Thai Journal of **Math**ematics Volume 18 Number 4 (2020) Pages 1875–1880

http://thaijmath.in.cmu.ac.th

K_{2n+1} That Are (2n+1)-Color *n* Sequentially Hamiltonian

Vites Longani and Hatairat Yingtaweesittikul*

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : vites.l@cmu.ac.th (V. Longani); hatairat.y@gmail.com (H. Yingtaweesittikul)

Abstract It is known that K_{2n+1} is the sum of n spanning cycles. We assign colors from 2n + 1 colors to each line of K_{2n+1} . We find that, with some condition, it is possible to assign colors to K_{2n+1} such that each point is adjacent to 2n lines of different colors and each of n hamiltonian cycles has 2n + 1 lines of different colors.

MSC: 05B99 Keywords: hamiltonian; complete graph

Submission date: 29.09.2019 / Acceptance date: 10.09.2020

1. INTRODUCTION

In this paper, we shall generally use definitions from [1]. We are discussing some properties of complete graph K_{2n+1} . From [1], we have the following theorem.

Theorem 1.1 (see [1]). The graph K_{2n+1} is the sum of n spanning cycles.

For example, K_7 is the sum of 3 spanning (hamiltonian) cycles, see [1].

^{*}Corresponding author.

Published by The Mathematical Association of Thailand. Copyright © 2020 by TJM. All rights reserved.

Fig. 1.1

Some *n* spanning cycles of K_{2n+1} , with some conditions, can have some interesting properties.

Definition 1.2. K_{2n+1} is called *n* sequentially hamiltonian if K_{2n+1} can have *n* spanning cycles of which all lines of the first cycle, all lines of the second cycle, all lines of the third cycle, ..., all lines of the *n*-th cycle have distances $1, 2, 3, \ldots, n$ respectively.

Theorem 1.3 tell us which K_{2n+1} can be *n* sequentially hamiltonian.

Theorem 1.3 (see [2]). For every $n \ge 1$, K_{2n+1} is n sequentially hamiltonian if and only if 2n + 1 is prime number.

For example, from Theorem 1.1, K_7 is the sum of 3 spanning cycles, see Fig. 1.1. But, since 7 is prime number, from Theorem 1.3, K_7 can also be 3 sequentially hamiltonian, see Fig.1.2.

Fig. 1.2

If we assign colors from 2n + 1 colors to each line of K_{2n+1} , we call K_{2n+1} as (2n + 1)-color. Given (2n + 1)-color K_{2n+1} , we know that K_{2n+1} is the sum of n spanning cycles. Can we assign colors to lines of K_{2n+1} such that each line of the n hamiltonian cycles has 2n + 1 different colors, and also each point of K_{2n+1} is adjacent to 2n lines of different colors.

Definition 1.4. Let K_{2n+1} be *n* sequentially hamiltonian. We call K_{2n+1} as (2n + 1)-color *n* sequentially hamiltonian if K_{2n+1} is (2n + 1)-color and each hamiltonian cycle has 2n + 1 lines of different colors, and also each point is adjacent to 2n lines of different colors.

For example, consider 5-color K_5 in Fig. 1.3.

Fig. 1.3

There are 2 hamiltonian cycles

and $0\ 1\ 2\ 3\ 4\ 0$ $0\ 2\ 4\ 1\ 3\ 0.$ We can see that each line of the first cycle, and each line of the second cycle has 5 different colors, and each point of K_5 is adjacent to 4 lines of different colors. So K_5 is 5-color 2 sequentially hamiltonian.

For another example, consider 7-color K_7 in Fig. 1.4.

There are 3 hamiltonian cycles

	0	1	2	3	4	5	6	0
	0	2	4	6	1	3	5	0
and	0	3	6	2	5	1	4	0

We can see that each line of the first, second, and third hamiltonian cycles has 7 different colors. Also, each point of the K_7 is adjacent to 6 lines of different colors. Therefore, K_7 is 7-color 3 sequentially hamiltonian.

We show, see Fig. 2.1 in Section 2, how to assign colors to K_7 so that K_7 becomes 7-color 3 sequentially hamiltonian.

Now look at K_9 , we find that K_9 has no hamiltonian cycle of which each line has distance

three, see Fig. 1.5.

So, K_9 is not 3 sequentially hamiltonian, and therefore K_9 is not 9-color 3 sequentially hamiltonian.

2. *n* Sequentially Hamiltonian and (2n + 1)-Color *n* Sequentially Hamiltonian

In this section we show that it is possible to assign 2n + 1 colors to lines of K_{2n+1} that is *n* sequentially hamiltonian such that K_{2n+1} becomes (2n+1)-color *n* sequentially hamiltonian.

Theorem 2.1. If K_{2n+1} is n sequentially hamiltonian, then K_{2n+1} can become (2n + 1)-color n sequentially hamiltonian.

Proof. Consider K_{2n+1} that is *n* sequentially hamiltonian. Let $0, 1, 2, 3, \ldots, 2n$ be points of K_{2n+1} , and let $c_0, c_1, c_2, c_3, \ldots, c_{2n}$ be 2n + 1 different colors. Consider point 0, for example, of K_{2n+1} , and all *n* lines that are joined between two equidistant points from 0, i.e. lines $\{1, 2n\}, \{2, 2n - 1\}, \{3, 2n - 2\}, \ldots, \{n, 2n - (n - 1)\}$. We assign color c_0 to all these n lines. Note that these lines have distance 1, distance 2, ..., distance *n*. Next, consider point 1, and all *n* lines that are joined between two equidistant points from 1. We assign color c_1 to all these lines. We consider points $2, 3, 4, \ldots, 2n$ and repeat the same process that we have done to point 0, and, point 1. Now, we have assigned colors, from 2n + 1 colors, to all lines of K_{2n+1} . We note that all lines of distance 1 have different colors. In fact, all lines of distances k ($k = 1, 2, 3, \ldots, n$) have different colors. From Definition 1.2, K_{2n+1} has n hamiltonian cycles, from which one cycle has distance 1 for all its lines, one cycle has distance 2 for all its lines, ..., and one cycle has distance *n* for all its lines. Therefore, each cycle of K_{2n+1} has 2n + 1 lines of different colors, so K_{2n+1} is (2n + 1)-color n sequentially hamiltonian.

The following Fig. 2.1 illustrates the proof of Theorem 2.1 when 2n+1=7.

Assigning 7 colors to certain lines, K_7 becomes 7-color 3 sequentially hamiltonian

Fig. 2.1

References

- [1] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Boston, 1969.
- [2] H. Yingtaweesittikul, V. Longani, A property of K_{2n+1} as the sum of n spanning cycles, (to appear).