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Abstract In this paper, we study the regional controllability of one- and two-dimensional additive real-

valued cellular automata with periodic, fixed, and reflective boundary conditions. The global transition

functions of cellular automata are formulated in the matrix form to update the cofiguration. These

results are applied to derive and prove the sufficient conditions of regional controllability for these additive
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examples are provided to support the theoretical results.
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1. Introduction

Mathematical models are useful tools to understand, predict, and control of real world
systems by using mathematical language. The models can take many different forms de-
pending on the type of the system and purpose of the model. Differential equation and
partial differential equation are most often used to represent continuous and deterministic
systems such as biological [1], physical [2], and chemical processes [3]. Stochastic mod-
els, which take into account random variables and probability, represent the random or
probabilistic properties of many systems. Cellular automata (CA), agent-based models,
and lattice gas models are stochastic discrete models, which are a popular technique for
describing the states of individual elements of a system over discrete intervals.

Cellular automata are discrete models that consist of a regular lattice of cells with
a finite number of states. The states of cells are updated synchronously according to
identical transition functions (or transition rules) that relying on the previous states of
cells in their neighbourhood [4]. The CA were first proposed by John Von Neumann
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in 1950 as a self-reproduction model in biological systems [5] and were systematically
studied by Wolfram in the 1980s [6]. “The Game of Life” was constructed by Conway,
which became a famous example of CA with two states, “alive” and “dead”. The CA
have been widely used to simulate complex biological, environmental, power systems such
as mealybugs spreading [7], calcium signaling [8], forest fire spreading [9], transmission
of disease [10], forest dynamics [11], atmospheric dispersion [12], dispersion of pollutants
[13], and smart energy grids design [14].

The main components of CA are the lattice, a collection of states, neighbourhood, and
the transition function. Many various types of CA have been proposed with different
components [15]. Among them, the additive CA are the simplest kind of CA whose
update rule is an additive transfer function. The additive CA were introduced by Itô et
al. [16] to present criteria for surjectivity and injectivity of the global transition map of
additive CA. Several important properties of additive CA have been studied. In 1994,
analytical studies were carried out by Nandi in which the CA with EXNOR rules can
generate an alternating group [17]. In addition, Choudhuri et al. studied an algebraic
structure of additive real-valued CA in 1997 [18]. Additive CA have been used to describe
real phenomenon such as forest fire spreading [19, 20] and oil slick spreading [21].

In control theory, controllability is one of major concepts and has been applied in many
fields. In particular, this conceptual framework has been extensively utilised to CA. For
example, Baros et al. [22] applied CA to the case of fire spreading as well as morphogenesis
and tumor growth. However, it appeared that CA may not be controllable within the
whole domain but only in the subregion of the domain [23]. This leads to an introduction
of regional controllability of additve CA proposed by Zerrik El Jai and Bourray [23]. Bel
Fekih and El Jai [24] further postulated the conditions for regional controllability and
observability for real-valued additive CA. Whilst El Yacoubi [25] presented the regional
controllability of one- and two-dimensional additive CA with discrete state sets. Although
this study derived the conditions for regional controllability of the system, the controlled
system has only one excited cell with periodic boundaries. In 2019, Dridi, Bangnoil, and
El Yacoubi [26] proved the regional controllability of Boolean cellular automata by using
Markov chains approach. They also presented some necessary and sufficient conditions for
the regional controllability of Boolean cellular automata base on graph theory notations
[27].

Motivated by studies of Bel Fekih and El Jai [24] and El Yacoubi [25], in this paper, we
present conditions for regional controllability of one- and two-dimensional additive real-
valued CA with periodic, fixed, and reflective boundary conditions based on theory of
linear equations. The paper is organized as follows: In Section 2, we present definitions of
classical CA and the most common types of boundary conditions. In addition, a definition
of additive CA and regional controllability of the additive CA is introduced. In Section
3, we formulate the global transition functions of one- and two-dimensional additive real-
valued CA with the three boundary conditions. Furthermore, the sufficient conditions
for regional controllability of the additive CA are derived and proved. We obtain the
formulae of control vectors and those with least-norm vector for which the additive CA
are controllable. Some simulation examples are later illustrated to verify the theoretical
results of the regional controllability the additive real-valued CA. A brief conclusion is
given in Section 4.
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2. Preliminaries

Cellular automata models are dynamic models in which space and time are discrete
entities. The models consist of lattice, state, neighbourhood, and a transition function
which are defined as follows.

Definition 2.1. [28] A cellular automaton is defined by a 4-tuple A = (L,S,N , f), where

• L is a lattice or cellular space which is a finite or infinite discrete regular grid
of cells on Rd, where d is a dimension of the lattice. Each cell in the lattice is
described by its position c ∈ L.
• S is a state set which indicates the possible states of each cell at each time
step. The state of cell c is written as st(c).
• N represents a neighbourhood which is a mapping of cell c into the cells neigh-
bourhood. The neighbourhood N is defined by

N : L −→ Lk

c −→ N (c) = {c∗1, c∗2, ..., c∗k},

where c∗i is a cell for i = 1, 2, ..., k, k is a neibourhood size and r ∈ Z+ ( Z+

is a set of positive integers) is the radius of neighbourhood. The most common
types of neighbourhoods are the Von Neumann neighbourhood and the Moore
neighbourhood. The state of the neighbourhood of cell c is written as

st(N (c)) = {st(c∗1), ..., st(c
∗
k) | c∗i ∈ N (c), 1 ≤ i ≤ k}.

• f is a transition function (transition rule) which assigns the state st+1(c) of a
cell c at time step t + 1 depending on the state of its neighbourhood st(N (c)) at
time step t. The transition function f is given by

f : Sk −→ S
st(N (c)) −→ st+1(c) = f(st(N (c))).

Definition 2.2. [28] A cellular automaton state or configuration at time step t is the
mapping st defined by

st : L −→ S,
which associates to every cell of the lattice L and element of the state set S.

Definition 2.3. [29] The global transition function (global rule) is a mapping F of the
configuration at time t into the configuration at time t + 1, which is given by

F : SNL −→ SNL

(s1, s2, ..., sNL)t −→ (s1, s2, ..., sNL)t+1,

∀sj ∈ SNL , j = 1, 2, ..., NL, sj = sj(c), ∀c ∈ L, (2.1)

where NL is a number of cells in the lattice.

Boundary Conditions

Boundary conditions are an important part of CA models, which assist in updating
the state set. There are three common types of boundary conditions:
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(i) Periodic boundary conditions are obtained by connecting the points on one bound-
ary of the lattice to points on the opposite boundary, which lead to a torus-like shape.
For the two-dimensional case, the top and bottom edges of the lattice are connected, and
then the left and right edges are connected [4].

(ii) Reflective boundary conditions are induced by reflecting the lattice at the bound-
ary, in which the cells at the boundary have the same states as the cells adjacent to them
[30].

