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1. Introduction

Schwarz method in general case can be used to solve the different some boundary value
problems in domains resolving from two or more overlapping subdomains (see [1–5]). It
was discovered by Hermann Amandus Schwartz in 1890.

The solution to the qualitative problem can be approximated by an infinite sequence
of functions that result from solving a series of evolutionary boundary value problems in
each subdomain. An extensive analysis of Schwartz’s alternative method for nonlinear
boundary value problems has been studied extensively over the past three decades (see
[6–9]). In addition, for stationary, the a priory estimate case is given in several works, see
for instance [2] which we give the weak formulation of the classical Schwarz method. In
[9], we studied the geometry convergence are given. Also, in [7], Convergence of circular
geometric has been done. These results can be found in recent books on field analysis
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methods [10, 11]. Recently, in [12, 13] Schwarz method for highly heterogeneous media
has been improved and studied.

Very few works have been studied on standardized standard error analysis of over-
lapping mismatched network methods of fixed problems in many works for example in
[11–14]. The main purpose of this paper, we’ll proceed as follows [12]. Precisely, We
improve an approach that combines the result of the geometric convergence produced by
[4, 8, 15] and the lemma which consists of estimating the standard error between con-
tinuous and discrete Schwarz iterations. Then the optimal order of their convergence
was proven using Galerkin’s standard method and error estimation on the unified rule of
linear elliptic equations [2].

Very recent, in [16], the authors presented the criterion-maximum error analysis for
a class of nonlinear elliptic problems in the context of overlapping mismatched networks
and studied optimal error estimation on a uniform base between discrete Schwarz se-
quences and the exact solution of partial differential equations, and in [17]. The au-
thors extracted post-error estimates for a generalized nested domain analysis method
with Direchlet boundary conditions on interfaces for Laplace boundary value problems,
and showed that continuous-state error estimation is based on differences in traces of
subband solutions on interfaces using the finite element method.

In this work, we are going to prove a posteriori error estimates for the following para-
bolic equation: find u ∈ L2

(
0, T ;H1

0 (Ω)
)
∩ C2

(
0, T,H−1 (Ω)

)
solution of



∂u

∂t
−∆u+ a0u = f, in Σ,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0,

u(., 0) = u0, in Ω,

(1.1)

where Σ is a set in R2 ×R defined as Σ = Ω× [0, T ] with T < +∞, where Ω is a smooth
bounded domain of R2 with boundary Γ.

The function α ∈ L∞ (Ω) is assumed to be non-negative verifies

a0 ≤ β, β > 0. (1.2)

f is a regular function satisfies

f ∈ L2
(
0, T, L2 (Ω)

)
∩C1

(
0, T,H−1 (Ω)

)
.

The symbol (., .)Ω stands for the inner product in L2 (Ω) .
The outline of the paper is as follows: In Section 2, we introduce some necessary

notations, then we prove a weak formulation of the presented problem. In Section 3, a
posteriori error estimate is proposed for the convergence of the discretized solution using
theta time scheme combined with Galerkin method on subdomains.
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2. The Continuous Problem

The problem (1.1) can be reformulated into the following continuous parabolic varia-
tional equation: find u ∈ L2

(
0, T,H1

0 (Ω)
)

solution of

(
∂u

∂t
, v

)
+ a (u, v) = (f, v) + (ϕ, v)Γ0

,

u = 0 in Γ/Γ0,

∂u

∂η
= ϕ in Γ0,

ui (x, 0) = ui0 in Ω,

where a (., .) is the bilinear form defined as:

u, v ∈ H1
0 (Ω) : a (u, u) = (∇u,∇u)− (a0u, u)

and

a0 ∈ L2 (0, T, L∞ (Ω)) ∩ C 0
(
0, T,H−1 (Ω)

)
is sufficiently smooth functions and satisfy the following condition: a0(t, x) ≥ β > 0, β
is a constant.

Let (., .)Ω be the scalar product in L2 (Ω) and (., .)Γ0
be the scalar product in L2 (Γ0) ,

where Γ0 is the part of the boundary defined as:

Γ0 =
{
x ∈ ∂Ω = Γ such that ∀ξ > 0, x+ ξ /∈ Ω̄

}
.

