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Abstract An extension of a conjecture of Nikolov and Rafailov [N. Nikolov, R. Rafailov, On extremums

of sums of powered distances to a finite set of points, Geom. Dedicata 167(1) (2013) 69–89] by considering

the following potential function defined on R2:

fs(x) =
N∑

j=1

(
|x− xj |2 + h

)−s/2
, h ≥ 0,

for s = 2− 2N is given. We obtain a characterization of sets of N distinct points {x1, x2, . . . , xN} such
that f2−2N is constant on some circle in R2. Using this characterization, we prove some special cases of

this new conjecture. The other problems considered in this paper are polarization optimality problems.

We find all maximal and minimal polarization constants and configurations of two concentric circles in
R2 using the above potential function for certain values of s.
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1. Introduction

Riesz potential functions play important role in the subject of discrete energy problems
and point configurations (see the recent book by Borodachov, Hardin, and Saff [1], and
papers [2–5]). In this paper, we investigate some analytic properties of the generalized
Riesz potential functions on R2 stated below. Moreover, using these analytic properties
of these potential functions, we further solve some polarization optimality (Chebyshev)
problems which were initiated by Fekete, Pólya, and Szegő [6, 7]. For a fixed multiset
of N points ωN := {x1, x2, . . . , xN} ⊂ R2, a given constant s ∈ R, and a given constant
h ≥ 0, we define the potential function Us,h(·;ωN ) : R2 → [0,∞] as the following:

Us,h(x;ωN ) :=

N∑
j=1

(
|x− xj |2 + h

)−s/2
, (1.1)
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where x ∈ R2 and | · | is the 2-dimensional Euclidean norm in R2. In this paper, we
call Us,h(·, ωN ) a Riesz (s, h)-potential function of ωN . The geometric interpretation of
the function Us,h(·;ωN ) is as follows. Let us consider two parallel planes in R3: one is

R2 ×{0} and the other is R2 ×{
√
h}. Basically, the potential function Us,h(x, ωN ) is the

Riesz s-potential function in the 3-dimensional Euclidean space R3 of ω′N ⊂ R2 × {0}
at x′ ∈ R2 × {

√
h}, where the projection from R2 × {0} to R2 of ω′N is ωN and the

projection from R2 × {
√
h} to R2 of x′ is x. Moreover, if h = 0, then Us,h(·;ωN ) is the

Riesz s-potential function in the 2-dimensional Euclidean space R2 of ωN . We refer the
reader to [2, 8–10] for more information on Riesz s-potential functions in a d-dimensional
Euclidean space Rd.

Now, let ωN be a fixed set of distinct equally spaced points on a circle T ⊂ R2, Γ be
a circle concentric to T, and h ≥ 0 be fixed. In [11, Theorem 1], Nikolov and Rafailov
showed that fs(x) := Us,h(x;ωN ) is constant as a function of x on Γ if and only if
s = 0,−2,−4, . . . , 4 − 2N, or 2 − 2N. Furthermore, for s ∈ R \ {0,−2,−4, . . . , 2 − 2N},
they located extremum points of Us,h(·;ωN ) on Γ in [11, Theorem 1].

In the same paper, they also proved the following inverse type result (see [11, Theorem
2]) of what proceeds.

Theorem A. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2 and a circle
Γ ⊂ R2 such that for each s = −2,−4, . . . , 2− 2N,

Us,0(x;ωN ) =

N∑
j=1

|x− xj |−s

is independent of the position of x ∈ Γ. Then, ωN forms a set of distinct equally spaced
points on a circle concentric to Γ.

Moreover, they proposed the following conjecture (see [11, Conjecture 1]):

Conjecture B. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2 and a
circle Γ ⊂ R2 such that

U2−2N,0(x;ωN ) =

N∑
j=1

|x− xj |2N−2

is constant as a function of x on Γ. Then, ωN forms a set of distinct equally spaced points
on a circle concentric to Γ.

Translating and scaling the circle Γ in the above conjecture, it is easy to check that
Conjecture B is equivalent to the following conjecture.

Conjecture C. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2 such that

U2−2N,0(x;ωN ) =

N∑
j=1

|x− xj |2N−2

is constant as a function of x on the unit circle. Then, ωN forms a set of distinct equally
spaced points on a circle centered at 0.