(iii) Fixed boundary conditions are imposed by assigning a fixed value for the states
of cells on the boundary [31].

Additive Cellular Automata

Additive cellular automata are a class of cellular automata, whose transition function
is additive, which is defined in the next definition.

Definition 2.4. [29] A global transition function F is additive if

F(si + sj) = F(si) + F(sj), for all si, sj ∈ SNL .

Consequently, if S = R, a local transition function f of an additive CA can be rewritten
in the form

st+1(ci) = f(st(N (ci))) =
∑

1≤i≤k

aist(ci),

where a0, a1, ..., ak are real scalars, t is the time step, and k is the neighbourhood size.

Regional Controllability of Additive CA

Let L = {c1, ..., cNL}. Consider the cellular automaton A = (L,S,N , f), where S = R
and f is the additive transition function. Provide that Lp = {c∗1, c∗2, ..., c∗p} ⊆ L and
ω = {ω1, ..., ωn} ⊆ L. Let Sω = {st|ω = [st(ω1), ..., st(ωn)] | 0 6 t 6 T} be a configura-
tion of A on ω, where t = 0 is an initial time step and T is a final time step.

In order to control the cellular automaton A, it is excited at time step t in a subregion

Lp by ut ∈ U , where ut =
[
u
c∗1
t , u

c∗2
t , ..., u

c∗p
t

]
for t = 0, ..., T − 1 and U is a control space

which is a set of all the bounded controls [25]. The criterion for regional controllability
of the CA can be defined as follows.

Definition 2.5. [25] The cellular automaton A = (L,S,N , f) is said to be regionally con-
trollable if for a given sd ∈ Sω, there exists a control vector sequence u = {u0, u1, ..., uT−1}
with ut ∈ U for t = 0, ..., T − 1 such that

sT = sd on ω,

where sT is the final configuration at the final time step T .

The regionally controllable cellular automaton A means that the subregion Lp is con-
trollable at the final time step T , which results in a given desired configuration on
subregion ω at the final time step T .
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The global transition function of additive CA with the control vector ut is expressed
by

st+1 = F(st) + G(ut) (2.2)

= F t+1(s0) +

t∑
τ=0

F t−τG(uτ ),

where F is the global additive transition function, G is the global control function, and
s0 ∈ SNL is the initial configuration (see the details in [25]).

In the next section, we investigate the conditions for regionally controllable of one- and
two-dimensional additive real-valued CA.

3. Main Results

One-Dimensional Additive Real-Valued CA

Let L = {c1, c2, ..., cNL}, where ci = i for i = 1, ...,NL. Consider an additive cellular
automaton A1 = (L,S,N , f), having the state space S = R, the neighbourhood N of
radius r = 1 such that N (ci) = {ci−1, ci, ci+1}, and the additive transition function f .
The transition function f is given by

st+1(ci) = f(st (N (ci))) =
∑

−1≤j≤1

ajst(ci+j), ci ∈ L,

where aj are real coefficients for −1 ≤ j ≤ 1.

The boundary cells of the lattice L are c−1 and cNL+1, where c−1 = −1 and cNL+1 =
NL + 1.

In this study, we are interested in the three boundary conditions which have most often
been often used in CA, including periodic, reflective, and fixed boundary conditions. The
global transition function F with these boundary conditions for A1 can be represented
as follows.

(i) Periodic boundary conditions: the global transition function at time step t + 1 is
expressed in term of an NL ×NL matrix M1 as

st+1 = F(st) = M1st

and

st = M t
1s0,

where M1 is an NL ×NL matrix, which is given as follows.

(M1)i,j =


a−1 if i = 1 and j = NL,
a1 if i = NL and j = 1,
a0 if j ∈ {i− 1, i, i + 1},
0 otherwise,

(3.1)
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that is,

M1 =



a0 a1 0 0 0 . . . 0 a−1

a−1 a0 a1 0 0 . . . 0 0
0 a−1 a0 a1 0 . . . 0 0
0 0 a−1 a0 a1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 . . . 0 a−1 a0 a1 0
0 0 . . . 0 0 a−1 a0 a1

a1 0 . . . 0 0 0 a−1 a0


. (3.2)

(ii) Reflective boundary conditions: the global transition function at time step t+ 1 is
updated by using configuration at time step t and an NL ×NL matrix M2.

st+1 = F(st) = M2st and

st = M t
2s0,

where M2 is defined as follows.

(M2)i,j =



a1 + a0 if i = 1 and j = 1,
a0 + a−1 if i = NL and j = NL,
a−1 if j = i− 1,
a1 if j = i + 1,
a0 if j ∈ {2, 3, ..., NL − 1} and j = i,
0 otherwise,

(3.3)

that is,

M2 =



a1 + a0 a1 0 0 0 . . . 0 0
a−1 a0 a1 0 0 . . . 0 0
0 a−1 a0 a1 0 . . . 0 0
0 0 a−1 a0 a1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 . . . 0 a−1 a0 a1 0
0 0 . . . 0 0 a−1 a0 a1

0 0 . . . 0 0 0 a−1 a0 + a−1


. (3.4)

(iii) Fixed boundary conditions: assume that the cell at the boundaries of A1 are fixed
at the state s. Then the global transition function can be defined by

st+1 = F(st) = M3st + [a−1s, 0, ..., 0, a1s]
′ and

st = M t
3s0 + (M t−1

3 + M t−2
3 + ... + M3 + I)[a−1s, 0, ..., 0, a1s]

′,

where I is the NL×NL identity matrix and M3 is an NL×NL matrix, which is given by

(M3)i,j =


a−1 if j = i− 1,
a0 if j = i,
a1 if j = i + 1,
0 otherwise.

(3.5)
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That is

M3 =



a0 a1 0 0 0 . . . 0 0
a−1 a0 a1 0 0 . . . 0 0
0 a−1 a0 a1 0 . . . 0 0
0 0 a−1 a0 a1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 . . . 0 a−1 a0 a1 0
0 0 . . . 0 0 a−1 a0 a1

0 0 . . . 0 0 0 a−1 a0


. (3.6)

Remark 3.1. The notation (·)′ represent the transpose.

For the regional controllability problem, A1 is excited at time step t in a subregion Lp
with p cells by the vector ut. In this study, we assume that the global control function is
given by

G(ut) = BVt,

where B is an NL ×NL matrix,

Vt =


Vt(1)
Vt(2)

...
Vt(NL)

 is an NL × 1 matrix such that

Vt(i) =

{
uit if i ∈ {c∗1, c∗2, ..., c∗p},
0 otherwise,

for i = 1, ..., NL.

By equation (2.2), we have

st+1 = F(st) + BVt. (3.7)

From equation (3.7), the configuration of A1 with the vector ut for these boundary con-
ditions can be calculated at the final time step T depending on the initial configuration
using the following proposition.