In [9], we have treated the overlapping domain decomposition method combined with a
finite element approximation for elliptic equation related for Laplace operator ∆, where a
Sobolev norm analysis of an overlapping Schwarz method on nonmatching grids has been
used, where we proved that the discretization on every subdomain converges in Soblev
norm. Furthermore, a result of asymptotic behavior in uniform norm has been given.

In this paper, we extend the last work for parabolic equation with mixed boundary
conditions where we prove an a posteriori error estimates for the generalized overlapping
domain decomposition method with mixed boundary conditions on the boundaries for the
discrete solutions on subdomains using theta time scheme combined with a finite element
spatial approximation, similar to that in [16], which investigated full elliptic operator with
Dirichlet boundary condition.

The outline of the paper is as follows: In section 2, we introduce some necessary
notations, definitions and fundamental published propositions in the proposed problem
then we give the variational formulation of our model. In section 3 and 4, a posteriori
error estimate for both continuous and discrete cases are proposed for the convergence of
the discrete solution using theta time scheme combined with a finite element method on
subdomains.

3. The Discrete Parabolic Equation

3.1. The Space Discretization

Let Ω be decomposed into triangles and τhdenotes the set of those elements, where
h > 0 is the mesh size. We assume that the family τh is regular and quasi-uniform. We
consider the usual basis of affine functions ϕi i = {1, ...,m (h)} defined by ϕi (Mj) = δij
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where Mj is a vertex of the considered triangulation. We introduce the following discrete
spaces Vh of finite element

V h=


v ∈

(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

such that vh |K= P1, k ∈ τh,

vh (., 0) = vh0 (initial data) in Ω,
∂vh
∂η

= ϕ in Γ0, vh = 0 in Γ\Γ0,


(3.1)

where P1 Lagrangian polynomial of degree less than or equal to 1.

We consider rh be the usual interpolation operator defined by rhv =
m(h)∑
i=1

v (Mi)ϕi (x) .

The discrete maximum principle assumption (dmp) [15]: We assume the matrices
whose coefficients a (ϕi, ϕj)are M− matrix. For convenience in all the sequels, Cwill be
a generic constant independent on h.

It can be approximated the problem (1.1) by a weakly coupled system of the following
parabolic equation v ∈ H1 (Ω)(

∂u

∂t
, v

)
Ω

+a (u, v) = (f, v)Ω + (ϕ, v)Γ0
. (3.2)

We discretize in space, i.e., we approach the space H1
0 by a space discretization of

finite dimensional Vh ⊂
(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0

(
Ω̄
)))

, we get the following semi-
discrete system of parabolic equation(

∂uh
∂t

, vh

)
Ω

+a (uh, vh) = (f, vh − uh)Ω + (ϕ, vh)Γ0
. (3.3)

3.2. The Time Discretization

Now we apply the θ-scheme in the semi-discrete approximation (3.3). Thus we have,
for any θ ∈ [0, 1] and k = 1, ..., p(

ukh − uk−1
h , vh

)
Ω

+ (∆t) a
(
uθ,kh , vh

)
= (∆t)

[(
f i, θ,k, vh − ui,θ,kh

)
Ω

+
(
ϕi,θ,k, vh − ui,θ,kh

)
Γ0

]
, (3.4)

where

uθ,kh = θukh + (1− θ)uk−1
h

f θ,k = θfk + (1− θ) fk−1 (3.5)

and

ϕ θ,k= θϕk+ (1− θ)ϕk−1. (3.6)
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By multiplying and dividing by θ and by adding

(
uk−1
h

θ∆t
, vh − uθ,kh

)
to both parties of the

inequalities (3.4), we get(
uθ,kh
θ∆t

, vh − uθ,kh

)
Ω

+a
(
uθ,kh , vh

)
=

(
f θ,k +

uθ,k−1
h

θ∆t
, vh

)
Ω

+
(
ϕθ,k, vh

)
Γ0
, vih∈ V h. (3.7)