In order to simplify further considerations, we shall study Conjecture C. This conjecture
for the case when N = 2 is trivial. The proof of this conjecture when N = 3 is in [11,
Proposition 2]. The one for the case when x1, x2, . . . xN have the same norm is in [12,
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Proposition 1]. In the same paper, the authors also proved this conjecture for the case
when N is prime and x1, x2, . . . , xN have an equal angle distribution and rational norms
(see [12, Proposition 2]).

In this paper, we extend Theorem A to more general potential functions defined in
(1.1). Moreover, the extension of Conjecture C is proposed (see Conjecture 2.2 in Section
2). A characterization of sets of N distinct points ωN that U2−2N,h(·, ωN ) is constant on
some circle in R2 is given. Using this characterization, we prove some special cases of this
new extended conjecture.

The next problems considered in this paper are polarization optimality problems cor-
responding to the potential functions defined in (1.1). Let ωN = {x1, . . . , xN} denote a
configuration of N (not necessarily distinct) points in R2. Denote by

S1R := {x ∈ R2 : |x| = R}

the circle centered at 0 of radius R in R2. When R = 1, we simply use the notation S1.
Given s ∈ R, h ≥ 0, R > 0, and r > 0, we define polarization constants

Ms,h
N (S1r;S1R) := max

ωN⊂S1r
#ωN=N

min
y∈S1R

Us,h(y;ωN ), M0,h
N (S1r;S1R) := N, (1.2)

ms,h
N (S1r;S1R) := min

ωN⊂S1r
#ωN=N

max
y∈S1R

Us,h(y;ωN ), m0,h
N (S1r;S1R) := N, (1.3)

where #ωN stands for the cardinality of the multiset ωN . We will call ωN a maximal
(minimal) N -point Riesz (s, h)-polarization configuration of (S1r;S1R) if ωN attains the
maximum in (1.2) (minimum in (1.3)). We give a brief history of such polarization
optimality problems below.

The idea of two-plate polarization constants was introduced by Farkas and Révész [13]
in general sense. However, almost all previous results on polarization optimality problems
related to Riesz potentials [2, 8–10, 14, 15] were considered for the case when R = r = 1
and h = 0. The maximality of N distinct equally spaced points on the unit circle for
the maximal Riesz (s, 0)-polarization problem of (S1;S1) in (1.2) when s > 0 was proved
by Hardin, Kendall, and Saff [10] (see also [9] and [14] for the history of this problem).
In [10], they also showed the minimality of N distinct equally spaced points on the unit
circle for the minimal Riesz (s, 0)-polarization problem of (S1;S1) in (1.3) for −1 ≤ s < 0.
Recently, a characterization of all maximal and minimal N -point Riesz (s, 0)-polarization
configurations of (S1r;S1R) when s = −2,−4, . . . , 2 − 2N was given in [12, Theorem 2].
One of the aims of this paper is to provide a characterization analogous to Theorem 2 in
[12] for the case when h > 0.

We would like call the reader’s attention to papers [2, 8–10] that contain asymptotic
results of polarization constants and configurations of subsets of Rd as N → ∞ when
s > 0 and h = 0.

An outline of this paper is as follows. In Section 2, we state the extension of Theorem A
to more general potential functions in (1.1) and give an extension of Conjecture C. Some
special cases of this new conjecture are considered. In Section 3, we state our results
on polarization optimality problems. Section 4 and Section 5 are devoted to the proofs
of all results in Section 2 and Section 3, respectively. Finally, we perform our auxiliary
computations in Section 6.
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2. Constant Riesz (s, h)-Potential Functions

The first theorem is a generalization of Theorem A.

Theorem 2.1. Let h ≥ 0. Given a set of N distinct points ωN := {x1, x2, . . . , xN} ⊂ R2

such that for each s = −2,−4, . . . , 2− 2N,

Us,h(x;ωN ) =

N∑
j=1

(
|x− xj |2 + h

)−s/2
is independent of the position of x ∈ S1. Then, ωN forms a set of distinct equally spaced
points on a circle centered at 0. Moreover, if |x1| = |x2| = . . . = |xN | = r, then for each
p = 1, 2, . . . , N − 1,

U−2p,h(x;ωN ) =
N

2p

p∑
q=0

(
p

q

)2

(2r)2q
(
r2 + 1 + h+

√
((r − 1)2 + h)((r + 1)2 + h)

)p−2q
for all x ∈ S1.

