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Abstract : Random fuzzy optimization problems include uncertain parameters
defined only through probability and possibility distributions, they are inher-
ently infinite-dimensional optimization problems that can rarely be solved directly.
Thus, algorithms to solve such optimization problems must rely on intelligent com-
puting and approximation schemes. This fact motivates us to discuss the modes
of convergence in random fuzzy theory. Several new convergence concepts such as
convergence almost uniform, and convergence in chance for sequences of random
fuzzy variables were presented. Then the criteria for convergence almost sure,
convergence almost uniform, and convergence in chance are established. Finally,
the interconnections between convergence almost uniform and convergence almost
sure, convergence almost uniform and convergence in chance, and convergence
in chance and convergence almost sure are discussed. All these results can be
regarded as the theoretical foundation of the intelligent computing and approxi-
mation schemes for random fuzzy optimization problems.
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1 Introduction

Random fuzzy theory is a combination of probability theory [14], and credibil-
ity theory [5, 9], it deals with a hybrid uncertain environment where linguistic
and frequent nature coexist. Random fuzzy variable is an appropriate tool in
this theory, it was introduced by Liu [4] to combine fuzziness and randomness in
an optimization setting, e.g., random fuzzy dependent-chance programming [3],
random fuzzy chance-constrained programming [10], and random fuzzy expected
value model [11]. Because the random fuzzy optimization problems include random
fuzzy variable parameters defined only through probability and possibility distri-
butions, they are inherently infinite-dimensional optimization problems that can
rarely be solved directly. Therefore, algorithms to solve such optimization prob-
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lems must rely on intelligent computing and approximation schemes, which result
in finite-dimensional optimization problems that can be tackled easily. This con-
sideration motivates us to introduce several new modes of convergence in random
fuzzy theory, which provide the theoretical foundation of intelligent computing
and approximation schemes for uncertain programming [4, 8, 12].

The paper is organized as follows. First, in Section 2, we recall some concepts
in uncertainty theory such as possibility space, credibility measure, random fuzzy
variable, and the chance of a random fuzzy event. Section 3 presents the modes
of convergence for sequences of random fuzzy variables, including uniform con-
vergence, convergence almost uniform, convergence almost sure, convergence in
chance, and convergence in distribution. The intent of Section 4 is to discuss the
criteria for convergence almost sure, convergence almost uniform, and convergence
in chance. The relations among convergence almost sure, convergence almost uni-
form, and convergence in chance are covered in Section 5, which generalize the
results in probability theory and fuzzy measure theory [14, 16]. Finally, a brief
summary is provided in Section 6.

2 Random Fuzzy Variables

Random fuzzy theory is an extension of probability theory [14], and possibility
theory [1, 2, 13,17,18]. In this section, we review some concepts in this theory.

Given a universe Γ, an ample field [15] A on Γ is a class of subsets of Γ
that is closed under the formation of arbitrary unions, arbitrary intersections, and
complement, and Pos is a possibility measure defined on A.

Based on possibility measure, a self-dual set function Cr, called credibility
measure, was defined as [7]:

Cr(A) =
1
2

(1 + Pos(A)− Pos(Ac)) , A ∈ A (2.1)

where Ac = Γ\A. The triplet (Γ,A,Cr) is called a credibility space [6].

Definition 1. Let (Γ,A,Cr) be a credibility space. A map X from Γ to < is called
a fuzzy variable if for every t ∈ <,

{γ | X(γ) ≤ t} ∈ A. (2.2)

The possibility distribution of the fuzzy variable X is defined as [6]:

µX(t) = min {2Cr{γ | X(γ) = t}, 1} , t ∈ <. (2.3)

Definition 2 ( [4]). Let (Γ,A,Cr) be a credibility space. A random fuzzy variable
is a map ξ : Γ →Rv such that for any Borel subset B of <,

ξ∗(B)(γ) = Pr {ω ∈ Ω | ξγ(ω) ∈ B} (2.4)

is measurable with respect to γ in the sense of Definition 1, where Rv is a collection
of random variables defined on a probability space.
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Definition 3 ( [10]). Let ξ be a random fuzzy variable, and B a Borel subset of
<. Then the (mean) chance, denoted Ch, of an event ξ ∈ B is defined as

Ch {ξ ∈ B}
=

∫ 1

0
Cr {γ ∈ Γ | Pr {ω ∈ Ω | ξγ(ω) ∈ B} ≥ p}dp.

(2.5)

3 Modes of Convergence

In random fuzzy theory, we are interested in the following modes of convergence.