Then, the problem (3.7) can be reformulated into the following coercive discrete system
of elliptic quasi-variational inequalities

b
(
uθ,kh , vh

)
=
(
f i, θ,k + µuk−1

h , vh
)

Ω
+
(
ϕθ,k, vh

)
Γ0
, vh, u

θ,k
h ∈ V h, (3.8)

where  bi
(
ui,θ,kh , vh

)
= µ

(
ui,θ,kh , vh

)
Ω

+ a
(
ui,θ,kh , vh

)
, vh ∈ V ih ,

µ =
1

θ∆t
=

p

θT
.

. (3.9)

3.3. The Space Continuous for the Generalized Schwarz Method

We split the domain Ω into two overlapping subdomains Ω1 and Ω2 such that
Ω1 ∩ Ω2 = Ω12, ∂Ωs ∩ Ωt = Γs, s 6= t and s, t = 1, 2. We need the spaces

Vs = H1(Ω) ∩H1(Ωs) =
{
v ∈ H1(Ωi) : v∂Ωi∩∂Ω = 0

}
and

Ws = H
U∗(F )bd
0 (Γs) = {vΓs

, v ∈ Vs and v = 0 on ∂Ωs\Γs} ,

which is a subspace of HU∗(F )bd(Γs) =
{
ψ ∈ L2(Γs) : ψ = ϕΓs

for ϕ ∈ Vs, s = 1, 2
}
,

with its norm ‖ϕ‖Ws
= inf
v∈Vsv=ϕ on Γs

‖v‖1,Ω .
We define the continuous counterparts of the continuous Schwarz sequences defined in

(3.9), respectively by uk,m+1
1 ∈ H1

0 (Ω) , m = 0, 1, 2, ..., i = 1, ...,M solution of

c
(
uθ,k,m+1

1 , v
)

=(
F θ
(
uθ,k−1,m+1

1

)
, v
)

Ω1

+ (ϕ, v)Γ0
,

uθ,k,m+1
1 = 0, on ∂Ω1 ∩ ∂Ω = ∂Ω1 − Γ1,

∂uθ,k,m+1
1

∂η1
+ α1u

θ,k,m+1
1 =

∂uθ,k,m2

∂η1
+ α1u

θ,k,m
1 on Γ1

(3.10)

where ηs is the exterior normal to Ωsand αs is a real parameter, s = 1, 2.

In the next section, our main interest is to obtain an a posteriori error estimate, we
need for stopping the iterative process as soon as the required global precision is reached.
Namely, by applying Green formula in Laplace operator with the new boundary conditions
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of generalized Schwarz alternating method, we get

(
−∆ uk,m+1

1 , v1

)
Ω1

=
(
∇uθ,k,m+1

1 ,∇ (v1)
)

Ω1

−

(
∂uθ,k,m+1

1

∂η1
, v1

)
∂Ω1−Γ1

+

(
∂uθ,k,m+1

1

∂η1
, v1

)
Γ1

=
(
∇uθ,k,m+1

1 ,∇ (v1)
)