This theorem brings us to the following conjecture which generalizes Conjecture C.

Conjecture 2.2. Let h ≥ 0.Given a set ofN distinct points ωN := {x1, x2, . . . , xN} ⊂ R2

such that

U2−2N,h(x;ωN ) =

N∑
j=1

(
|x− xj |2 + h

)N−1
is constant as a function of x on S1. Then, {x1, x2, . . . , xN} forms a set of distinct equally
spaced points on a circle centered at 0.

A characterization of sets of N distinct points ωN such that U2−2N,h(·, ωN ) is constant
on S1 is the following:

Theorem 2.3. Let h ≥ 0 and ωN = {x1, x2, . . . , xN} ⊂ R2 be a set of N distinct points.
Then, the function

U2−2N,h(x;ωN ) =

N∑
j=1

(
|x− xj |2 + h

)N−1
is constant on S1 if and only if

N∑
j=1

Bk,jx
k
j = 0, k = 1, . . . , N − 1, (2.1)

where
xk := (rk cos(kt), rksin(kt))

if x = (r cos(t), r sin(t)) ∈ R2 and

Bk,j :=

N−k−1∑
q=0

[(
N − 1

q

)(
N − 1

k + q

)
(2|xj |)2q

×
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)((|xj |+ 1)2 + h)

)N−2q−k−1 ]
. (2.2)
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As a consequence of this characterization, we obtain the following corollary.

Corollary 2.4. Let h ≥ 0 and let ωN := {x1, x2, . . . , xN} be a set of N distinct points
in R2, which belong to a circle S1r ⊂ R2. Assume that

U2−2N,h(x;ωN ) =

N∑
j=1

(|x− xj |2 + h)N−1

is constant on S1. Then, {x1, x2, . . . , xN} forms a set of distinct equally spaced points on
S1r.

Applying Theorem 2.3 and Corollary 2.4, we prove Conjecture 2.2 when N = 3.

Corollary 2.5. Let h ≥ 0 and {x1, x2, x3} ⊂ R2 be a set of 3 distinct points. If the
function U−4,h(x, {x1, x2, x3}) is constant on S1, then {x1, x2, x3} forms a set of distinct
equally spaced points on a circle centered at 0.

3. Polarization Optimality Oroblems

A complete characterization of all maximal and minimalN -point Riesz (s, h)-polarization
configurations of (S1r;S1R) when s = −2,−4, . . . , 2− 2N and h ≥ 0 is the following:

Theorem 3.1. Let N ∈ N, p ∈ {1, 2, . . . , N−1}, R > 0, r > 0, h ≥ 0, and {x1, x2, . . . , xN}
⊂ S1r. The following statements are equivalent:

(a) {x1, x2, . . . , xN} is a maximal N -point Riesz (−2p, h)-polarization configura-
tion of (S1r;S1R);

(b) {x1, x2, . . . , xN} is a minimal N -point Riesz (−2p, h)-polarization configura-
tion of (S1r;S1R);

(c)
∑N
j=1 xj =

∑N
j=1 x

2
j = · · · =

∑N
j=1 x

p
j = 0, where xk := (rk cos(kt), rksin(kt))

if x = (r cos(t), r sin(t)) ∈ R2.

Furthermore,

M−2p,hN (S1r;S1R) = m−2p,hN (S1r;S1R)

=
N

2p

p∑
j=0

(
p

j

)2

(2rR)2j
(
r2 +R2 + h+

√
((r −R)2 + h)(r +R)2 + h)

)p−2j
. (3.1)

4. Proof of Section 2

The Euclidean space R2 and the complex space C have the same dimension and the
same norm. However, the complex space C has a richer algebraic structure, for example,
C is a field. Therefore, when we prove all results in Sections 2 and 3, any element x ∈ R2

will be replaced by x ∈ C, the 2-dimensional Euclidean norm |·| is replaced by the modulus
in C, and the notation xy is adopted from the multiplication in C and the notation x/y
is adopted from the division in C. We recall that the usual dot product in C is defined
by

(a1 + a2i) · (b1 + b2i) := a1b1 + a2b2.
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Lemma 4.1. Let N ∈ N, p ∈ {1, 2, . . . , N −1}, and h ≥ 0. If xj := |xj | cos tj + i|xj | sin tj
for all j = 1, 2, . . . , N, then for all y := cos t+ i sin t ∈ S1,