Proposition 3.2. The configuration at time step T of A1 can be determined as follows.
(i) Periodic boundary conditions:

sT = MT
1 s0 +

T−1∑
i=0

MT−i−1
1 BVi. (3.8)

(ii) Reflective boundary conditions:

sT = MT
2 s0 +

T−1∑
i=0

MT−i−1
2 BVi. (3.9)

(iii) Fixed boundary conditions:

sT = MT
3 s0 +

(
T∑
i=1

MT−i
3

)
[a−1s, 0, ..., 0, a1s]

′ +

T−1∑
i=0

MT−i−1
3 BVi. (3.10)
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Proof. Let s0 be the initial configuration of A1.
(i) Assume that the boundary conditions of the cellular automaton are periodic. By using
equation (3.7), it follows that

s1 = M1s0 + BV0,
s2 = M1s1 + BV1

= M1 (M1s0 + BV0) + BV1

= M2
1 s0 + M1BV0 + BV1,

s3 = M1s2 + BV2

= M1

(
M2

1 s0 + M1BV0 + BV1

)
+ BV2

= M3
1 s0 + M2

1BV0 + M1BV1 + BV2,
...

sT = MT
1 s0 + MT−1

1 BV0 + MT−2
1 BV1 + ... + BVT

= MT
1 s0 +

∑T−1
i=0 MT−i−1

1 BVi.

(ii) The idea of the proof is similar to the proof of (i).

(iii) Assume that the cell at the boundaries A1 are fixed by the state s. By using equation
(3.7), we obtain that

s1 = M3s0 + [a−1s, 0, ..., 0, a1s]
′ + BV0,

s2 = M3s1 + [a−1s, 0, ..., 0, a1s]
′ + BV1

= M3 (M3s0 + [a−1s, 0, ..., 0, a1s]
′ + BV0) + [a−1s, 0, ..., 0, a1s]

′ + BV1

= M2
3 s0 + M3[a−1s, 0, ..., 0, a1s]

′ + M3BV0 + [a−1s, 0, ..., 0, a1s]
′ + BV1

= M2
3 s0 + (M3 + I)[a−1s, 0, ..., 0, a1s]

′ + M3BV0 + BV1,

s3 = M3s2 + [a−1s, 0, ..., 0, a1s]
′ + BV2

= M3

(
M2

3 s0 + (M3 + I)[a−1s, 0, ..., 0, a1s]
′ + M3BV0 + BV1

)
+ BV2

= M3
3 s0 + (M2

3 + M3)[a−1s, 0, ..., 0, a1s]
′ + M2

3BV0 + M3BV1 + [a−1s, 0, ..., 0, a1s]
′ + BV2

= M3
3 s0 + (M2

3 + M3 + I)[a−1s, 0, ..., 0, a1s]
′ + M2

3BV0 + M3BV1 + BV2,
...

sT = MT
3 s0 + (MT−1 +MT−2 + ...+ I)[a−1s, 0, ..., 0, a1s]

′ +MT−1
3 BV0 +MT−2

3 BV1 + ...+BVT

= MT
3 s0 +

(∑T
i=1 M

T−i
3

)
[a−1s, 0, ..., 0, a1s]

′ +
∑T−1

i=0 MT−i−1
3 BVi.

Let sd be the desired state on ω. If there exist the vector Vt for t = 0, ..., T − 1 such
that sT |ω = sd, then A1 is regionally controllable.

From the above proposition, we can rewrite equation (3.8), (3.9) and (3.10) as follows.
(i) Periodic boundary conditions:

T−1∑
i=0

MT−i−1
1 BVi = sT −MT

1 s0. (3.11)

(ii) Reflective boundary conditions:

T−1∑
i=0

MT−i−1
2 BVi = sT −MT

2 s0. (3.12)
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(iii) Fixed boundary conditions:

T−1∑
i=0

MT−i−1
3 BVi = sT −MT

3 s0 −
(∑T

i=1 M
T−i
3

)
[a−1s, 0, ..., 0, a1s]

′. (3.13)

The left-hand side of equation (3.11), (3.12) and (3.13) can be represented in matrix form,

T−1∑
i=0

MT−i−1BVi = MT−1BV0 + MT−1BV1 + ... + BVT−1

=
[
MT−1B MT−2B . . . B

]


V0

V1

...
VT−1



=
[
MT−1B MT−2B . . . B

]
V , (3.14)

where M =

 M1 if periodic boundary conditions are stated,
M2 if reflective boundary conditions are stated,
M3 if the boundary cells are fixed at s.

Consequently, we can evaluate equation (3.14) in the subregion ω as


MT−1

ω1,c
∗
1
B MT−2

ω1,c
∗
1
B . . . Bω1,c

∗
1

. . . MT−1
ω1,c∗p

B MT−2
ω1,c∗p

B . . . Bω1,c∗p

MT−1
ω2,c

∗
1
B MT−2

ω2,c
∗
1
B . . . Bω2,c

∗
1

. . . MT−1
ω2,c∗p

B MT−2
ω2,c∗p

B . . . Bω2,c∗p

...
...

. . .
... . . .

...
...

. . .
...

MT−1
ωn,c∗1

B MT−2
ωn,c∗1

B . . . Bωn,c∗1
. . . MT−1

ωn,c∗p
B MT−2

ωn,c∗p
B . . . Bωn,c∗p





u
c∗1
0
...

u
c∗1
T−1

u
c∗2
0
.
..

u
c∗2
T−1

...

u
c∗p
0
...

u
c∗p
T−1



=

(
T−1∑
i=0

MT−i−1BVi

)∣∣∣∣∣
ω

, (3.15)

where M t
i,j is an element of matrix M t at row i and column j for i, j = 1, 2, ..., NL

and t = 1, 2, ..., T − 1. Equations (3.11), (3.12) and (3.13) indicate that A1 is regionally
controllable if the equation is solvable for V . From equation (3.11), (3.12) and (3.13), the
system (3.15) can be written as

AU = b, (3.16)

where
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A =


MT−1
ω1,c∗1

B MT−2
ω1,c∗1

B . . . Bω1,c∗1
. . . MT−1

ω1,c∗p
B MT−2

ω1,c∗p
B . . . Bω1,c∗p

MT−1
ω2,c∗1

B MT−2
ω2,c∗1

B . . . Bω2,c∗1
. . . MT−1

ω2,c∗p
B MT−2

ω2,c∗p
B . . . Bω2,c∗p

...
...

. . .
... . . .

...
...

. . .
...