Ω1

−

(
∂uθ,k,m+1

1

∂η1
, v1

)
Γ1

thus we can deduce(
−∆uθ,k,m+1

1 , v1

)
Ω1

=
(
∇uθ,k,m+1

1 ,∇v1

)
Ω1

−

(
∂uθ,k,m+1

1

∂η1
, v1

)
∂Ω1−Γ1

+

(
∂uθ,k,m+1

1

∂η1
, v1

)
Γ1

=
(
∇uθ,k,m+1

1 ,∇v1

)
Ω1

−

(
∂uθ,k,m+1

2

∂η2
+ α1 u

θ,k,m
2 − α1u

θ,k,m+1
1 , v1

)
Γ1

=
(
∇uθ,k,m+1

1 ,∇v1

)
Ω1

+
(
α1u

θ,k,m+1
1 , v1

)
Γ1

=
(
∇uθ,k,m+1

1 ,∇v1

)
Ω1

+
(
α1u

θ,k,m+1
1 , v1

)
Γ1

−

(
∂uθ,k,m+1

2

∂η1
+ α1u

θ,k,m
2 , v1

)
Γ1

,

thus the problem (3.10) equivalent to; find uθ,k,m+1
1 ∈ V1 such that

c(uθ,k,m+1
1 , v1) +

(
α1u

θ,k,m
1 , v1

)
Γ1

=
(
F θ(uθ,k−1,m+1

1 ), v1

)
Ω1

+ (ϕ, v)Γ0

+

(
∂uθ,k,m+1

2

∂η1
+ α1u

θ,k,m
2 , v1

)
Γ1

,∀v1 ∈ V1

(3.11)

and we have uθ,k,m+1
2 ∈ V2

c(u
θ,k,m+1
2 , v2)+

(
α2u

θ,k,m+1
2 , v2

)
Γ2

=
(
F (uθ,k−1,m+1

2 ), v2

)
Ω2

+ (ϕ, v)Γ0

+

(
∂uθ,k,m+1

1

∂η2
+ α2u

θ,k,m
1 , v2

)
Γ2

. (3.12)
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4. A Posteriori Error Estimate in Continuous Case

We define these auxiliary problems by of (3.10) with another problem in a nonover-
lapping way over Ω. These auxiliary problems are needed for analysis and not for the
computation section.

To define these auxiliary problems we need to split the domain Ω into two sets of
disjoint subdomains : (Ω1,Ω3) and (Ω2,Ω4) such that

Ω = Ω1 ∪ Ω3, with Ω1 ∩ Ω3 = ∅ Ω = Ω2 ∪ Ω4, and Ω2 ∩ Ω4 = ∅.

Let (uk,m1 , uk,m2 ) be the solution of problem (3.10), we define the couple (uk,m1 , uk,m3 )
over (Ω1,Ω3) to be the solution of the following nonoverlapping problems



uk,m+1
1 − uk−1,m+1

1

∆t
−∆ uθ,k,m+1

1 + ak0u
θ,k,m+1
1 = F θ

(
uθ,k−1,m+1

1

)
in Ω1,

uθ,k,m+1
1 = 0, on ∂Ω1 ∩ ∂Ω, k = 1, ..., n,

∂uθ,k,m+1
1

∂η1
+ αui,θ,k,m1 =

∂uθ,k,m+1
2

∂η1
+ α1u

θ,k,m
2 , on Γ1

(4.1)

and 

uk,m+1
3 − uk−1,m+1

3

∆t
−∆ uθ,k,m+1

3 + ak0u
θ,k,m+1
3 = F θ

(
uθ,k−1,m+1

3

)
in Ω3,

uθ,k,m+1
3 = 0, on ∂Ω3 ∩ ∂Ω,

∂uθ,k,m+1
3

∂η3
+ α3u

θ,k,m
3 on Γ2 =

∂uθ,k,m+1
1

∂η3
+ α3u

θ,k,m
1 , on Γ1.

(4.2)

It can be taken εθ,k,m1 = uθ,k,m+1
2 −uθ,k,m+1

3 on Γ1, the difference between the overlapping

and the nonoverlapping solutions uθ,k,m+1
2 and uθ,k,m+1

3 of the problem (3.10) and (resp.,
(4.1) and (4.2)) in Ω3. Because both overlapping and the nonoverlapping problems con-

verge see [16] that is, uθ,k,m+1
2 and uθ,k,m+1

3 tend to uθ,k3 (resp. uθ,k3 ), then εθ,k,m1 should
tend to naught when m tends to infinity in V2.

By taking

Λk,m3 =
∂uθ,k,m2

∂η1
+ α1u

θ,k,m
2 , Λk,m1 =

∂uθ,k,m1

∂η3
+ α3u

θ,k,m
1 ,

Λk,m3 =
∂uθ,k,m3

∂η1
+ α1u

θ,k,m
3 +

∂εθ,k,m1

∂η1
+ α1ε

θ,k,m
1 ,

Λk,m1 =
∂uθ,k,m1

∂η3
+ α3u

θ,k,m
1 .