N∑
j=1

(|y − xj |2 + h)p = E
(p)
0 +

p∑
k=1

N∑
j=1

E
(p)
k,j cos(ktj − kt), (4.1)

N∑
j=1

(|y − xj |2 + h)p = E
(p)
0 +

p∑
k=1

N∑
j=1

E
(p)
k,j

|xj |k
(
yk · xkj

)
, (4.2)

where

E
(p)
0 :=

1

2p

N∑
j=1

p∑
q=0

(
p

q

)2

(2|xj |)2q
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)(|xj |+ 1)2 + h)

)p−2q
(4.3)

and for all k = 1, 2, . . . , p and j = 1, 2, . . . , N,

E
(p)
k,j :=

(−1)k

2p−1

p−k∑
q=0

[(
p

q

)(
p

k + q

)
(2|xj |)2q+k

×
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)((|xj |+ 1)2 + h)

)p−k−2q ]
. (4.4)

Proof of Lemma 4.1. Let y := cos t + i sin t and xj := |xj | cos tj + i|xj | sin tj for all j =
1, 2, . . . , N. A simple calculation shows that

fj(t) := (|y − xj |2 + h)p = (|xj |2 + 1 + h− 2|xj | cos(t− tj))p.

We know that

A := {1, cos(t− tj), . . . , cos(p(t− tj))}
forms an orthogonal set with respect to the inner product

〈f, g〉 :=

∫ 2π

0

f(t)g(t)dt.

Moreover,

fj ∈ span{1, cos(t− tj), cos2(t− tj), . . . , cosp(t− tj)}

= span {1, cos(t− tj), . . . , cos(p(t− tj))} .
Therefore,

fj(t) =

p∑
k=0

E
(p)
k,j cos(ktj − kt).

This implies that

N∑
j=1

(|y − xj |2 + h)p =

N∑
j=1

fj(t) = E
(p)
0 +

p∑
k=1

N∑
j=1

E
(p)
k,j cos(ktj − kt),
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where E
(p)
0 :=

∑N
j=1E

(p)
0,j . By the orthogonality of the set A and the calculation in Lemma

6.2 (see Appendix), we have

E
(p)
0 :=

N∑
j=1

〈fj , 1〉
2π

=
1

2p

N∑
j=1

p∑
q=0

(
p

q

)2

(2|xj |)2q
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)(|xj |+ 1)2 + h)

)p−2q
and

E
(p)
k,j =

〈fj , cos k(t− tj)〉
π

=
(−1)k

2p−1

p−k∑
q=0

[(
p

q

)(
p

k + q

)
(2|xj |)2q+k

×
(
|xj |2 + 1 + h+

√
((|xj | − 1)2 + h)((|xj |+ 1)2 + h)

)p−k−2q ]
,

for all k ∈ {0, 1, . . . , p} and j ∈ {1, . . . , N}. Moreover, it is clear that the equations (4.1)
and (4.2).

Proof of Theorem 2.1. Suppose that there exist constants Cp, p = 1, 2, . . . , N − 1, such
that

U−2p,h(x;ωN ) = Cp, x ∈ S1, p = 1, 2, . . . , N − 1,

where ωN = {x1, x2, . . . , xN}. If x = cos t + i sin t and xj := |xj | cos tj + i|xj | sin tj , then
by (4.1), for each p = 1, 2, . . . , N − 1, we have for all t ∈ [0, 2π],

Cp = E
(p)
0 +

p∑
k=1

N∑
j=1

[
E

(p)
k,j cos(ktj) cos(kt) + E

(p)
k,j sin(ktj) sin(kt)

]
and

0 = (E
(p)
0 − Cp) +

p∑
k=1

 N∑
j=1

E
(p)
k,j cos(ktj)

 cos(kt) +

 N∑
j=1

E
(p)
k,j sin(ktj)

 sin(kt)

 .
Since {1, cos(t), sin(t), cos(2t), sin(2t), . . . , cos(pt), sin(pt)} is linearly independent over R,
for all p = 1, 2, . . . , N − 1,

Cp = E
(p)
0 , (4.5)

N∑
j=1

E
(p)
p,j cos(ktj) = 0 and

N∑
j=1

E
(p)
p,j sin(ktj) = 0. (4.6)

Using (4.4), we can compute

E
(p)
p,j =

(−1)p

2p−1
(2|xj |)p. (4.7)

Combining (4.6) and (4.7), we have for all p = 1, 2, . . . , N − 1,

0 =

N∑
j=1

(−1)p

2p−1
(2|xj |)p(cos(ptj) + i sin(ptj)) = (−1)p2

N∑
j=1

xpj
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which implies that
∑N
j=1 x

p
j = 0 for all p = 1, 2, . . . , N − 1. Using Newton’s identities, we

have

ep(x1, x2, . . . , xN ) = 0, p = 1, 2, . . . , N − 1.