Definition 4. A sequence {ξn} of random fuzzy variables is said to converge
almost surely to a random fuzzy variable ξ, denoted by ξn

a.s.−→ ξ, if there exist
E ∈ A, F ∈ Σ with Cr(E) = Pr(F ) = 0 such that for every (γ, ω) ∈ Γ\E × Ω\F ,

lim
n→∞

ξn,γ(ω) → ξγ(ω).

Definition 5. A sequence {ξn} of random fuzzy variables is said to converge
uniformly to a random fuzzy variable ξ on Γ× Ω, denoted by ξn

u.−→ ξ, if

lim
n→∞

sup
(γ,ω)∈Γ×Ω

|ξn,γ(ω)− ξγ(ω)| = 0.

Definition 6. A sequence {ξn} of random fuzzy variables is said to converge
almost uniformly to a random fuzzy variable ξ, denoted by ξn

a.u.−→ ξ, if there
exist two nonincreasing sequences {Em} ⊂ A, {Fm} ⊂ Σ with limm Cr(Em) =
limm Pr(Fm) = 0 such that for each m = 1, 2, · · · , we have ξn

u.−→ ξ on Γ\Fm ×
Ω\Em.

Definition 7. A sequence {ξn} of random fuzzy variables is said to converge in
(mean) chance Ch to a random fuzzy variable ξ, denoted by ξn

Ch−→ ξ, if for every
ε > 0,

lim
n→∞

Ch{|ξn − ξ| ≥ ε} = 0.

Let ξ be a random fuzzy variable. The (mean) chance function of ξ is denoted
by Gξ(t) = Ch{ξ ≥ t}, t ∈ <. It is evident that Gξ is a nonincreasing [0, 1]-valued
function.

Let {Fn} and F be nonincreasing real-valued functions. The sequence {Fn}
is said to converge weakly to F , denoted by Fn

w→ F , if Fn(t) → F (t) for all
continuity points t of F .

Definition 8. Let Gξn and Gξ be chance functions of random fuzzy variables ξn

and ξ, respectively. The sequence {ξn} is said to converge in distribution to ξ,
denoted by ξn

d→ ξ, if Gξn

w→ Gξ.
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4 Criteria for Convergence

The following proposition gives the criterion for convergence almost sure.

Proposition 1. Suppose {ξn} and ξ are random fuzzy variables. Then ξn
a.s.−→ ξ

if and only if for every ε > 0,

Ch

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}
)

= 0. (4.1)

Proof. First, it is easy to check that ξn
a.s.−→ ξ iff the limit ξn,γ

a.s.−→ ξγ holds with
credibility 1 (w.c.1), i.e.,

Cr
{

γ
∣∣ ξn,γ

a.s.−→ ξγ

}
= 1.

Therefore, there is E ∈ A with Cr(E) = 0 such that for every γ ∈ Γ\E,

ξn,γ
a.s.−→ ξγ ,

i.e., for every ε > 0,

Pr

( ∞⋂
m=1

∞⋃
n=m

{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε}
)

= 0

with credibility 1, which is equivalent to

Ch

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}
)

= 0.

The proof is complete.

The criterion for convergence almost uniform is established by the following
proposition.

Proposition 2. Suppose {ξn} and ξ are random fuzzy variables. If ξn
a.u.−→ ξ, then

for every ε > 0, the following limit holds w.c.1

lim
m→∞

Pr

( ∞⋃
n=m

{ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε}
)

= 0. (4.2)

Conversely, if γ is a discrete fuzzy variable assuming finite number of values, then
Eq. (4.2) implies ξn

a.u.−→ ξ.

Proof. If
ξn

a.u.−→ ξ,



The Convergence Modes in Random Fuzzy Theory 41

then there exist two nonincreasing sequences {Em} ⊂ A, {Fm} ⊂ Σ with limm Cr(Em) =
limm Pr(Fm) = 0 such that for each m = 1, 2, · · · , ξn

u.−→ ξ on Γ\Em × Ω\Fm.
Let

E =
∞⋂

m=1

Em.