(4.3)



1776 Thai J. Math. Vol. 18 (2020) /S. Boulaaras

Using Green formula, (4.1) and (4.2) can be reformulated to the following system of
elliptic variational equations

c(uθ,k,m+1
1 , v1) +

(
α1u

θ,k,m
1 , v1

)
Γ1

=
(
F θ(uθ,k−1,m+1

1 ), v1

)
Ω1

+ (ϕ, v)Γ0

+
(

Λk,m3 , v1

)
Γ1

,∀v1 ∈ V1 (4.4)

and

c(u
θ,k,m+1
3 , v3)+

(
α3u

θ,k,m+1
3 , v3

)
Γ1

=
(
F θ(uθ,k−1,m+1

3 ), v3

)
Ω3

+ (ϕ, v)Γ0

+
(

Λk,m1 , v3 − u,θ,k,m+1
3

)
Γ1

,∀v3∈ V 3.

(4.5)

On the other hand by taking

θk,m1 =
∂εθ,k,m1

∂η1
+ α1ε

θ,k,m
1 , (4.6)

we get

Λθ,k,m3 =
∂uθ,k,m3

∂η1
+ α1u

θ,k,m
3 +

∂(uθ,k,m2 − uθ,k,m3 )

∂η1
+ α1(uθ,k,m2 − uθ,k,m3 )

=
∂uθ,k,m3

∂η1
+ α1u

θ,k,m
3 +

∂εk,m1

∂η1
+ α1ε

k,m
1

=
∂uθ,k,m3

∂η1
+ α1u

θ,k,m
3 + θk,m1 . (4.7)

Using (4.6) we have

Λk,m+1
3 =

∂u,θ,k,m3

∂η1
+ α1u

iθ,k,m
3 + θk,m+1

1

= −∂u
θ,k,m
3

∂η3
+ α1u

θ,k,m
3 + θk,m+1

1

= α3u
θ,k,m
3 − ∂uθ,k,m1

∂η3
− α3u

θ,k,m
1 + α1u

θ,k,m
3 + θk,m+1

1

= (α1 + α3)uθ,k,m3 − Λk,m1 + θk,m+1
1 (4.8)

and the last equation in (4.8), we have

Λk,m+1
1 = −∂u

θ,k,m
1

∂η1
+α3u

θ,k,m
1

= α1u
θ,k,m
1 −∂u

θ,k,m
2

∂η1
−α1u

θ,k,m
2 +α3u

θ,k,m
1 +α3u

θ,k,m
1

= (α1+α3)u
θ,k,m
1 −Λk,m3 +θk,m+1

3 . (4.9)
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Lemma 4.1. Let uks = ukΩs, e
θ,k,m+1
s = uθ,k,m+1

s − uks and ηk,m+1
s = Λk,m+1

s − Λks . Then
for s, t = 1, 3, s 6= t, we have

cs(e
iθ,k,m+1
s , vs − eθ,k,m+1

s ) +
(
αse

θ,k,m+1
s , vs − ek,m+1

s

)
Γs

=
(
ηk,mt , vs − ei,k,m+1

s

)
Γs

,∀vs ∈ Vs
(4.10)

and (
ηk,m+1
s , ψi

)
Γs

=
(
(αs + αt)e

k,m+1
s , vs

)
Γs
−
(
ηk,mt , ψ

)
Γs

+
(
θk,m+1
t , ψ

)
Γs
,∀ψ ∈ Vs.

(4.11)

Proof. The proof is very similar to that in [9].

Lemma 4.2. By letting C be a generic constant which has different values at different
places, we get for s, t = 1, 3, s 6= t(

ηk,m−1
s − αsek,ms , w

)
Γ1
≤ C

∥∥ek,ms ∥∥
1,Ωs
‖w‖W1

(4.12)

and (
αsws + θk,m+1

1 , ek,m+1
s

)
Γ1

≤ C
∥∥ek,m+1
s

∥∥
1,Ωs
‖w‖W1

. (4.13)

where C is a constant independent of h and k.