Then,
N∏
j=1

(x− xj) = xN + (−1)N
N∏
j=1

xj .

Hence, |x1| = |x2| = . . . = |xN | = r for some r > 0 and {x1, x2, . . . , xN} forms a set of
distinct equally spaced points on S1r. In turn, the equality (4.5) implies that for all x ∈ S1
and for all p = 1, 2, . . . , N − 1,

U−2p,h(x;ωN ) = Cp = E
(p)
0

=
N

2p

p∑
q=0

(
p

q

)2

(2r)2q
(
r2 + 1 + h+

√
((r − 1)2 + h)((r + 1)2 + h)

)p−2q
.

Proof of Theorem 2.3. Set

xj := |xj | cos(tj) + i|xj | sin(tj)

for all j = 1, 2, . . . , N.

(⇒) By our assumption, we assume that f(y) :=
∑N
j=1(|y − xj |2 + h)N−1 is constant

on S1, say f(y) = C on S1. Set y = cos t+ i sin t ∈ S1. By (4.1), for all t ∈ [0, 2π],

C = f(y) =

N∑
j=1

(|y − xj |2 + h)N−1

= E
(N−1)
0 +

N−1∑
k=1

N∑
j=1

[
E

(N−1)
k,j cos(ktj) cos(kt) + E

(N−1)
k,j sin(ktj) sin(kt)

]

= E
(N−1)
0 +

N−1∑
k=1

 N∑
j=1

E
(N−1)
k,j cos(ktj)

cos(kt) +

 N∑
j=1

E
(N−1)
k,j sin(ktj)

sin(kt)

 .
(4.8)

Because {1, cos(t), sin(t), cos(2t), sin(2t), . . . , cos((N −1)t), sin((N −1)t)} is linearly inde-
pendent over R,

C − E(N−1)
0 = 0

and for all k = 1, 2, . . . , N − 1,

N∑
j=1

E
(N−1)
k,j cos(ktj) = 0 and

N∑
j=1

E
(N−1)
k,j sin(ktj) = 0. (4.9)

Then, for all k = 1, 2, . . . , N − 1,

0 =

N∑
j=1

E
(N−1)
k,j (cos(ktj) + i sin(ktj)) =

N∑
j=1

E
(N−1)
k,j

|xj |k
xkj . (4.10)
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Using the calculation in (4.4), it is not difficult to check that the equations (4.10) imply
the equations (2.1).

(⇐) Assume that the equations (2.1) hold true. Then,

N∑
j=1

E
(N−1)
k,j

|xj |k
xkj = 0, k = 1, . . . , N − 1.

From (4.10), we have (4.9). Combining the relations (4.9) and the identity (4.8), we have
for all y ∈ S1,

N∑
j=1

(|y − xj |2 + h)N−1 = E
(N−1)
0 ,

which implies that U2−2N,h(·;ωN ) is constant on S1. This completes the proof.

Proof of Corollary 2.4. Assume that {x1, x2, . . . , xN} ⊂ S1r. It is easy to check that the
constants Bk,j 6= 0 do not depend on j. Therefore, by the system of equations (2.1),∑N
j=1 x

k
j = 0 for all k = 1, 2, . . . , N − 1. Using Newton’s identities, we have

ek(x1, x2, . . . , xN ) = 0, k = 1, 2, . . . , N − 1.

Then,
N∏
j=1

(x− xj) = xN + (−1)N
N∏
j=1

xj .

Hence, |x1| = |x2| = . . . = |xN | = r and {x1, x2, . . . , xN} forms a set of distinct equally
spaced points on S1r.