Then Cr(E) = 0, and for every γ ∈ Γ\E, there is a positive integer mγ such that
γ ∈ Γ\Emγ

. Since {Em} is nonincreasing, we have γ ∈ Γ\Em whenever m ≥ mγ .
Therefore, there is a subsequence {Fm,m ≥ mγ} of {Fm} such that for each
mγ ,mγ + 1, · · · , the sequence {ξn,γ} converges to ξγ uniformly on Fm, i.e.,

ξn,γ
a.u.−→ ξγ

with credibility 1.
We now show that ξn,γ

a.u.−→ ξγ w.c.1 implies Eq. (4.2).
In fact, for any δ > 0, there exists Fγ ∈ Σ with Pr(Fγ) < δ such that {ξn,γ}

converges to ξγ uniformly on Ω\Fγ . Thus, for every ε > 0, there exists a positive
integer m(ε, γ) such that for all ω ∈ Ω\Fγ ,

|ξn,γ(ω)− ξγ(ω)| < ε

whenever n ≥ m. Therefore, one has

Ω\Fγ ⊂
∞⋂

n=m

{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| < ε},

or ∞⋃
n=m

{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε} ⊂ Fγ ,

which implies
Pr (

⋃∞
n=m{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε})

≤ Pr(Fγ) < δ.

Letting δ → 0, we have

lim
m→∞

Pr

( ∞⋃
n=m

{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε}
)

= 0,

which verifies Eq. (4.2).
Conversely, suppose Eq. (4.2) is valid, we prove

ξn
a.u.−→ ξ.

By supposition, assume that γ has the following possibility distribution

γ ∼
(

γ1, γ2, · · · , γN

p1, p2, · · · , pN

)
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with pi > 0 and maxN
i=1 pi = 1. Since for each i = 1, 2, · · · , N, we have

lim
m→∞

Pr

( ∞⋃
n=m

{ω ∈ Ω | |ξn,γi(ω)− ξγi(ω)| ≥ ε}
)

= 0.

Then for every δ ∈ (0, 1), and each k = 1, 2, · · · , there exists a positive integer mk

such that for i = 1, 2, · · · , N,

Pr
(⋃∞

n=mk
{ω ∈ Ω | |ξn,γi

(ω)− ξγi
(ω)| ≥ 1/k})

< δ/2k+i

Letting

F =
N⋃

i=1

∞⋃

k=1

∞⋃
n=mk

{ω ∈ Ω | |ξn,γi
(ω)− ξγi

(ω)| ≥ 1/k},

then
Pr(F )

= Pr
(

N⋃
i=1

∞⋃
k=1

∞⋃
n=mk

{ω | |ξn,γi(ω)− ξγi(ω)| ≥ 1/k}
)

≤
N∑

i=1

∞∑
k=1

Pr
( ∞⋃

n=mk

{ω | |ξn,γi(ω)− ξγi(ω)| ≥ 1/k}
)

< δ.

In addition, for each k = 1, 2, · · · , one has

sup
1≤i≤N

sup
ω∈Ω\F

|ξn,γi(ω)− ξγi(ω)| < 1/k

whenever n ≥ mk, which implies

ξn
a.u.−→ ξ.

The proof is complete.

The next proposition deals with the criterion for convergence in chance.

Proposition 3. Suppose {ξn} and ξ are random fuzzy variables. Then ξn
Ch−→ ξ

if and only if for every ε > 0,

Pr{ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε} Cr−→ 0.

Proof. Assume that
ξn

Ch−→ ξ,

then for every ε > 0 and η > 0,

Ch{|ξn − ξ| ≥ ε}
=

∫ 1

0
Cr{γ | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ p}dp

≥ ηCr{γ | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ η},
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which implies
Pr{ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε} Cr−→ 0.

On the other hand, if

Pr{ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε} Cr−→ 0,

then for every p ∈ (0, 1], one has

lim
n→∞

Cr{γ | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ p} = 0.

Applying the bounded convergence theorem of integral sequence, we obtain

lim
n→∞

Ch{|ξn − ξ| ≥ ε}
=

∫ 1

0
lim

n→∞
Cr{γ | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ p}dp

= 0,

which completes the proof.

5 Interconnections among Convergence

The following theorem compares convergence a.u. and convergence a.s..

