H if d(n) is the maximum number such that for each In ∈ Kn,
any heuristic solutions obtained from H dominates at least d(n) k-cycles in In. Let c(In)
denote the number of all k-cycles in In. The domination ratio of H is the maximum

dr(n) ∈ Z+ such that for any instance In ∈ Kn, d(In)
c(In)

≥ dr(n). Note that by definition,

d(n) ≥ 1 since in any instance In, a heuristic solution of the maximum weight is a k-cycle
whose weight is at least w(CH (In)). On the other hand, dr(n) ≤ 1 and the equality holds
when d(In) = c(In) for all instance In, which implies that H always gives an optimal
solution.

Throughout this paper, we assume that the node set of a graph of size n is {1, 2, . . . , n}.
When n = 2, K2 contains exactly one 2-cycle which is always a minimum 2-cycle in
the graph. Hence, we only consider Kn with n ≥ 3. Many of our constructed in-
stances contain arcs of weight 0 or ε. We call an arc of weight 0 a zero-arc and an
arc of weight ε an ε-arc. We represent a directed walk which is composed of the arcs
(u1, u2), (u2, u3), . . . , (uw−1, uw) as W = (u1, u2, . . . , uw). If u1, u2, . . . , uw are all differ-
ent, W is a directed path. If u1, u2, . . . , uw−1 are all different and uw = u1, W is a
directed cycle.

2. Results

Our main interests in this work are the worst case analyses of two nearest neighbour
heuristics, namely NN and RNN. For each type of nearest neighbour heuristic, we analyze
the algorithm in three aspects, which are considering approximation ratio, average-based
analysis and domination analysis.

2.1. Nearest Neighbour Algorithms (NN)

In this section, we show that giving an approximation ratio for NN is impossible, and
the domination number of NN for the MWDkCP is 1, that is NN outputs the unique
maximum weighted directed k-cycles. It follows that NN can be worse than average.
Lastly, we propose a sufficient condition so that performing NN on the instances satisfying
the condition does not result in the unique maximum k-cycles.

We begins with showing that, for any n ≥ 3, NN is arbitrarily bad, that is, for any
N > 1, there exists an instance In such that w(CNN (In)) is greater than N times of
w(CM (In)).

Theorem 2.1. Let n, k ∈ Z+ where n ≥ 3, 2 ≤ k ≤ n and N > 1. There exists In ∈ Kn

such that w(CNN (In))
w(CM (In))

> N.

Proof. For each N > 1, we consider the instance In where the weight for each arc (i, j)
is defined as follows:

w(i, j) =


ε ; 1 ≤ i ≤ k − 1, j = i+ 1

4N ; i = k, j = 1

1 ; otherwise,
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where 0 < ε < 1
k . Note that ε < kε < 1. We use CH to denote the output from

applying NN on In starting at node 1. Then CH = (1, 2, . . . , k, 1) with weight w(CH) =
4N + (k − 1)ε.

Since the weight of any arc other than (k, 1) is ε or 1, w(CM ) = (k − a)ε+ a for some
a ∈ Z where 0 ≤ a ≤ 4. Note that since ε < 1, when a < b, we have (k − a)ε + a <
(k − b)ε + b. Since there are k − 1 ε-arcs in In, there are no k-cycles of weight kε in In.
Suppose CM has weight (k − 1)ε+ 1. CM must contain all k − 1 ε-arcs and another arc
of weight 1. However, all ε-arcs are (1, 2), (2, 3), . . . , (k − 1, k) and the only k-cycle in In
that contains all of them is CH with weight w(CH) = 4N + (k − 1)ε > (k − 1)ε + 1, a
contradiction. At this point, we have w(CM ) = (k − a)ε+ a for some integer 2 ≤ a ≤ 4.

Case 1 k < n. If k = 2, the minimum k-cycle in In is composed of 2 arcs of weight
1, so w(CM ) = 2 = (k − 2)ε + 2. For k ≥ 3, we examine the cycle (2, 3, . . . , k, k + 1, 2).
There are two arcs of weight 1 which are (k, k + 1) and (k + 1, 2), and the others are
ε-arcs. Hence, the cycle has weight (k − 2)ε+ 2 and is a minimum k-cycle in In.

Case 2 k = n. First, suppose that w(CM ) = (k − 2)ε + 2. The arc set of CM must
contain k − 2 ε-arcs and other 2 arcs of weight 1. We consider 3 subcases depending on
the ε-arcs included in CM .

Case 2.1 The ε-arc (1, 2) is not included. Then the arcs (2, 3), (3, 4), . . . , (n − 1, n)
form a directed path from node 2 to node n. The only remaining node is node 1. The only
way to obtain all nodes in the graph is adding the arcs (n, 1) and (1, 2), a contradiction.