Proof of Corollary 2.5. Using Theorem 2.3, we have

x21 + x22 + x23 = 0, (4.11)

E(|x1|)x1 + E(|x2|)x2 + E(|x3|)x3 = 0, (4.12)

where

E(x) :=

(
x2 + 1 + h+

√
((x− 1)2 + h)((x+ 1)2 + h)

)2
+ 4x2(

x2 + 1 + h+
√

((x− 1)2 + h)((x+ 1)2 + h)
) .

Without loss of generality, we can assume that |x1| ≥ |x2| ≥ |x3|. Moreover, it is easy to
check that E(x) is a positive increasing function on [0,∞). Therefore, E(|x1|) ≥ E(|x2|) ≥
E(|x3|) > 0. From (4.12), we have

E(|x3|)x3 = −E(|x1|)x1 − E(|x2|)x2
and

E(|x3|)x3 = −E(|x1|)x1 − E(|x2|)x2,
which imply that

|x3|2E(|x3|)2 = |x1|2E(|x1|)2+|x2|2E(|x2|)2+E(|x1|)E(|x2|)(x1x2+x2x1). (4.13)

Note that since |x1| ≥ |x2| ≥ |x3| and x1, x2, x3 are distinct,

x1x2 + x2x1 ∈ (−∞, 0). (4.14)
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From (4.11), we have

x23 = −x21 − x22 and x3
2 = −x12 − x22,

which imply that

|x3|4 = |x1|4 + |x2|4 + x21x2
2 + x22x1

2 = |x1|4 + |x2|4 − 2|x1|2|x2|2 + (x1x2 + x2x1)2.

Therefore,

(x1x2 + x2x1)2 = |x3|4 − (|x1|2 − |x2|2)2.

By (4.14),

(x1x2 + x2x1) = −
√
|x3|4 − (|x1|2 − |x2|2)2

From (4.13), we obtain

|x3|2E(|x3|)2 + E(|x1|)E(|x2|)
√
|x3|4 − (|x1|2 − |x2|2)2 = |x1|2E(|x1|)2 + |x2|2E(|x2|)2.

Since

E(|x1|)E(|x2|)
√
|x3|4 − (|x1|2 − |x2|2)2 ≤ |x1|2E(|x1|)2

and

|x3|2E(|x3|)2 ≤ |x2|2E(|x2|)2,√
|x3|4 − (|x1|2 − |x2|2)2 = |x1|2,

which implies |x1| = |x2| = |x3|. Applying Corollary 2.4, {x1, x2, x3} forms a set of distinct
equally spaced points on a circle cantered at 0.

5. Proof of Section 3

Recall that for the proofs in this section, we also consider our problems in the complex
plane (see our discussion at the beginning of Section 4).

Lemma 5.1. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, r > 0, and h ≥ 0. Then,
any configuration of N distinct equally spaced points on S1r is both maximal and minimal
N -point Riesz (−2p, h)-polarization configuration of (S1r;S1R).

Proof of Lemma 5.1. Let ωN := {x1, . . . , xN} be a configuration of N distinct equally
spaced points on S1r, p ∈ {1, 2, . . . , N − 1} be fixed, and h ≥ 0 be fixed. By [11, Theorem

1], we know that f(x) :=
∑N
j=1(|x− xj |2 + h)p is constant as a function of x on S1R, say

f(x) ≡ C for all x ∈ S1R.
Let {y1, . . . , yN} be any N -point configuration on S1r. Clearly, yj/r, xj/r ∈ S1 for all

j = 1, 2, . . . , N. Then,

NC =

N∑
i=1

f

(
R

yi/r

)
=

N∑
i=1

N∑
j=1

(∣∣∣∣xj − R

yi/r

∣∣∣∣2 + h

)p

=

N∑
i=1

N∑
j=1

(∣∣∣∣xj/ryi/r

∣∣∣∣2 ∣∣∣∣yi − R

xj/r

∣∣∣∣2 + h

)p
=

N∑
i=1

N∑
j=1

(∣∣∣∣yi − R

xj/r

∣∣∣∣2 + h

)p

=

N∑
j=1

N∑
i=1

(∣∣∣∣yi − R

xj/r

∣∣∣∣2 + h

)p
.
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Therefore, there exist j0, j
′
0 ∈ {1, 2, . . . , N} such that

N∑
i=1

(∣∣∣∣yi − R

xj0/r

∣∣∣∣2 + h

)p
≥ C and

N∑
i=1

(∣∣∣∣yi − R

xj′0/r

∣∣∣∣2 + h

)p
≤ C.