MT−1
ωn,c∗1

B MT−2
ωn,c∗1

B . . . Bωn,c∗1
. . . MT−1

ωn,c∗p
B MT−2

ωn,c∗p
B . . . Bωn,c∗p

 ,

U =
[
u
c∗1
0 . . . u

c∗1
T−1 u

c∗2
0 . . . u

c∗2
T−1 . . . u

c∗p
0 . . . u

c∗p
T−1

]′
, and

b =


(
sT−MT

1 s0
) ∣∣∣

ω
if periodic boundary conditions are stated,(

sT−MT
2 s0

) ∣∣∣
ω

if reflective boundary conditions are stated,(
sT−MT

3 s0−
(∑T

i=1M
T−i
3

)
[a−1s, 0, ..., 0, a1s]′

) ∣∣∣
ω

if the boundary cells are fixed at s.

Thus, we have the conditions for regional controllability of A1 as expressed in the fol-
lowing theorem.

Theorem 3.3. Let A and b be the n× (pT ) and NL× 1 matrices, respectively, defined by

equation (3.16) let Ã= [A|b] be the augmented matrix of the system (3.16). Then cellular

automata A1 is regionally controllable if and only if rankA = rankÃ.

Proof. This theorem can be proved by using Theorem 2.6.3. in reference [32].

Remark 3.4. rankA denotes the rank of a matrix A.

Theorem 3.5. Let A be the matrix defined by equation (3.16). Then the cellular au-
tomaton A1 is regionally controllable if rankA = n.

Proof. The proof of Theorem 3.5 is done by using Theorem 2.9.3 in reference [33].

Theorem 3.6. Let A and b be the matrices defined by equation (3.16). Then the cellular
automaton A1 is regionally controllable with the control vector

U = A′(AA′)−1b +
(
I −A′(AA′)−1A

)
Y, (3.17)

for any pT × 1 matrix Y if and only if rankA = rank Ã and rankA < pT .

Proof. By using the result of reference [34], this proof is complete.

Theorem 3.7. Let A and b be the matrices defined by equation (3.16). Then the cellular
automaton A1 is regionally controllable with the control vector Um = A′(AA′)−1b, which

is the least-norm vector, if rankA = rank Ã and rankA < pT .

Proof. The norm ‖ · ‖2 represents the Euclidean norm. We will show that Um is the
smallest norm.
Assume that Un and Um are the solutions of equation (3.16) such that Un 6= Um.
We obtain that A ( Un −Um) = 0
Then, ( Un −Um)

′
U ′m = ( Un −Um)

′
(A′(AA′)−1b)

= (A ( Un −Um))
′
(AA′)−1b.

This implies that Un − Um and Um are perpendicular.
Hence, ‖Um + (Un − Um)‖22 = ‖Um‖22 + ‖Un − Um‖22.
Thus, ‖Un‖22 = ‖Um + (Un − Um)‖22

= ‖Um‖22 + ‖Un − Um‖22
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> ‖Um‖22.
Therefore, Um is the least-norm vector.

Remark 3.8. If Y = 0 then, by equation (3.17), U = Um.

Theorem 3.9. Let A and b be the matrices defined by equation (3.16). Then the cellular
automaton A1 is regionally controllable with a unique control vector U = A′(AA′)−1b if

and only if rankA = rank Ã and rankA < pT .

Proof. We can prove this theorem by using the result of reference [34].

Remark 3.10. By Theorem 3.3, Theorem 3.5, and Theorem 3.9, it follows that the
cellular automaton A1 is regionally controllable at time T if rankA = n and T > n

p . This

result is the same as Bel Fekih and El Jai [24].

Lemma 3.11. Let M2 and M3 be the matrices which defined in equation (3.4) and (3.6),
respectively. Let Lp = {c∗1, c∗2, ..., c∗p} and ω = {ω1, ..., ωn}. Then Mq

ωi,c∗j
= 0 for ωi ∈

{1, ..., c∗j − q − 1} ∪ {c∗j + q + 1, ..., NL}, i = 1, ..., n, j = 1, ..., p.

Proof. Suppose that M2 and M3 be the matrices which defined in equation (3.4) and
(3.6), respectively.
Assume that M = M2.
Let P (k) be the statement Mk

ωi,c∗j
= 0 for ωi ∈ {1, ..., c∗j − k − 1} ∪ {c∗j + k + 1, ..., NL},

i = 1, ..., n, j = 1, ..., p for k ∈ N.
From equation (3.3), we have

Mωi,c∗j
= 0 for ωi ∈ {1, ..., c∗j − 2} ∪ {c∗j + 2, ..., NL}, i = 1, ..., n, j = 1, ..., p.

This implies that P (1) holds.
Suppose that P (k) is true, we get

Mk
ωi,c∗j

= 0 for ωi ∈ {1, ..., c∗j− k− 1} ∪ {c∗j+ k+ 1, ..., NL}, i = 1, ..., n, j = 1, ..., p.(3.18)

Assume that ωi ∈ {1, ..., c∗j − q − 1} ∪ {c∗j + q + 1, ..., NL}.
From Mk+1 = Mk ×M , we obtain

Mk+1
ωi,c∗j

= Mk
ωi,1M1,c∗j

+ Mk
ωi,2M2,c∗j

+ ... + Mk
ωi,NLMNL,c∗j

. (3.19)

From equation (3.3), it follows that Mωi,c∗j
= 0 for ωi ∈ {1, ..., c∗j−2}∪{c∗j+2, ..., NL}, i =

1, ..., n, j = 1, ..., p.
Consequently, by equation (3.19),

Mk+1
ωi,c∗j

= Mk
ωi,c∗j−1Mc∗j−1,c∗j

+ Mk
ωi,c∗j

Mc∗j ,c
∗
j

+ Mk
ωi,c∗j +1Mc∗j +1,c∗j

. (3.20)

From equation (3.18), we obtain
Mk
ωi,c∗j

= 0 for ωi ∈ {1, ..., c∗j − k − 1} ∪ {c∗j + k + 1, ..., NL}, i = 1, ..., n, j = 1, ..., p,

Mk
ωi,c∗j−1 = 0 for ωi ∈ {1, ..., c∗j − k − 2} ∪ {c∗j + k, ..., NL}, i = 1, ..., n, j = 1, ..., p, and

Mk
ωi,c∗j +1 = 0 for ωi ∈ {1, ..., c∗j − k} ∪ {c∗j + k + 2, ..., NL}, i = 1, ..., n, j = 1, ..., p.
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Hence, Mk
ωi,c∗j

,Mk
ωi,c∗j−1,M

k
ωi,c∗j +1 = 0 for ωi ∈ {1, ..., c∗j − k} ∪ {c∗j + k + 2, ..., NL}.

From equation (3.20), we conclude that

Mk+1
ωi,c∗j

= 0 for ωi ∈ {1, ..., c∗j−k−1} ∪ {c∗j+k+3, ..., NL}, i = 1, ..., n, j = 1, ..., p.

By the induction rule, P (k + 1) holds.
Hence, in case of M = M3, the proof is done by using idea of this proof.
Therefore, Lemma 3.11 have been proven.