Theorem 1. Suppose {ξn} and ξ are random fuzzy variables. If ξn
a.u.−→ ξ, then

ξn
a.s.−→ ξ.

Proof. Assume ξn
a.u.−→ ξ. By Proposition 2, we have

lim
m→∞

Pr

( ∞⋃
n=m

{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε}
)

= 0

with credibility 1. By the upper semicontinuity of probability, we have

Pr

( ∞⋂
m=1

∞⋃
n=m

{ω ∈ Ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε}
)

= 0

with credibility 1, which implies

Ch

( ∞⋂
m=1

∞⋃
n=m

{|ξn − ξ| ≥ ε}
)

= 0.

It follows from Proposition 1 that

ξn
a.s.−→ ξ.

The proof is complete.
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The following theorem compares convergence a.u. and convergence in chance.

Theorem 2. Suppose {ξn} and ξ are random fuzzy variables. If ξn
a.u.−→ ξ, then

ξn
Ch−→ ξ.

Proof. Suppose
ξn

a.u.−→ ξ.

Then for any given δ > 0, there exist E ∈ A and F ∈ Σ with Cr(E) < δ, Pr(F ) < δ
such that {ξn} converges to ξ uniformly on Γ\E×Ω\F . For any given ε > 0, there
exists some positive integer N such that for every (γ, ω) ∈ Γ\E × Ω\F,

|ξn,γ(ω)− ξγ(ω)| < ε

whenever n ≥ N. As a consequence, one has

Ch {|ξm − ξ| ≥ ε}
=

∫ 1

0

Cr{γ ∈ Γ | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ p}dp

≤
∫ 1

0

Cr{γ ∈ Γ\E | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ p}dp

+
∫ 1

0

Cr{γ ∈ E | Pr{|ξn,γ(ω)− ξγ(ω)| ≥ ε} ≥ p}dp

≤
∫ δ

0

dp +
∫ 1

0

δdp = 2δ

whenever n ≥ N. It follows from the arbitrary of δ that

ξn
Ch−→ ξ,

which completes the proof.

The following theorem compares convergence in chance and convergence a.s..

Theorem 3. Suppose that γ is a discrete fuzzy variable assuming finite number
of values, if ξn

Ch−→ ξ, then there exists some subsequence {ξnk
} of {ξn} such that

ξnk

a.s.−→ ξ.

Proof. Assume that γ has the following possibility distribution

γ ∼
(

γ1, γ2, · · · , γN

p1, p2, · · · , pN

)

with pi > 0 and maxN
i=1 pi = 1. Since

ξn
Ch−→ ξ,
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by Proposition 3, for every ε > 0,

Pr{ω | |ξn,γ(ω)− ξγ(ω)| ≥ ε} Cr−→ 0.

Noting that in credibility theory, convergence in credibility implies convergence
almost sure [5], one has

Pr{ω | |ξn,γi
(ω)− ξγi

(ω)| ≥ ε} → 0, i = 1, 2, · · · , N.

That is,
ξn,γi

Pr−→ ξγi

for i = 1, 2, · · · , N. It follows from Riesz’s theorem [14] that there exists some
subsequence {ξnk

} of {ξn} such that

ξnk,γi(ω) → ξγi(ω)

for every ω ∈ Ω and i = 1, 2, · · · , N. The proof of the theorem is complete.

6 Conclusion

The major new results of this paper include the following three aspects.

(i) Several new modes of convergence for random fuzzy variables such as conver-
gence almost unform, convergence in chance and convergence in distribution
were introduced.

(ii) The convergence criteria for convergence almost sure, convergence almost
uniform, and convergence in chance were provided.

(iii) The interconnections between convergence almost uniform and convergence
almost sure, convergence almost uniform and convergence in chance, and
convergence in chance and convergence almost sure were established.

To conclude, we want to mention several potential applications of the obtained
results in this paper. For instance, we will employ the convergent results obtained
to design intelligent algorithms and approximation approaches to random fuzzy
optimization problems, which result in finite-dimensional optimization problems
that can be tackled easily. By using the proposed modes of convergence, we can
deal with the convergence of the optimal solutions of the finite-dimensional ap-
proximating optimization problems to the optimal solutions of the original infinite-
dimensional optimization problems.
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