Then, we have

max
x∈S1R

N∑
i=1

(
|yi − x|2 + h

)p ≥ C = max
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
and

min
x∈S1R

N∑
i=1

(
|yi − x|2 + h

)p ≤ C = min
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
which imply

max
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
= m−2p,hN (S1r;S1R)

and

min
x∈S1R

N∑
i=1

(
|xi − x|2 + h

)p
= M−2p,hN (S1r;S1R),

respectively. Therefore, ωN is both maximal and minimalN -point Riesz (−2p, h)-polariza-
tion configuration of (S1r;S1R).

Proof of Theorem 3.1. Because the proof of (a)⇔ (c) is similar to the proof of (b)⇔ (c),
we will show only (b) ⇔ (c) and skip the proof of (a) ⇔ (c). Moreover, without loss of
generality, we can assume that R = 1.

Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, r > 0, and h ≥ 0 be fixed. Notice that for

all configurations {x1, x2, . . . , xN} ⊂ S1r, the constants E
(p)
0 and E

(p)
k,j in (4.3) and (4.4)

depend only on k. For convenience, for all configurations {x1, x2, . . . , xN} ⊂ S1r, we set

E := E
(p)
0 and Ek :=

E
(p)
k,j

rk
, k = 1, 2, . . . , p.

First of all, we show that

m−2p,hN (S1r;S1) = E. (5.1)

Let ω′N := {x′1, x′2, . . . , x′N} be a configuration of distinct equally spaced points on S1r.
Using (4.2), we have for all y ∈ S1,

N∑
j=1

(|y − x′j |2 + h)p = E +

p∑
k=1

N∑
j=1

Ek(yk · (x′j)k) = E +

p∑
k=1

Ek(yk ·
N∑
j=1

(x′j)
k) = E

(5.2)

where the last equality follows from the fact that
∑N
j=1(x′j)

k = 0 for all k = 1, 2, . . . , N−1.

By Lemma 5.1, since ω′N is a minimal N -point Riesz (−2p, h)-polarization configuration
of (S1r;S1),

m−2p,hN (S1r;S1) = max
y∈S1

U−2p,h(y;ω′N ) = E (5.3)

as we wanted.
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Now, we prove (c)⇒(b). Assume that ωN = {x1, x2, . . . , xN} ⊂ S1r and
∑N
j=1 x

k
j = 0

for all k = 1, 2, . . . , p. Applying the same argument as in (5.2), we have for all y ∈ S1,

U−2p,h(y;ωN ) = E +

p∑
k=1

Ek(yk ·
N∑
j=1

xkj ) = E,

which implies that ωN is a minimal N -point Riesz (−2p, h)-polarization configuration of
(S1r;S1).

Next, we show (b)⇒(c). Assume that ωN := {x1, x2, . . . , xN} is a minimal N -point
Riesz (−2p, h)-polarization configuration of (S1r;S1). Then, for all y ∈ S1,

U−2p,h(y;ωN ) =

N∑
j=1

(|y − xj |2 + h)p ≤ m−2p,hN (S1r;S1) = E.

Set y = cos(t) + i sin(t) ∈ S1 and xj = r cos(tj) + ir sin(tj) ∈ S1r for all j = 1, 2, . . . , N.
Hence, by (4.1), for all t ∈ [0, 2π],

E ≥ U−2p,h(y;ωN ) = E +

p∑
k=1

[ N∑
j=1

Ek
rk

cos(ktj)

 cos(kt) +

 N∑
j=1

Ek
rk

sin(ktj)

 sin(kt)

]
.

Then, for all t ∈ [0, 2π],

0 ≥
p∑
k=1

[ N∑
j=1

Ek
rk

cos(ktj)

 cos(kt) +

 N∑
j=1

Ek
rk

sin(ktj)

 sin(kt)

]
.

It is not difficult to check that for all t ∈ [0, 2π],

p∑
k=1

[ N∑
j=1

Ek
rk

cos(ktj)

 cos(kt) +

 N∑
j=1

Ek
rk

sin(ktj)

 sin(kt)

]
= 0.

Because {cos(t), sin(t), cos(2t), sin(2t), . . . , cos(pt), sin(pt)} is linearly independent over R,
for all k = 1, 2, . . . , p,

N∑
j=1

Ek
rk

cos(ktj) =

N∑
j=1

Ek
rk

sin(ktj) = 0.