Theorem 3.12. Let B be the matrix defined in equation (3.7) such that

B =

{
M2 if reflective boundary conditions are stated,
M3 if the boundary cells are fixed at s,

let Lp = {c∗1, c∗2, ..., c∗p} and ω = {ω1, ω2, ω3, ..., ωn} be the subregion of L and consider
A1 to be excited on Lp. Suppose that ωi /∈ {c∗1− T, c∗1− T + 1, ..., c∗j + T− 1, c∗j + T} for
i = 1, ..., n, j = 1, ..., p.
Then, the cellular automaton A1 is regionally controllable if and only if

sd =


(
MT

2 s0
) ∣∣∣

ω
if reflective boundary conditions are stated,(

MT
3 s0 +

(∑T−1
i=0 MT−i

3

)
[a−1s, 0, ..., 0, a1s]

′
) ∣∣∣

ω
if the boundary cells are fixed at s,

where sd is the desired state on ω.

Proof. Let ωi /∈ {c∗1 − T, c∗1 − T + 1, ..., c∗j + T − 1, c∗j + T}, i = 1, ..., n.
Then ωi ∈ {1, 2, ..., c∗j − T − 1} ∪ {c∗j + T + 1, c∗j + T + 2, ..., NL}.
By Lemma 3.11, we have

MT
ωi,c∗j

= 0 for ωi ∈ {1, ..., c∗j − T − 1} ∪ {c∗j + T + 1, ..., NL}, i = 1, ..., n, j = 1, ..., p,

MT−1
ωi,c∗j

= 0 for ωi ∈ {1, ..., c∗i − T} ∪ {c∗i + T, ..., NL}, i = 1, ..., n, j = 1, ..., p,

...
Mωi,c∗j

= 0 for ωi ∈ {1, ..., c∗j − 1} ∪ {c∗j + 1, ..., NL}, i = 1, ..., n, j = 1, ..., p.

From equation (3.16), we obtain A = 0, where 0 is the zero matrix.
Consequently,

b = AU = 0 for any matrix U. (3.21)

Assume that A1 is regionally controllable. Then there exist U such that sT |ω = sd.

From equation (3.16), we have

b = 0 =

sd−
(
MT

2 s0
)∣∣∣

ω
if reflective boundary conditions are stated,

sd−
(
MT

3 s0+
(∑T

i=1M
T−i
3

)
[a−1s, 0, ..., 0, a1s]

′
)∣∣∣

ω
if the boundary cells are fixed at s.

Thus,

sd =


(
MT

2 s0
) ∣∣∣

ω
if reflective boundary conditions are stated,(

MT
3 s0 +

(∑T
i=1M

T−i
3

)
[a−1s, 0, ..., 0, a1s]

′
) ∣∣∣

ω
if the boundary cells are fixed at s.
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Conversely, assume that

sd =


(
MT

2 s0
) ∣∣∣

ω
if reflective boundary conditions are stated,(

MT
3 s0 +

(∑T
i=1M

T−i
3

)
[a−1s, 0, ..., 0, a1s]

′
) ∣∣∣

ω
if the boundary cells are fixed at s,

and sd = sT |ω. From equation (3.21), there are multiple solutions of the system AU = 0.
Therefore, A1 is regionally controllable.

Simulation Examples for One-Dimensional Additive Real-Valued CA

We consider the additive cellular automaton A1 with lattice L = {c1, c2, ..., c200}. Each
state of cell ci can take a value in the state set S = R. The local transition function f
with neighbourhood N , where N (ci) = {ci−1, ci, ci+1}, under the reflective boundary
conditions is given by

st+1(ci) = f(st(N (ci))) = 0.9st(ci−1) + 0.2st(ci)− 0.5st(ci+1).

Let Lp = {c55, c100}, T = 6 and B = M2. Suppose that s0 is the initial configuration,
which the initial states are randomly generated between -20 to 20.

We then demonstrate the simulation examples of the regional controllability problem
in order to represent the results of various excited subregion and of different cells which
the controls are active. The examination of these effects is divided into the three following
cases.

Case(i) Let ω = {c25, ..., c30, c151, ..., c155} be a given subregion of L, u = {u0, u1, ..., u5},
where ui =

[
u55
i , u100

i

]
, i = 0, 1, ..., 5, and sd = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

′
.

From equation (3.16), we obtain AU = b, where

A =



M6
25,55 . . . M25,55 M6

25,100 . . . M25,100

...
. . .

...
...

. . .
...

M6
30,55 . . . M30,55 M6

30,100 . . . M30,100

M6
151,55 . . . M151,55 M6

151,100 . . . M151,100

...
. . .

...
...

. . .
...

M6
155,55 . . . M155,55 M6

155,100 . . . M155,100


= 0

U =
[
u55

0 , . . . , u55
5 , u100

0 , . . . , u100
5

]′
,

b = sd−
(
M6s0

)∣∣∣
ω

= [−1.98, 0.86, 11.94,−1.62,−6.03, 13.25,−12.01, 1.01, 3.93, 1.07, 12.37]
′
.

This result indicates that this system has no solution. Thus, A1 is not regionally con-
trollable. This conclusion corresponds with the result of Theorem 3.12 which show that
subregion ω * {49, 50, ..., 106} and sd 6= (M5s0)|ω. Consequently, A1 is not regionally
controllable.
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Case(ii) Let ω = {c55, ..., c60, c100, ..., c105} be a given subregion of L, u = {u0,u1,...,u5},
where ui =

[
u55
i , u100

i

]
, i = 0, 1, ..., 5, and sd = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

′
.

From equation (3.16), we get AU = b, where

A =



M6
55,55 M5

55,55 . . . M55,55 M6
55,100 M5

55,100 . . . M55,100

M6
56,55 M5

56,55 . . . M56,55 M6
56,100 M5

56,100 . . . M56,100

...
...

. . .
...

...
...

. . .
...

M6
60,55 M5

60,55 . . . M60,55 M6
60,100 M5

60,100 . . . M60,100

M6
100,55 M5

100,55 . . . M100,55 M6
100,100 M5

100,100 . . . M100,100

M6
101,55 M5

101,55 . . . M101,55 M6
101,100 M5

101,100 . . . M101,100

...
...

. . .
...

...
...

. . .
...

M6
105,55 M5

105,55 . . . M105,55 M6
105,100 M5

105,100 . . . M105,100



=



−1.12 1.14 1.00 −0.53 −0.86 0.20 0 0 0 0 0 0
1.99 1.34 −0.94 −1.11 0.36 0.90 0 0 0 0 0 0
1.61 −1.39 −1.26 0.49 0.81 0 0 0 0 0 0 0
−1.85 −1.35 0.58 0.73 0 0 0 0 0 0 0 0
−1.38 0.66 0.66 0 0 0 0 0 0 0 0 0
0.71 0.59 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1.12 1.14 1.00 −0.53 −0.86 0.20
0 0 0 0 0 0 1.99 1.34 −0.94 −1.11 0.36 0.90
0 0 0 0 0 0 0.1.61 −1.39 −1.26 0.49 0.81 0
0 0 0 0 0 0 −1.85 −1.35 0.58 0.73 0 0
0 0 0 0 0 0 −1.38 0.66 0.66 0 0 0
0 0 0 0 0 0 0.71 0.59 0 0 0 0


,

U =
[
u55

0 , . . . , u55
5 , u100

0 , . . . , u100
5

]′
,

b = sd −
(
M6s0

) ∣∣∣
ω

= [35.28, 92.31, 15.11,−66.91,−23.85, 30.12, 0.98,−1.09, 2.39,−1.17,−2.14, 1.83]
′
.