Case 2.2 The ε-arc (n − 1, n) is not included. Similar to Case 2.1, to get a Hamil-
tonian cycle, we are forced to include the arc (n− 1, n), leading to a contradiction.

Case 2.3 An ε-arc (i, i+ 1), for some 2 ≤ i ≤ n− 2, is not included. Note that this
case occurs only when k = n ≥ 4. We get two subpaths in CM , namely, (1, 2, . . . , i) and
(i+ 1, i+ 2, . . . , n). They contain all nodes in In, and the arc (i, i+ 1) must be in CM , a
contradiction.

So we can see that when k = n, w(CM ) ≥ (k−3)ε+3. Consider (2, 3, . . . , k−1, 1, k, 2).
It is composed of k − 3 ε-arcs, namely, (2, 3), (3, 4), . . . , (k − 2, k − 1) and other 3 arcs of
weight 1, namely, (k−1, 1), (1, k) and (k, 2). Thus, this is a k-cycle of weight (k−3)ε+ 3,
and hence, a minimum k-cycle. Therefore, w(CH) = 4N + (k − 1)ε and w(CM ) is
(k − 2)ε + 2 when k < n and is (k − 3)ε + 3 when k = n. Since ε < kε < 1, we get

w(CH) = 4N + (k − 1)ε > 4N and w(CM ) ≤ (k − 3)ε + 3 < 4. Hence, w(CNN (In))
w(CM (In))

≥
w(CH)
w(CM )

> 4N
4 = N.

According to Theorem 2.1, given a constant ε, we can establish an instance In where
w(CNN (In))
w(CM (In))

> ε. It leads to the fact that an approximation ratio of NN for the MWDkCP

does not exist.
We next perform the domination analysis for NN applied on MWDkCP. For any n ≥ 3

and 2 ≤ k ≤ n, we construct an instance of n nodes where NN produces the maximum k-
cycle when a specific node is chosen to be the starting node. It implies that the domination
number of NN for the MWDkCP is 1.

Theorem 2.2. For any n, k ∈ Z+ where n ≥ 3 and 2 ≤ k ≤ n, there exists In ∈ Kn

where NN gives the unique maximum k-cycle.
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Proof. Consider the instance In whose weight for each arc (i, j) is

w(i, j) =


ik ; 1 ≤ i ≤ k − 1, j = i+ 1

ik + 1 ; 1 ≤ i ≤ k − 1, j ≥ i+ 2

k2(k − 1) + k ; i = k, j = 1

ε ; otherwise,

where 0 < ε < 1
k . When we start at node 1, we obtain the heuristic solution CH =

(1, 2, . . . , k, 1) of weight w(CH) = 3
2k

2(k − 1) + k.

Suppose that there exists a weighted directed k-cycle CX of weight w(CX) ≥ w(CH).
If CX does not contain the arc (k, 1), w(CX) ≤ w(k, 1) < w(CH). Thus, the arc (k, 1) is
in CX . It follows that there exists a subpath P = (1 = u1, u2, . . . , uk = k) of length k− 1
in CX . If the sequence of nodes in P is an increasing sequence, P is (1, 2, . . . , k) and we
have CX = CH . Assume that P is not an increasing sequence of nodes. Hence, there
exists an arc (ui, uj) where ui > uj in P . This arc must be an arc of weight ε. Besides,
note that for each i, 1 ≤ i ≤ k − 1, all arcs with weight ik or ik + 1 shares the same tail
i. Hence, for each i, 1 ≤ i ≤ k − 1, at most one of arcs of weight ik or ik + 1 can appear
in P . Therefore,

w(CX) ≤ ε+

k−1∑
i=2

(ik + 1) + w(k, 1) = w(CH)− (2− ε) < w(CH),

contradicting to the assumption that w(CX) ≥ w(CH). We can conclude that w(CH) is
the only maximum k-cycle in In.

Corollary 2.3. Let n, k ∈ Z+ where n ≥ 3 and 2 ≤ k ≤ n. For the MWDkCP on
instances of size n, d(n) of NN is 1.

Proof. From Theorem 2.2, in the given instance In, there exists a heuristic solution CH

that dominates only 1 weighted directed k-cycle in In which is CH itself. As a result,
d(n) of NN for the MWDkCP is at most 1. Recall that d(n) of any heuristic is at least 1.
Therefore, d(n) of NN for the MWDkCP is 1.

Corollary 2.4. Let n, k ∈ Z+ where n ≥ 3 and 2 ≤ k ≤ n. For the MWDkCP on
instances of size n, dr(n) of NN is 1

(nk)(k−1)!
. Then we get dr(n) = O(n−k).

Gutin et al. [2] presented an instance that greedy heuristic for the ATSP yields the
maximum Hamiltonian cycle and inferred, without providing a detailed proof, that the re-
sult from NN starting at node 1 is also the maximum Hamiltonian cycle. Our constructed
graph can be used as an instance to prove that d(n) of NN for the ATSP is 1.

Since there are at least two different k-cycle in the instance In constructed in the proof
of Theorem 2.2, the weight of the heuristic solution, which is also the unique maximum
k-cycle, is greater than A (In). So we obtain the following result.

Theorem 2.5. Let n, k ∈ Z+ where n ≥ 3 and 2 ≤ k ≤ n. NN is worse than average.

Theorem 2.2 shows that d(n) of NN is 1 in general. To finish the investigation on NN,
we propose a condition where NN does not give the unique maximum k-cycle on instances
satisfying the condition.
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For any node u, let Cu denote the set of all k-cycles we obtain when using NN starting
at node u. Note that it is possible that there are two distinct nodes u and v such that
Cu ∩ Cv 6= ∅.

Lemma 2.6. Let In be an instance of MWDkCP for n, k ∈ Z+ where n ≥ 4 and k ≥ 4.
Let C = (u1, u2, . . . , uk, uk+1 = u1) be a cycle obtained from NN. If there exist nodes ui
and uj that are non-adjacent in C and C ∈ Cui ∩ Cuj , C is not the unique maximum
k-cycle in In.

Proof. Let In be an instance of size n and C = (u1, u2, . . . , uk, uk+1 = u1) be a cycle
resulted from applying NN. Assume that there exist non-adjacent nodes ui and uj in C
such that C ∈ Cui ∩ Cuj . Since ui and uj are in C, without loss of generality, we can
assume that i = 1. Thus, 3 ≤ j ≤ k − 1.

Consider the cycle C ′ obtained from C by replacing the arcs (u1, u2), (uj−1, uj) and
(uj , uj+1) by the arcs (u1, uj), (uj , u2) and (uj−1, uj+1). Since C ∈ Cu1 , w(u1, uj) −
w(u1, u2) ≥ 0 and w(uj−1, uj+1)− w(uj−1, uj) ≥ 0. Similarly, C ∈ Cuj leads to the fact
that w(uj , u2)− w(uj , uj+1) ≥ 0. Then

w(C ′) = w(C) + w(u1, uj)− w(u1, u2) + w(uj−1, uj+1)

− w(uj−1, uj) + w(uj , u2)− w(uj , uj+1)

≥ w(C).

Therefore, C is not the the unique maximum k-cycle.

The proof for the sufficiency of the condition directly follows.

Theorem 2.7. Let In be an instance of MWDkCP for n, k ∈ Z+ where n ≥ 4 and k ≥ 4.
If for any output C from NN, there exist nodes i and j that are non-adjacent in C and
C ∈ Ci ∩ Cj, NN does not give the unique maximum k-cycle in In.

As for RNN, if RNN results in the unique maximum k-cycle C, we have C ∈ C1∩C2∩
. . .∩Cn. Without loss of generality, suppose that C = (1, 2, . . . , k, 1). When k ≥ 4, node
1 and node 3 are non-adjacent in C and C ∈ C1 ∩ C3. From Lemma 2.6, C is not the
unique maximum k-cycle, a contradiction. Hence, when k ≥ 4, for RNN, d(n) 6= 1. We
offer a better lower bound for d(n) of RNN in the next section.

2.2. Repetitive Nearest Neighbour Algorithms (RNN)

When k 6= n, we show that RNN is arbitrarily bad and can be worse than average. As
for the domination analysis, d(n) of RNN is 2 when n = 3, and we propose a lower bound
and an upper bound of it when n ≥ 4.

Theorem 2.8. Let n, k ∈ Z+ where n ≥ 3, 2 ≤ k < n and N > 1. There exists In ∈ Kn

such that w(CRNN (In))
w(CM (In))

> N.

Proof. Consider the instance In of size n where the positive weight for each arc (i, j) is
defined as follows:

w(i, j) =


M ; i = 1, 2 ≤ j ≤ n
ε ; 2 ≤ i ≤ n, j = 1

2ε ; 2 ≤ i, j ≤ n
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where ε > 0 and M = 2kεN . Since k ≥ 2 and N > 1, M > 4ε.
Performing NN starting at node 1, the procedure gives the k-cycle (1, u1, u2, . . . , uk−1, 1)

for some u1, u2, . . . , uk−1 in the set {2, 3, . . . , n}. Its weight is M + (2k − 3)ε. When
the process begins at i 6= 1, the result is the cycle (i, 1, u1, u2, . . . , uk−2, i) for some
u1, u2, . . . , uk−2 in the set {2, 3, . . . , n}, which has weight M + (2k − 3)ε. Thus, any
of these cycles constructed from NN can be the heuristic solution from RNN of weight
M + (2k − 3)ε > 2kεN .

Consider the k-cycle C = (2, 3, . . . , k, k+ 1, 2) of weight 2kε. Suppose that there exists
a cycle C ′ with weight w(C ′) < 2kε. The only possibility is that C ′ contains an arc of
weight ε. Observe that any arc of weight ε has node 1 as its terminal node, so any cycle
can have at most one arc of weight ε, and there must be an arc of weight M in the cycle.
Then w(C ′) ≥ M + (2k − 3)ε > 2kε, a contradiction. It follows that w(CM (In)) = 2kε.

Therefore, w(CRNN (In))
w(CM (In))

≥ M+(2k−3)ε
2kε > 2kεN

2kε = N.

Similar to NN, we can conclude from Theorem 2.8 that when k 6= n, an approximation
ratio of RNN for the MWDkCP does not exist.

We can modify the instance constructed in the proof of Theorem 2.8 so that it becomes
an instance showing that RNN is worse than average when k < n. We start from finding
the average value of the weights of all weighted directed k-cycles in each instance.

Lemma 2.9. Let n, k ∈ Z+ where n ≥ 3 and In ∈ Kn. The average value of the weights
of all k-cycles in In where 2 ≤ k ≤ n is

A (In) =
k

n(n− 1)

∑
(u,v)∈A(In)

w(u, v).

Proof. Let C = {CX : CX is a k-cycle in In}. Consider an arc (u, v) ∈ A(In). Any
k-cycle containing (u, v) is composed of (u, v) and a directed vu-path from v to u of
length k − 1. There are

(
n−2
k−2
)
(k − 2)! directed paths satisfying the condition. Hence,

w(u, v) appears
(
n−2
k−2
)
(k − 2)! times in

∑
CX∈C w(CX). The number of all k-cycles in In

is
(
n
k

)
(k − 1)!. Therefore,

A (In) =
1

|C |
∑
CX∈C

w(CX) =
k

n(n− 1)

∑
(u,v)∈A(In)

w(u, v).

Next, we show that RNN can be worse than average when k < n.

Theorem 2.10. Let n, k ∈ Z+ where n ≥ 3 and 2 ≤ k < n. RNN is worse than average

Proof. We consider the instance In in the proof of Theorem 2.8 where the value of M is
changed from 2kεN to 3ε+ 1. We have A (In) = 2kε+ k

n < M + (2k − 3)ε, which is the
weight of an outcome from RNN. Hence, RNN is worse than average.

As for the domination analysis, we first show that d(3) = 2.

Theorem 2.11. RNN for the MWDkCP has d(3) = 2.
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Proof. Let I3 be an instance with node set {1, 2, 3} and weight function w.
When k = 2, there are exactly three 2-cycles, which are C1 = (1, 2, 1), C2 = (2, 3, 2),

and C3 = (3, 1, 3). We can assume without loss of generality that C1 is an outcome of
RNN. Applying NN starting at node 3 cannot give C1, so we obtain at least 2 distinct
2-cycles after performing NN starting at all nodes in I3, namely C1 and C3. Therefore,
C1 dominates C1 itself and another cycle, that is d(3) ≥ 2.

To show that d(3) ≤ 2, consider an instance with weight function w where w(1, 2) =
w(3, 2) = 1, w(2, 1) = 2, w(2, 3) = 2.1, and w(1, 3) = w(3, 1) = 1.1. NN produces C1 with
w(C1) = 3 when starting at node 1 and node 2, and produces C2 with w(C2) = 3.1 when
starting at node 3. So RNN outputs C1 of weight 3 at the end, but the optimal solution
is C3 with weight 2.2. Therefore, C1 dominates only two 2-cycles in this instance. In
conclusion, when k = 2, d(3) = 2.

If k = 3, the only 3-cycles in I3 is CA = (1, 2, 3, 1) and CB = (3, 2, 1, 3). Without loss
of generality, assume that the cycle CA is the outcome from RNN. If there is a node u
such that performing NN starting at u results in the cycle CB , we have w(CA) ≤ w(CB)
since RNN gives CA instead of CB at the end of the process. Consider the case when NN
always outputs CA for any starting node u ∈ {1, 2, 3}. We can see that (1, 2) is chosen
when starting at node 1, (2, 3) is chosen when starting at node 2, and (3, 1) is chosen when
starting at node 3. Hence, w(1, 2) ≤ w(1, 3), w(2, 3) ≤ w(2, 1), and w(3, 1) ≤ w(3, 2).
Furthermore, w(CA) = w(1, 2) + w(2, 3) + w(3, 1) ≤ w(1, 3) + w(2, 1) + w(3, 2) = w(CB)
in this situation. Therefore, CA dominates 2 cycles: CB and CA itself. It follows that
when k = 3, we have d(3) ≥ 2. Since there are only two 3-cycles in I3, we have d(3) = 2.

Previously, we have pointed out that when n, k ≥ 4, as a trivial result from Lemma
2.6, d(n) of RNN is greater than 1. In the next theorem, we establish that when n ≥ 4
and k ≥ 2, d(n) of RNN is at least

⌈
k
2

⌉
. The proof follows the idea of the proof for a

lower bound of d(n) of RNN for the ATSP by Gutin et al. [2], and hence, is omitted.

Theorem 2.12. For any n, k ∈ Z+ where n ≥ 4 and 2 ≤ k ≤ n, d(n) of RNN for the
MWDkCP on instances of size n is at least

⌈
k
2

⌉
.

Note that we can construct an instance In with positive weight w′ from an instance
with any real-valued weight function w in the way that for any k-cycles CA and CB in
In, w′(CA) ≤ w′(CB) if and only if w(CA) ≤ w(CB). Therefore, the weight function of
the instance we give in the following proof allows weight zero on some arcs.

Theorem 2.13. For n, k ∈ Z+ where n ≥ 4 and 2 ≤ k ≤ n, d(n) of RNN for the

MWDkCP on instances of size n is O(n
√
2k−2), when k is a constant.

Proof. Consider the instance In of size n and the non-negative weight for each arc (i, j)
is defined as follows:

w(i, j) =



iM ; 1 ≤ i ≤ k − 1, j = i+ 1

iM + 1 ; 1 ≤ i ≤ k − 1, j = i+ 2

iM + 2 ; 1 ≤ i ≤ k − 1, j ≥ i+ 3

jM ; i = k, 2 ≤ j ≤ k − 1

0 ; j = 1

ε ; otherwise,
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where 0 < ε < 1
k and M = 4k + ε. Denote N = {1, 2, . . . , n} and K = {1, 2, . . . , k}.

Performing NN starting at node 1 or k, the procedure gives the k-cycle
CH = (1, 2, . . . , k, 1) of weight 1

2k(k − 1)M. When the process begins at j ∈ K − {1, k},
the result is the cycle (j, 1, 2, . . . , j − 1, j + 1, j + 2, . . . , k, j) of weight w(CH) + 1. If
NN starts at j ∈ N\K, the output cycle is (j, 1, 2, . . . , k − 1, j) of weight w(CH) + 1
as well. Thus, the heuristic solution from RNN is CH = (1, 2, . . . , k, 1). Then we have
w(CH) = 1

2k(k − 1)M .

We consider the weight of k-cycle CX = (u1, u2, . . . , uk, u1) in In in two cases, based
on the node set of the cycle. For any i ≤ j, we call a directed path (ui, ui+1, . . . , uj) in
CX an inner path if the following properties hold

(1) 1 ≤ ui < ui+1 < . . . < uj ≤ k.
(2) Denote uk+1 = u1 and u0 = uk. The cycles (ui, ui+1, . . . , uj , uj+1) and

(ui−1, ui, ui+1, . . . , uj) do not satisfy property 1.

In case that an inner path has only one node, we call it an inner node. We can see that
all inner paths in CX are pairwisely disjoint. Let r be the number of inner paths in CX .
Let all inner paths in CX be denoted by inner path Pi for i = 1, 2, . . . , r, appearing in
order as one traverses from the smallest node. Let si and ti be the first and the last node
in Pi, respectively.

Case 1 The node set N(CX) = K. Then each node in CX is in an inner path. We
consider whether 1 and k are in the same inner path. Then node 1 is in P1 and s1 = 1.
Note that for every i = 1, 2, . . . , r − 1, ti > si+1, otherwise, attaching the node si+1 at
the end of Pi satisfies property 1 in the definition of an inner path, a contradiction.

Case 1.1 Node k is in P1. Then P1 starts at node 1 and ends at node k. One of the
cycle in this case is CH , containing P1 as the only inner path. The other cycle must
contain more than one inner path.

First, we consider the case when r = 2, that is all inner paths in CX are P1 and P2. If P2

is an inner node j for some 2 ≤ j ≤ k−1, then CX = (j, 1, 2, . . . , j−1, j+1, . . . , k, j). Recall
that these CX are the outputs from applying NN starting at the node j ∈ {2, 3, . . . , k−1}
and are dominated by CH . When P2 is not an inner node, we have s2 < t2. Hence,
w(CX) ≤ w(CH) + 2(k − 2) + (s2 − t2)M < w(CH).

Now let consider the case when r ≥ 3. Since nodes 1 and k are in the same inner path
P1, r ≤ k − 1. Recall that for all i = 1, 2, . . . , r − 1, ti > si+1, and hence, w(ti, si+1) = ε
for all i ∈ {2, 3, . . . , r − 1}. Thus,

w(CX) ≤ w(CH) + 2(k − r) + s2M −
r∑
i=2

tiM + (r − 2)ε

≤ w(CH) + 2(k − 3) + (s2 − t2)M − t3M + (k − 3)ε

< w(CH).