Proof. The proof is very similar to that in [9].

Proposition 4.3. [9] For the sequences (uθ,k,m+1
1 , uθ,k,m+1

3 )m∈U∗(F )2115 solutions of (4.1)
and (4.2) we have the following a posteriori error estimation∥∥∥uθ,k,m+1

1 − uk1
∥∥∥

1,Ω1

+
∥∥∥uθ,k,m+1

3 − uk3
∥∥∥

3,Ω3

≤ C
∥∥∥uθk,m+1

1 − uk,m3

∥∥∥
W1

.

where C is a constant independent of h and k.

Proposition 4.4. For the sequences (uθ,k,m+1
2 , uθ,k,m+1

4 )m∈U∗(F )2115. We get the the sim-
ilar following a posteriori error estimation∥∥∥uθ,k,m+1

2 − ui,θ,k2

∥∥∥
2,Ω2

+
∥∥∥uθ,k,m+1

4 − uθ,k4

∥∥∥
4,Ω4

≤ C
∥∥∥uθ,k,m+1

2 − uθ,k,m+1
4

∥∥∥
W2

.

(4.14)

where C is a constant independent of h and k.

Proof. The proof is very similar to proof of Proposition 4.3 which proved in our published
paper on [9].

Theorem 4.5. [9] Let uθ,ks = uθ,kΩs
, s = 1, 2. For the sequences

(uθ,k,m+1
1 , uθ,k,m+1

2 )m∈U∗(F )2115 solutions of problems (3.11) and (3.12), one have the
following result∥∥∥uθ,k,m+1

1 − uθ,k1

∥∥∥
1,Ω1

+
∥∥∥uθ,k,m2 − uθ,k2

∥∥∥
2,Ω2

≤ C
(∥∥∥uθ,k,m+1

1 − uθ,k,m2

∥∥∥
W1

+
∥∥∥uθ,k,m1 − ui,θ,k,m+1

1

∥∥∥
W2

+
∥∥∥ek,m1

∥∥∥
W1

+
∥∥∥ek,m+1

2

∥∥∥
W2

)
,

where C is a constant independent of h and k.
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5. A Posteriori Error Estimate: Discrete Case

Let Ω be decomposed into triangles and τhdenote the set of all those elements h > 0 is
the mesh size. We assume that the family τh is regular and quasi-uniform. We consider
the usual basis of affine functions ϕs s = {1, ...,m (h)} defined by ϕl (Mj) = δlj , where
Mj is a vertex of the considered triangulation.

In the first step, we approach the space H1
0 by a suitable discretization space of finite

dimensional V h ⊂ H1
0 . In a second step, we discretize the problem with respect to time

using the semi-implicit scheme. Therefore, we search a sequence of elements uθ,nh ∈ V h
which approaches uh (tn, .) , tn = n∆t, k = 1, ..., n, with initial data u0

h = u0h.

Let uθ,k,m+1
h ∈ V h be the solution of the discrete problem associated with (3.10),

uθ,k,m+1
s,h = uθ,k,m+1

h,Ωs
.

We construct the sequences (uθ,k,m+1
s,h )m∈U∗(F )2115, u

θ,k,m+1
s,h ∈ V hs , (s = 1, 2) solutions

of discrete problems associated with (4.4).
We define the discrete space Kh is a suitable set given by

Kh =


uh ∈

(
L2
(
0, T,H1

0 (Ω)
)
∩ C

(
0, T,H1

0 (Ω)
))
,

uh = 0 in Γ,
∂uh
∂η

= ϕ in Γ0, uh = 0 in Γ\Γ0,

where rh is the usual interpolation operator defined by rhv =
m(h)∑
i=1

v (Mj)ϕi (x) .

In similar manner to that of the previous section, we introduce two auxiliary problems,

we define for (Ω1,Ω3)the following full-discrete problems: find uθ,k,m+1
1,h ∈ Kh solution of

c(uθ,k,m+1
1,h , ṽ1,h) +

(
α1,hu

θ,k,m+1
1,h , ṽ1,h

)
Γ1

,

=
(
F θ(uθ,k−1,m+1

1,h ), ṽ1,h

)
Ω1

+ (ϕ, v)Γ0
,

uθ,k,m+1
1,h = 0, on ∂Ω1 ∩ ∂Ω, ṽ1,h ∈ Kh

∂uθ,k,m+1
1,h

∂η1
+ α1u

θ,k,m+1
1,h =

∂u,θ,k,m2,h

∂η1
+ α1u

θ,k,m
2,h , on Γ1 − Γ0,

(5.1)

by taking the trial function ṽ1,h = v1,h − ui,θ,k,m+1
1,h in (5.1), we get

c(uθ,k,m+1
1,h , v1,h) +

(
α1,hu

θ,k,m+1
1,h , v1,h

)
Γ1

=
(
F (uθ,k−1,m+1

1,h ), v1,h

)
Ω1

+ (ϕ, v1,h)Γ0
,

uθ,k,m+1
1,h = 0, on ∂Ω1 ∩ ∂Ω, v1,h ∈ Kh,

∂uθ,k,m+1
1,h

∂η1
+ α1u

θ,k,m+1
1,h =

∂uθ,k,m2,h

∂η1
+ α1u

θ,k,m
2,h , on Γ1 − Γ0.

(5.2)

Similarly, we get
c(u,θ,k,m+1

3,h , v1,h) +
(
α3,hu

,θ,k,m+1
3,h , v1,h

)
Γ1

=
(
F θ(uθ,k−1,m+1

3,h ), v1,h

)
Ω3

+ (ϕ, v1,h)Γ0
,

uθ,k,m+1
3,h = 0, on ∂Ω3 ∩ ∂Ω,

∂uθ,k,m+1
3,h

∂η3
+ α3u

θ,k,m+1
3,h =

∂uθ,k,m1

∂η3
+ α3u

θ,k,m
1 , on Γ1 − Γ0.
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(5.3)

For (Ω2,Ω4) , are similar in (5.2) and (5.3).

Theorem 5.1. [12] The solution of the system of parabolic equations (5.2) and (5.3) is
the maximum element the set of discrete subsolutions.

We can obtain the discrete counterparts of Propositions 4.3 and 4.4 by doing almost
the same analysis as in section above (i.e., passing from continuous spaces to discrete
subspaces and from continuous sequences to discrete ones). Therefore,∥∥∥uθ,k,m+1

1,h − uθ,k1,h

∥∥∥
1,Ω1

+
∥∥∥uθ,k,m+1

3,h − uθ,k3,h

∥∥∥
1,Ω3

≤ C
∥∥∥uθ,k,m+1

1,h − uθ,k,m3,h

∥∥∥
W1

(5.4)

and ∥∥∥uθ,k,m+1
2,h − uθ,k2,h

∥∥∥
1,Ω2

+
∥∥∥uθ,k,m+1

4,h − uθ,k4,h

∥∥∥
1,Ω4

≤ C
∥∥∥uθ,k,m+1

2,h − uθ,k,m4,h

∥∥∥
W2

. (5.5)

Similar to that in the proof of Theorem 4.5 we get the following discrete estimates∥∥∥uθ,k,m+1
1,h − uθ,k1,h

∥∥∥
1,Ω1

+
∥∥∥uθ,k,m2,h − uθ,k2,h

∥∥∥
1,Ω2

≤ C (
∥∥∥uθ,k,m+1

1,h − uθ,k,m2,h

∥∥∥
W1

+
∥∥∥uθ,k,m2,h − uθ,k,m1,h

∥∥∥
W2

+
∥∥∥ek+1,m

1,h

∥∥∥
W1

+
∥∥∥ek+1,m

2,h

∥∥∥
W2

).

Next we will obtain an error estimate between the approximated solution uθ,k,m+1
s,h and

the semi discrete solution in time ui,θ,k. We introduce some necessary notations. We
denote by

εh = {E ∈ T : T ∈ τh and E /∈ ∂Ω}
and for every T ∈ τh and E ