$K_{2 n+1}$ That Are (2n+1)-Color n Sequentially Hamiltonian

Vites Longani and Hatairat Yingtaweesittikul*

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : vites.l@cmu.ac.th (V. Longani); hatairat.y@gmail.com (H. Yingtaweesittikul)

Abstract

It is known that $K_{2 n+1}$ is the sum of n spanning cycles. We assign colors from $2 n+1$ colors to each line of $K_{2 n+1}$. We find that, with some condition, it is possible to assign colors to $K_{2 n+1}$ such that each point is adjacent to $2 n$ lines of different colors and each of n hamiltonian cycles has $2 n+1$ lines of different colors.

MSC: 05B99
Keywords: hamiltonian; complete graph

Submission date: 29.09.2019 / Acceptance date: 10.09.2020

1. Introduction

In this paper, we shall generally use definitions from [1]. We are discussing some properties of complete graph $K_{2 n+1}$. From [1], we have the following theorem.

Theorem 1.1 (see [1]). The graph $K_{2 n+1}$ is the sum of n spanning cycles.
For example, K_{7} is the sum of 3 spanning (hamiltonian) cycles, see [1].

[^0]

Fig. 1.1

Some n spanning cycles of $K_{2 n+1}$, with some conditions, can have some interesting properties.

Definition 1.2. $K_{2 n+1}$ is called n sequentially hamiltonian if $K_{2 n+1}$ can have n spanning cycles of which all lines of the first cycle, all lines of the second cycle, all lines of the third cycle, \ldots, all lines of the n-th cycle have distances $1,2,3, \ldots, n$ respectively.

Theorem 1.3 tell us which $K_{2 n+1}$ can be n sequentially hamiltonian.

Theorem 1.3 (see [2]). For every $n \geq 1, K_{2 n+1}$ is n sequentially hamiltonian if and only if $2 n+1$ is prime number.

For example, from Theorem 1.1, K_{7} is the sum of 3 spanning cycles, see Fig. 1.1. But, since 7 is prime number, from Theorem 1.3, K_{7} can also be 3 sequentially hamiltonian, see Fig.1.2.

All lines have distances 1

(b)

All lines have distances 2

(c)

All lines have distances 3

Fig. 1.2

If we assign colors from $2 n+1$ colors to each line of $K_{2 n+1}$, we call $K_{2 n+1}$ as $(2 n+$ $1)$-color. Given $(2 n+1)$-color $K_{2 n+1}$, we know that $K_{2 n+1}$ is the sum of n spanning cycles. Can we assign colors to lines of $K_{2 n+1}$ such that each line of the n hamiltonian cycles has $2 n+1$ different colors, and also each point of $K_{2 n+1}$ is adjacent to $2 n$ lines of different colors.

Definition 1.4. Let $K_{2 n+1}$ be n sequentially hamiltonian. We call $K_{2 n+1}$ as $(2 n+$ 1)-color n sequentially hamiltonian if $K_{2 n+1}$ is $(2 n+1)$-color and each hamiltonian cycle has $2 n+1$ lines of different colors, and also each point is adjacent to $2 n$ lines of different colors.

For example, consider 5 -color K_{5} in Fig. 1.3.

Fig. 1.3
There are 2 hamiltonian cycles
and

$$
012340
$$

$$
024130 .
$$

We can see that each line of the first cycle, and each line of the second cycle has 5 different colors, and each point of K_{5} is adjacent to 4 lines of different colors. So K_{5} is 5 -color 2 sequentially hamiltonian.

For another example, consider 7-color K_{7} in Fig. 1.4.

Fig. 1.4

There are 3 hamiltonian cycles
01234560
02461350
and

$$
03625140 \text {. }
$$

We can see that each line of the first, second, and third hamiltonian cycles has 7 different colors. Also, each point of the K_{7} is adjacent to 6 lines of different colors. Therefore, K_{7} is 7 -color 3 sequentially hamiltonian.

We show, see Fig. 2.1 in Section 2, how to assign colors to K_{7} so that K_{7} becomes 7 -color 3 sequentially hamiltonian.

Now look at K_{9}, we find that K_{9} has no hamiltonian cycle of which each line has distance
three, see Fig. 1.5.

Fig. 1.5

So, K_{9} is not 3 sequentlially hamiltonian, and therefore K_{9} is not 9 -color 3 sequentially hamiltonian.

2. n Sequentially Hamiltonian and $(2 n+1)$-Color n SEqUENtially Hamiltonian

In this section we show that it is possible to assign $2 n+1$ colors to lines of $K_{2 n+1}$ that is n sequentially hamiltonian such that $K_{2 n+1}$ becomes $(2 n+1)$-color n sequentially hamiltonian.

Theorem 2.1. If $K_{2 n+1}$ is n sequentially hamiltonian, then $K_{2 n+1}$ can become $(2 n+$ $1)-$ color n sequentially hamiltonian.

Proof. Consider $K_{2 n+1}$ that is n sequentially hamiltonian. Let $0,1,2,3, \ldots, 2 n$ be points of $K_{2 n+1}$, and let $c_{0}, c_{1}, c_{2}, c_{3}, \ldots, c_{2 n}$ be $2 n+1$ different colors. Consider point 0 , for example, of $K_{2 n+1}$, and all n lines that are joined between two equidistant points from 0 , i.e. lines $\{1,2 n\},\{2,2 n-1\},\{3,2 n-2\}, \ldots,\{n, 2 n-(n-1)\}$. We assign color c_{0} to all these n lines. Note that these lines have distance 1 , distance $2, \ldots$, distance n. Next, consider point 1, and all n lines that are joined between two equidistant points from 1 . We assign color c_{1} to all these lines. We consider points $2,3,4, \ldots, 2 n$ and repeat the same process that we have done to point 0 , and, point 1 . Now, we have assigned colors, from $2 n+1$ colors, to all lines of $K_{2 n+1}$. We note that all lines of distance 1 have different colors. In fact, all lines of distances $k(k=1,2,3, \ldots, n)$ have different colors. Also, we note that every point of $K_{2 n+1}$ is adjacent to $2 n$ lines of different colors. From Definition $1.2, K_{2 n+1}$ has n hamiltonian cycles, from which one cycle has distance 1 for all its lines, one cycle has distance 2 for all its lines, ... , and one cycle has distance n for all its lines. Therefore, each cycle of $K_{2 n+1}$ has $2 n+1$ lines of different colors, so $K_{2 n+1}$ is $(2 n+1)$-color n sequentially hamiltonian.

The following Fig. 2.1 illustrates the proof of Theorem 2.1 when $2 \mathrm{n}+1=7$.

$4 \quad 3$
43

Assigning 7 colors to certain lines, K_{7} becomes 7 -color 3 sequentially hamiltonian

Fig. 2.1

References

[1] F. Harary, Graph Theory, Addison-Wesley Publishing Company, Boston, 1969.
[2] H. Yingtaweesittikul, V. Longani, A property of $K_{2 n+1}$ as the sum of n spanning cycles, (to appear).

[^0]: *Corresponding author.