Since for all k = 1, 2, . . . , p, Ek 6= 0 (see the formula in (4.4)),

N∑
j=1

cos(ktj) =

N∑
j=1

sin(ktj) = 0, k = 1, 2, . . . , p,

which imply that
∑N
j=1 x

k
j = 0 for all k = 1, 2, . . . , p. Moreover, from (4.3), we have

M−2p,hN (S1r;S1) = m−2p,hN (S1r;S1)

= E =
N

2p

p∑
j=0

(
p

j

)2

(2r)2j
(
r2 + 1 + h+

√
((r − 1)2 + h)(r + 1)2 + h)

)p−2j
.

To compute M−2p,hN (S1r;S1R) = m−2p,hN (S1r;S1R) in (9), we can use a similar argument as
in the proof of Lemma 4.1 by replacing y = R cos t+iR sin t and fj(t) := (|y−xj |2+h)p =
(R2

j + R2 + h − 2RjR cos(t − tj))p. Applying the calculations as in Lemma 6.2, it is not
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difficult to check that if ωN is a configuration of N distinct equally spaced points on S1r,
then for all y ∈ S1R,

U−2p,h(y;ωN )

=
N

2p

p∑
j=0

(
p

j

)2

(2rR)2j
(
r2 +R2 + h+

√
((r −R)2 + h)(r +R)2 + h)

)p−2j
.

6. Appendix

We collect our computations of all integrals in this section.

Lemma 6.1. Let p ∈ N, k ∈ {0, 1, . . . , p}, and z ∈ C. Then,∫ 2π

0

(z2 + 1− 2z cos(t))p cos(kt)dt = (−1)k2π

p−k∑
q=0

(
p

q

)(
p

k + q

)
z2p−k−2q. (6.1)

Proof of Lemma 6.1. Let p ∈ N and k ∈ {1, . . . , p}. First, we prove the equality (6.1) for
z ∈ R. Let z ∈ R. Then, for ζ = eit,∫ 2π

0

(z2 + 1− 2z cos(t))p cos(kt)dt =

∫ 2π

0

(z2 + 1− z(eit + e−it))peiktdt

=

∫ 2π

0

(z − eit)p(z − e−it)peiktdt =
1

i

∫
S1

(z − ζ)p(z − 1/ζ)pζk−1dζ

= 2π · res

(
(z − ζ)p(zζ − 1)p

ζp−k+1
; 0

)
= (−1)k2π

p−k∑
q=0

(
p

q

)(
p

k + q

)
z2p−k−2q,

where the first equality follows from the fact that the last expression is a real number.
Notice that the left-hand side and the right-hand side of the equation (6.1) are polynomials
as functions of z. Then, both functions are analytic on C and we have the equation (6.1)
for all z ∈ C.

Lemma 6.2. Let p ∈ N and k ∈ {0, 1, . . . , p}. For a, b ∈ C,∫ 2π

0

(a− b cos(t))p cos(kt)dt =
(−1)kπ

2p−1

p−k∑
q=0

(
p

q

)(
p

k + q

)
b2q+k

(
a±

√
a2 − b2

)p−k−2q
,

(6.2)

where the square root function in (6.2) can be selected to be both branches of the complex
square root function.

Proof of Lemma 6.2. Clearly, if b = 0, then the equation in (6.2) is 0 = 0. Assume that
b ∈ C \ {0} and a ∈ C. To reduce the equation (6.2) to the equation (6.1), we consider

(λa− λb cos(t))p,

where λ is chosen to satisfy the equations

2z = bλ and z2 + 1 = aλ,
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for some z ∈ C. From above equations,

z =
a±
√
a2 − b2
b

and λ =
2a± 2

√
a2 − b2

b2
.

Moreover, λ 6= 0 because if λ = 0, then z = 0 which implies that b = 0. Therefore, by
Lemma 6.1,∫ 2π

0

(a− b cos(t))p cos(kt)dt =
1

λp

∫ 2π

0

(λa− λb cos(t))p cos(kt)dt

=
1

λp

∫ 2π

0

(z2 + 1− 2z cos(t))p cos(kt)dt

=
(−1)kπ

2p−1

p−k∑
q=0

(
p

q

)(
p

k + q

)
b2q+k

(
a±

√
a2 − b2

)p−k−2q
.
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