According to Theorem 3.3 and 3.5, rankÃ= rankA = 12 = n, and A1 is regionally con-
trollable. Moreover, by Theorem 3.9, we have the unique control vector

U =
[
u55

0 , ..., u55
5 , u100

0 , ..., u100
5

]′
= [−112.31, 185.78,−458.00, 333.03,−353.55, 145.14,−8.47, 13.26,−34.30, 28.87,−28.29, 8.63]′ .

Consequently, u = {u0,u1,u2,u3,u4,u5} , where u0 = [−112.31,−8.47], u1 = [185.78, 13.26],
u2 = [−458.00,−34.30], u3 = [333.03, 28.87], u4 = [−353.55,−28.29], u5 = [145.14, 8.63].
The evolution of A1 is illustrated in Figure 1. The first row and last row in the dia-
gram represent the initial state and the final state, respectively. In the last row sd =
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

′
.

Case(iii) Let ω = {c56, ..., c60, c100, ..., c105}, u = {u0, u1, ..., u5}, where ui =
[
u55
i , u100

i

]
,

i = 0, 1, ..., 5 and sd = [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
′
. From equation (3.16), it follows that
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Figure 1. A space-time diagram of the evolution of the cellular automaton A1 for

case(ii) with control vector sequence u = {u0, u1, u2, u3, u4, u5} for t = 0, 1, ..., 6 on a

lattice of 1× 200 cells.

AU = b, where

A =



M6
56,55 M5

56,55 . . . M56,55 M6
56,100 M5

56,100 . . . M56,100

M6
57,55 M5

57,55 . . . M57,55 M6
57,100 M5

57,100 . . . M57,100

...
...

. . .
...

...
...

. . .
...

M6
60,55 M5

60,55 . . . M60,55 M6
60,100 M5

60,100 . . . M60,100

M6
100,55 M5

100,55 . . . M100,55 M6
100,100 M5

100,100 . . . M100,100

M6
101,55 M5

101,55 . . . M101,55 M6
101,100 M5

101,100 . . . M101,100

...
...

. . .
...

...
...

. . .
...

M6
105,55 M5

105,55 . . . M105,55 M6
105,100 M5

105,100 . . . M105,100



=



1.99 1.34 −0.94 −1.11 0.36 0.90 0 0 0 0 0 0
1.61 −1.39 −1.26 0.49 0.81 0 0 0 0 0 0 0
−1.85 −1.35 0.58 0.73 0 0 0 0 0 0 0 0
−1.38 0.66 0.66 0 0 0 0 0 0 0 0 0
0.71 0.59 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1.12 1.14 1.00 −0.53 −0.86 0.20
0 0 0 0 0 0 1.99 1.34 −0.94 −1.11 0.36 0.90
0 0 0 0 0 0 1.61 −1.39 −1.26 0.49 0.81 0
0 0 0 0 0 0 −1.85 −1.35 0.58 0.73 0 0
0 0 0 0 0 0 −1.38 0.66 0.66 0 0 0
0 0 0 0 0 0 0.71 0.59 0 0 0 0


,

U =
[
u55

0 , . . . , u55
5 , u100

0 , . . . , u100
5

]′
,

b = sd−
(
M6s0

) ∣∣∣
ω

= [97.31, 20.11,−61.91,−18.85, 35.12, 5.98, 3.91, 7.39, 3.83, 2.86, 6.83]
′
.

Since rankA = rankÃ= 11 < 12 = pT , then by Theorem 3.6, A1 is regionally controllable
with U = A′(AA′)−1b +

(
I −A′(AA′)−1A

)
Y . In this case, there are many values of the

control vector sequence u, depending on Y . In order to illustrate how to compute the
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control vector sequence u with different Y , two examples are given below.

I. If Y = [1210, 1130, 1150, 1200, 130, 1180, 120, 190, 170, 1120, 150, 1200]
′
, then

U =
[
u55

0 , ..., u55
5 , u100

0 , ..., u100
5

]′
= [40.16, 11.28, 44.32, 2.49, 32.29, 38.88,−45.31, 65.94,−156.73, 137.54,−114.70, 57.11]

′
.

Thus, we obtain u = {u0, u1, u2, u3, u4, u5} where u0 = [40.16,−45.31], u1 = [11.28, 65.94],
u2 = [44.32,−156.73], u3 = [2.49, 137.54], u4 = [32.29,−114.70], u5 = [38.88, 57.11], and
‖U‖2 = 269.38.

II. If Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
′
, then

U =
[
u55

0 , ..., u55
5 , u100

0 , ..., u100
5

]′
= [31.73, 21.40, 16.49, 22.05, 11.26, 45.77,−45.31, 65.94,−156.73, 137.54−114.70, 57.11]

′
.

This result indicates that u = {u0, u1, u2, u3, u4, u5} where u0 = [31.73,−45.31], u1 =
[21.40, 65.94], u2 = [16.49,−156.73], u3 = [22.05, 137.54], u4 = [11.26,−114.70], u5 =
[45.77, 57.11], and ‖U‖2 = 265.98. Thus, the space-time configurations of A1 with u can
be shown in Figure 2.
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Figure 2. A space-time diagram of the evolution of the cellular automaton A1 for

case (iii) with control vector sequence u = {u0, u1, u2, u3, u4, u5} for t = 0, 1, ..., 6 on
a lattice of 1× 200 cells.

Remark 3.13. The traditional methods to find rank of a matrix are Gaussian elimination
and singular value decomposition(SVD). However, SVD approach is more reliable and
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effective than Gaussian elimination [35]. There are many algorithms of the SVD method
that compute a SVD of an m×n (m ≥ n) matrix with computational time being O(mn2+
m2n) [36, 37]. In this study, we use the rank function based on SVD method in MATLAB
software to evaluate rank of matrices.

Two-Dimensional Additive Real-Valued CA

Let L = {(i, j)|i, j = 1, ..., NL} ⊆ Z2. Assume that N is the Von Neumann neighbour-
hood of radius r = 1 such that N (i, j) = {(i − 1, j), (i, j), (i + 1, j), (i, j − 1), (i, j + 1)}.
We consider the additive cellular automaton A2 = (L,S,N , f), where S = R, and the
additive transition function f .