Therefore, we obtain k − 1 k-cycles dominated by CH from this case, which are CH

itself and k − 2 cycles from the case when r = 2 and P2 is an inner node.
Case 1.2 Node k is not in P1. Let Pj be the inner path ending with node k, that is

tj = k. Then P1 and Pj are not inner nodes. Thus, j ≥ 2 and 2 ≤ r ≤ k − 2. Recall that
w(ti, si+1) = ε for all i ∈ {1, 2, . . . , r − 1}\{j}.
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If j 6= r, we have

w(CX) ≤ w(CH) + 2(k − r) + sj+1M −
r∑
i=1
i 6=j

tiM + (r − 2)ε

≤ w(CH) + 2(k − 2) + (sj+1 − tj+1)M − tj−1M + (k − 2)ε

< w(CH).

When j = r, w(CX) ≤ w(CH) + 2(k − r)−
∑r−1
i=1 tiM + (r − 1)ε < w(CH).

Hence, CH dominates no weighted directed k-cycles in this case.
Case 2 The node set N(CX) 6= K. Let the node set of CX be (K\{h1, h2, . . . , hm})∪

{l1, l2, . . . , lm} for some integer m ≥ 1, h1, h2, . . . , hm ∈ K and l1, l2, . . . , lm ∈ N\K.
Denote H = {h1, h2, . . . , hm} and L = {l1, l2, . . . , lm}.

We call a path in CX consisting only nodes in L an outer path if it is not contained in
another longer path consisting only nodes in L. Hence, these outer paths are pairwisely
disjoint. Let ρ be the number of outer paths in CX . Let all outer paths in CX be denoted
by outer path Qi for i = 1, 2, . . . , ρ, appearing in order as one traverses from the smallest
node. Let σi and τi be the first and the last node in Qi, respectively. Note that ρ ≤ m.

Denote Pr+1 = P1. For each pair of Pi and Pi+1 when i = 1, 2, . . . , r, they appear
consecutively or are separated by an outer path. Consider a sequence P of consecutive
inner paths, without any outer paths in between. We call P a chain if it is not a part
of another longer sequence of consecutive inner paths. Then there are exactly ρ chains
in CX , and hence, 1 ≤ ρ ≤ r. Let Pi starting from an inner path Pi,1 to an inner path
Pi,r(i) for i = 1, 2, . . . , ρ be all chains in CX , appearing in order as one traverses from the
smallest node. Thus, P1,1 = P1 and r(1) + r(2) + . . .+ r(ρ) = r. Let si,j and ti,j be the
first and the last node in Pi,j , respectively. Then

w(CX) =

ρ∑
i=1

r(i)∑
j=1

w(Pi,j) +

ρ∑
i=1

r(i)−1∑
j=1

w(ti,j , si,j+1)+

ρ∑
i=1

w(ti,r(i), σi) + (m− 1)ε+ w(τρ, s1,1).

Case 2.1 Node k ∈ H. Then we have 1 ≤ m ≤ k and 1 ≤ ρ ≤ r ≤ k. Assume that
m 6= 1 or there exists a chain consisting of at least 2 inner paths. Then hm = k. Observe
that w(ti,j , si,j) = ε for i = 1, 2, . . . , ρ and j = 1, 2, . . . , r(i) − 1. By the assumption, we

have
∑m−1
i=1 hiM ≥M or

∑ρ
i=1

∑r(i)−1
j=1 ti,jM ≥M . We obtain

w(CX) ≤ w(CH) + 2(k −m− r + ρ) + (r +m− ρ)ε

−
m−1∑
i=1

hiM −
ρ∑
i=1

r(i)−1∑
j=1

ti,jM

< w(CH) + 2k + 2kε−M
< w(CH).

Now we consider the case when m = 1 and every chain is a single inner path. Then
H = {k}. Let l be the only element in L. Note that 1 ≤ ρ ≤ m = 1, so ρ = 1. Hence, CX

contains only one chain which is an inner path of k−1 nodes and one outer path which is
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a single node l. Thus, CX = (1, 2, . . . , k − 1, l, 1) with weight at least w(CH) + 1. These
n− k k-cycles are dominated by CH .

Case 2.2 Node k /∈ H. Let Pκ,λ be the inner path ending with node k, that is k is in
chain Pκ and tκ,λ = k.

Case 2.2.1: k is at the end of Pκ, that is λ = r(κ). Since 1 ≤ m ≤ k and 1 ≤ ρ ≤ r ≤ k,

w(CX) ≤ w(CH) + 2(k −m− r + ρ− 1) + (r − ρ+m+ 1)ε

−
m∑
i=1

hiM −
ρ∑
i=1

r(i)−1∑
j=1

ti,jM

< w(CH) + 2k + 2kε−M
< w(CH).

No directed k-cycles in this case is dominated by the heuristic solution.
Case 2.2.2: k is not at the end of Pκ, that is λ 6= r(κ). Since k is always at the

end of an inner path, we have a chain containing more than one inner path. Hence,
1 ≤ ρ < r ≤ k in this case. For any arc a = (i, j) of weight iM + δ where δ = 0, 1 or
2, denote δa = w(u, v) − iM . Therefore, for any arc a ∈ A(In), δa = 0, 1 or 2. Recall
that w(ti,j , si,j) = ε for i = 1, 2, . . . , ρ and j = 1, 2, . . . , r(i) − 1 when ti,j 6= k. Let
T = {ti,j(i) : i = 1, 2, . . . , ρ, j(i) = 1, 2, . . . , r(i)− 1}\{tκ,λ}. Denote τ = |T | = r − ρ− 1.
Let t1 < t2 < . . . < tτ be all elements in T . It follows that

w(CX) = w(CH)− dM +

ρ∑
i=1

r(i)∑
j=1

∑
a∈A(Pi,j)

δa + (m+ r − ρ− 2)ε

+

ρ∑
i=1

δ(ti,r(i),σi) + w(τρ, s1,1),

where d =

m∑
i=1

hi +

τ∑
i=1

tiM − sκ,λ+1. If d ≥ 1, since 1 ≤ m ≤ k and 1 ≤ ρ ≤ r ≤ k, we

have w(CX) ≤ w(CH)−M + 2(k −m− (r − ρ)) + (m+ r − ρ− 1)ε < w(CH).
Otherwise, d ≤ 0, that is

sκ,λ+1 −
m∑
i=1

hi −
τ∑
i=1

ti ≥ 0. (2.1)

In case that d < 0, w(CX) ≥ w(CH) +M + (m+ r − ρ− 2)ε > w(CH). It means that
these CX are dominated by CH .

When (2.1) holds as an equation, CX is not dominated by CH only if

ρ∑
i=1

r(i)∑
j=1

∑
a∈A(Pi,j)

δa +

ρ∑
i=1

δ(ti,r(i),σi) + (m+ r − ρ− 2)ε+ w(τρ, s1,1) < 0.

It implies that m + r − ρ < 2. Since m ≥ 1 and ρ < r, this inequality does not hold
for any k-cycles in this case. Thus, all k-cycles satisfying inequality (2.1) in this case
are dominated by CH . To find the number of such k-cycles, we consider the process of
constructing these required k-cycles, splitting into three steps of work.

Step 1: Choose nodes in H and T . Inequality (2.1) holds when
∑m
i=1 hi+

∑τ
i=1 ti ≤

sκ,λ+1. For each sκ,λ+1 ≤ k − 1, we consider all partitions Πp of p, where p is an integer
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such that 1 ≤ p ≤ sκ,λ+1, into distinct summands. Observe that there are 1
2k(k−1) ways

to choose a pair of p and sκ,λ+1.
Let πp be the number of partitions Πp of p. For each p, πp ≤ πk−1 which is known to

be O
(
eπ
√

k−1
3 k−

3
4

)
[14]. For each Πp, we use np to denote the number of summands in

Πp. Then we have 1 + 2 + . . .+np ≤ p. Hence, np ≤ 1
2 (
√

8p+ 1−1) ≤
√

2p ≤
√

2(k − 1).

There are at most 2
√

2(k−1) ways to put these np summands into H and T so that H 6= ∅.
All k-cycles with sets H and T obtained in this way satisfy inequality (2.1). Moreover,

we have m+ τ = |H|+ |T | ≤
√

2(k − 1).
In conclusion, the number of ways to select the elements in H and T is

O
(
k2 · eπ

√
k−1
3 k−

3
4 · 2
√

2(k−1)
)

= O
(
k

5
4 · (e

π√
3 · 2

√
2)
√
k−1
)
.

Step 2: Constructing the inner paths. Given H and T , we construct a k-cycles
CX . For i = 1, 2, . . . , τ , let Pi be the inner path ended by ti and for j = 1, 2, . . . , ρ,
Pj,r(j) is the inner path that is the end of chain Pj . Recall that ρ ≤ m, so there are
1
ρ (τ + ρ)! ≤ (

√
2(k − 1)−m+ ρ)! ≤ (

√
2(k − 1))! ways to arrange these Pi’s and Pj,r(j)’s

in a directed cycle.
Consider the inner path starting with sκ,λ+1. Since ti < p ≤ sκ,λ+1 for all ti ∈ T ,

this path cannot be ended by a node in T . So this path must be a path Pj,r(j) for some
1 ≤ j ≤ ρ. The inner path ended by k must be placed right before this path. Thus, there
are ρ ≤ m ≤

√
2(k − 1) choices for the position of the inner path ended by k.