Each cell’s state at time step t is updated by the following local transition function,

st+1(i, j) = f(st(N (i, j))) =
∑

c∗∈N (i,j)

ac∗st(c
∗).

Let a−1 = a(i−1,j), a0 = a(i,j), a1 = a(i+1,j), a
∗
−1 = a(i,j−1), and a∗1 = a(i,j+1). In order

to formulate the global transition function of A2, the columns of the configuration st are
stacked to form a vector

zt = V ec(st),

where V ec(st) ∈ S(NL)2 . We consequently proceed in the same manner as the one-
dimensional case. The global transition function of A2 with periodic, reflective and fixed
boundary conditions are given as follows.

(i) Periodic boundary conditions: the global transition function can be expressed in
terms of a matrix M1 by the following equation

zt+1 = F(zt) =M1zt and

zt =Mt
1z0,

where M1 = (I ⊗M1) + (P1 ⊗ I) (the notation ⊗ represent the Kronecker product),
I is the NL2 ×NL2 identity matrix,
M1 is defined in equation (3.2),

and P1 is constructed as follows.

P1 =



0 a∗−1 0 0 0 . . . 0 a∗1
a∗1 0 a∗−1 0 0 . . . 0 0
0 a∗1 0 a∗−1 0 . . . 0 0
0 0 a∗1 0 a∗−1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 . . . 0 a∗1 0 a∗−1 0
0 0 . . . 0 0 a∗1 0 a∗−1

a∗−1 0 . . . 0 0 0 a∗1 0


. (3.22)
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(ii) Reflexive boundary conditions: given P2 is a matrix,

P2 =



a∗−1 a∗−1 0 0 0 . . . 0 0
a∗1 0 a∗−1 0 0 . . . 0 0
0 a∗1 0 a∗−1 0 . . . 0 0
0 0 a∗1 0 a∗−1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 . . . 0 a∗1 0 a∗−1 0
0 0 . . . 0 0 a∗1 0 a∗−1

0 0 . . . 0 0 0 a∗1 a∗1


. (3.23)

The matrix M2 is expressed in association with Kronecker product structures as M2 =
(I ⊗M2) + (P2 ⊗ I) with M2 is defined in equation (3.4). In order to express the global
transition function, the vector zt+1 is in this formula,

zt+1 = F(zt) =M2zt and

zt =Mt
2z0.

(iii) Fixed boundary conditions: let the cell of the boundary of A2 be fixed at the state
s. Then, the global transition function can be written as

zt+1 = F(zt) =M3zt + K, and

zt =Mt
3z0 + (Mt−1

3 +Mt−2
3 + ... +M3 + I)K,

where I is the identity matrix,
K = [a∗1s+a−1s, a

∗
1s, ..., a

∗
1s, a

∗
1s+a1s, a

−1s, 0, ..., 0, a1s, ..., a
−1s, 0, ..., 0, a1s, a

∗
−1s+

a−1s, a
∗
1s, ..., a

∗
1s, a1s + a∗−1s]

′,
M3 = (I ⊗M3) + (P3 ⊗ I),
M3 is defined in equation (3.6),

and P3 has the following expression

P3 =



0 a∗−1 0 0 0 . . . 0 0
a∗1 0 a∗−1 0 0 . . . 0 0
0 a∗1 0 a∗−1 0 . . . 0 0
0 0 a∗1 0 a∗−1 . . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...
0 0 . . . 0 a∗1 0 a∗−1 0
0 0 . . . 0 0 a∗1 0 a∗−1

0 0 . . . 0 0 0 a∗1 0


. (3.24)

Let Lp = {c∗1, c∗2, ..., c∗p} ⊆ L and ω = {ω1, ..., ωn} ⊆ L such that c∗1 ≺ c∗2 ≺ ... ≺ c∗p and
ω1 ≺ ω2 ≺ ... ≺ ωn, where ≺ is row-major order. The regional controllability problem is
to find ut in which a subregion Lp is excited by ut to obtain the desired state sd on ω at
the final time step T , that is sd = sT |ω. In this study, the global control function is

G(ut) = BWt,
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where Wt =


Wt 1,1 Wt 1,2 . . . Wt 1,NL
Wt 2,1 Wt 2,2 . . . Wt 2,NL

...
...

. . .
...

Wt NL,1
Wt NL,2

. . . Wt NL,NL

 is a (NL ×NL) matrix,

such that

Wt i,j
=

{
u

(i,j)
t if (i, j) ∈ Lp,

0 otherwise.
for i, j = 1, ..., NL
Thus, according to equation (2.2), the transition rule of the regional controllability prob-
lem is given as

zt+1 = F(zt) + BWt. (3.25)

for i, j = 1, ..., NL,

Similar to the one dimensional case, we can find the control vector sequence u by using
following system,

AW = B, (3.26)

where

A =


MT−1

ω1,c
∗
1
B MT−2

ω1,c
∗
1
B . . . Bω1,c

∗
1
MT−1

ω1,c
∗
2
B MT−2

ω1,c
∗
2
B . . . Bω1,c

∗
2

. . . Bω1,c∗p

MT−1
ω2,c

∗
1
B MT−2

ω2,c
∗
1
B . . . Bω2,c

∗
1
MT−1

ω2,c
∗
2
B MT−2

ω2,c
∗
2
B . . . Bω2,c

∗
2

. . . Bω2,c∗p

.

..
.
..

. . .
...

...
...

. . .
...

. . .
...

MT−1
ωn,c∗1

B MT−2
ωn,c∗1

B . . . Bωn,c∗1
MT−1

ωn,c∗2
B MT−2

ωn,c∗2
B . . . Bωn,c∗2

. . . Bωn,c∗p

 ,

W =
[
u
c∗1
0 . . . u

c∗1
T u

c∗2
0 . . . u

c∗2
T . . . u

c∗p
0 . . . u

c∗p
T

]′
, and

B =


(
zT −MT

1 z0
) ∣∣∣

ω
if periodic boundary conditions are stated,(

zT −MT
2 z0
) ∣∣∣

ω
if reflective boundary conditions are stated,(

zT −MT
3 z0 +

(∑T
i=1M

T−i
3

)
K
) ∣∣∣

ω
if the boundary cells are fixed at s.

Thus, we have the result as the following theorems.

Theorem 3.14. Let A and B be the n× (pT ) and NL× 1 matrices, respectively, defined

by equation (3.26) and let Ã= [A|B] be the augmented matrix of the system (3.26). Then

cellular automaton A2 is regionally controllable if and only if rankA = rankÃ.

Theorem 3.15. Let A be the matrix defined by equation (3.26). Then the cellular au-
tomaton A2 is regionally controllable if rankA = n.

Theorem 3.16. Let A and B be the matrices defined by equation (3.26). Then the
cellular automaton A2 is regionally controllable with the control vector

U = A′(AA′)−1B +
(
I −A′(AA′)−1A

)
Y, (3.27)
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for any pT × 1 matrix Y if and only if rankA = rankÃ and rankA < pT .

Theorem 3.17. Let A and B be the matrices defined by equation (3.26). Then the
cellular automaton A2 is regionally controllable with the control vector U = A′(AA′)−1B,

which is the least-norm vector, if rankA = rankÃ and rankA < pT .

Theorem 3.18. Let A and B be the and matrices defined by equation (3.26). Then
the cellular automaton A2 is regionally controllable with a unique control vector U =
A′(AA′)−1B if and only if rankA = rankÃ and rankA < pT .

Simulation Examples for Two-Dimensional Additive Real-Valued CA

Consider the additive cellular automaton A2 with square lattice L = {(i, j)|i =
1, ..., 10,j=1, ..., 10}. Each cell’s state can take a value in R. The local transition function
f with Von Neumann neighbourhood of radius r = 1 and periodic boundary conditions is
defined by:

st+1(i, j) = f(st(N (i, j))) =
∑

c∗∈N (i,j)

st(c
∗).

Let the control be active in cells (3, 2) and (8, 7) and letM = B and T = 5. Suppose that
s0 is the initial configuration, which the initial states are randomly generated between -5
to 5, and sd is zero configuration, restrict to ω.

Let ω = {(3, 2), (4, 1), (4, 2), (4, 3), (5, 2)}, u = {u0, u1, u2, u3, u4} where u0 = [u
(3,2)
0 , u

(8,7)
0 ],

u1 = [u
(3,2)
1 , u

(8,7)
1 ], u2 = [u

(3,2)
2 , u

(8,7)
2 ], u3 = [u

(3,2)
3 , u

(8,7)
3 ], u4 = [u

(3,2)
4 , u

(8,7)
4 ], and

zd = V ec(sd) = [0, 0, 0, 0, 0]
′
.

In this case, we obtain the system AW = B, where

A =


M5

(3,2),(3,2) M4
(3,2),(3,2) . . . M(3,2),(3,2) M5

(3,2),(8,7) M4
(3,2),(8,7) . . . M(3,2),(8,7)

M5
(4,1),(3,2) M4

(4,1),(3,2) . . . M(4,1),(3,2) M5
(4,1),(8,7) M4

(4,1),(8,7) . . . M(4,1),(8,7)

M5
(4,2),(3,2) M4

(4,2),(3,2) . . . M(4,2),(3,2) M5
(4,2),(8,7) M4

(4,2),(8,7) . . . M(4,2),(8,7)

M5
(4,3),(3,2) M4

(4,3),(3,2) . . . M(4,3),(3,2) M5
(4,3),(8,7) M4

(4,3),(8,7) . . . M(4,3),(8,7)

M5
(5,2),(3,2) M4

(5,2),(3,2) . . . M(5,2),(3,2) M5
(5,2),(8,7) M4

(5,2),(8,7) . . . M(5,2),(8,7)



=


4.38 0.81 −1.38 −0.75 0.50 0 0 0 0 0
2.88 0.69 −0.75 −0.50 0 0 0 0 0 0
0.44 −2.00 −0.75 0.50 0.50 0 0 0 0 0
−3.13 −0.75 0.75 0.50 0 0 0 0 0 0
−2.19 −0.63 0.38 0.25 0 0 0 0 0 0

 ,

W =
[
u

(3,2)
0 , u

(3,2)
1 , u

(3,2)
2 , u

(3,2)
3 , u

(3,2)
4 , u

(8,7)
0 , u

(8,7)
1 , u

(8,7)
2 , u

(8,7)
3 , u

(8,7)
4

]′
,

B = zd −
(
M5

1z0

)
|ω = [−11.45,−23.61, 10.70, 14.41, 32.12]

′
.

Since rankA = rankÃ= 5 < 10 = pT , then by Theorem 3.16, A2 is regionally con-
trollable with U = A′(AA′)−1B +

(
I −A′(AA′)−1A

)
Y. In this case, it has infinitely

many control vector sequence u, depending on vector Y. Next, we give two examples for
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calculation of the control vector sequence u with different Y, which are presented below.

Case(i) Let Y = [100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
′
. Then

U =
[
u

(3,2)
0 , u

(3,2)
1 , u

(3,2)
2 , u

(3,2)
3 , u

(3,2)
4 , u

(8,7)
0 , u

(8,7)
1 , u

(8,7)
2 , u

(8,7)
3 , u

(8,7)
4

]
= [−1835.47, 4289.05,−8695.66, 8234.17,−2294.01, 100.00, 100.00, 100.00, 100.00, 100.00] .

Thus, we obtain u = {u0, u1, u2, u3, u4} , where u0 = [−1835.47,100.00], u1 = [4289.05,100.00],

u2 = [−8695.66, 100.00], u3 = [8234.17, 100.00], u4 = [−2294.01, 100.00] and ‖U‖2 = 13057.

Case(ii) Let Y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
′
, then we get

U =
[
u

(3,2)
0 , u

(3,2)
1 , u

(3,2)
2 , u

(3,2)
3 , u

(3,2)
4 , u

(8,7)
0 , u

(8,7)
1 , u

(8,7)
2 , u

(8,7)
3 , u

(8,7)
4

]
= [164.50,−511.00, 904.30,−1065.80, 256.00, 0, 0, 0, 0, 0] .

This indicates that u0 = [164.50, 0], u1 = [−511.00, 0], u2 = [904.30, 0], u3 = [−1065.80, 0],
u4 = [256.00, 0] and ‖U‖2 = 13055. The corresponding space-time dynamics of A2 using
u = {u0, u1, u2, u3, u4} are shown in Figure 3.

Figure 3. A space-time illustration of the dynamics of cellular automaton A2 for

case(ii) with control vector sequence u = {u0, u1, u2, u3, u4} for t = 0, 1, 2, 3, 4, 5 on a

lattice of 10× 10 cells.
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Remark 3.19. The rank conditions of our study can be used to determine the regional
controllability of a system that is modeled using one- or two-dimensional additive real-
valued cellular automata with periodic, fixed, and reflective boundary conditions.

4. Conclusions

The regional controllability of cellular automata deals with finding the control vector
sequence u, which results in a given desired configuration on subregion ω at the final
time step T . Our focus in this study is the regional controllability of the one- and
two-dimension additive real-valued cellular automata with periodic, fixed, and reflective
boundary conditions based on theory of linear equations. We constructed the global
transition functions of one- and two-dimensional additive real-valued cellular automata in
the matrix form to update the configuration. By applying the global transition formulae,
the sufficient conditions for regional controllability of the additive cellular automata were
derived and proved. Moreover, we obtained the formulae of the control vectors and control
vectors with least-norm vector for which the additive cellular automata are regionally
controllable. Finally, we provided some numerical examples to support the theoretical
results.
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