Now nodes k, sκ,λ+1 and all nodes in T are already placed in inner paths. We consider
nodes in {1, 2, . . . , k−1}\(H∪{sκ,λ+1}∪T ). There are k−1−(m+1+τ) = k−2−(τ+m) ≤
k−3 nodes in total. Note that for each Pi, any node included in Pi cannot exceed ti. Each
of these remaining nodes has at most r = τ + ρ+ 1 ≤ τ +m+ 1 ≤

√
2(k − 1) + 1 inner

paths in which it can be put. Once the node set of an inner path is given, all nodes must
be ordered increasingly. Thus, there are at most (

√
2(k − 1) + 1)k−3 ways to complete

this process.
From the asymptotical approximation in [14], the number of choices to place the nodes

in all inner paths is

O
(

(
√

2(k − 1))
√

2(k−1)+ 1
2 e−
√

2(k−1)
√

2(k − 1)(
√

2(k − 1) + 1)k−3
)

= O
(

(e−
√
2)
√
k−1(

√
2(k − 1) + 1)k+

√
2(k−1)− 3

2

)
.

Step 3: Constructing the outer paths. There are
(
n−k
m

)
ways to choose the

elements in L to be in the outer paths Q1, Q2, . . . , Qρ. There are m! ways to arrange all

m nodes in a row. Since every outer path cannot be empty, there are
(
m−1
ρ−1

)
ways to split

these m nodes into ρ outer paths. Since 1 ≤ ρ ≤ m ≤
√

2(k − 1), the number of ways to
finish this step is(

n− k
m

)(
m− 1

ρ− 1

)
m! ≤ (n− k)m

m!

(m− 1)ρ−1

(ρ− 1)!
m!

≤ (n− k)
√

2(k−1)(
√

2(k − 1)− 1)
√

2(k−1)−1,
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Summarily, the number of directed k-cycles satisfying inequality (2.1) in this case is
O(f(n, k)) where f(n, k) is

k
5
4 (2
√
2 · e

π√
3
−
√
2
)
√
k−1(

√
2(k − 1) + 1)k+2

√
2(k−1)− 5

2 (n− k)
√

2(k−1),

which is O(n
√
2k−2) when k is a constant.

In conclusion, the number of k-cycles dominated by CH is k − 1 in case 1.1, 0 in case

1.2, n− k in case 2.1 and O(n
√
2k−2) in case 2.2. Thus, d(n) = O(n

√
2k−2).

Note that when k = n, case 2 in the proof does not occur. Hence, in the case that
k = n, our upper bound is k − 1 = n− 1, which is the same as the result for ATSP from
Gutin et al. [2].

3. Conclusions

In this study, we first show that the approximation ratio of NN for the MWDkCP does
not exist. Then we find d(n) and dr(n) of NN for the MWDkCP. Theorem 2.2 shows
that for any n, k ∈ Z+ where n ≥ 3 and 2 ≤ k ≤ n, there is an instance In ∈ Kn whose
solution from NN can be the unique maximum k-cycle. It implies that for NN, d(n) = 1,
and hence, NN is also worse than average.

Similar to NN, when k 6= n, an approximation ratio of RNN for the MWDkCP does
not exist. We also provide a formula for the average value of the weights of all k-cycles
in each instance, and prove that RNN can be worse than average if k < n.

On the domination analysis, d(n) of RNN is 2 when n = 3. Then we show that for any

n, k ∈ Z+ where n ≥ 4 and k ≥ 2, d(n) of RNN is at least
⌈
k
2

⌉
and is O(n

√
2k−2), when

k is a constant. The gap between the lower bound and the upper bound proposed in this
article is considerably more narrow when k = n.

It is impossible to establish an approximation ratio for either NN or RNN, and both
of them are worse than average. We can see from Theorem 2.2 that d(n) of NN is 1. We
offer a condition to guarantee that NN does not give the unique maximum k-cycle on
an instance meeting the condition. Finding other sufficient conditions for avoiding these
worst cases would be useful for those who apply NN and RNN to a specific collection
of instances. For example, if one can find a sufficient condition for the existence of
approximation ratio of NN or RNN for the MWDkCP, then an approximation ratio can
be established when we perform that heuristic on the collection of instances under that
condition.

Our analyses show that NN is not appropriate for MWDkCP in term of effectiveness,
while RNN is just slightly better when k is close to or equal to n. However, the low
complexities of these heuristics makes an output from NN or RNN a good choice for
an initial solution of more complicated heuristics, especially when applied to instances
satisfying sufficient conditions which ensure that we can avoid these worst scenarios and
get some theoretical guarantee.
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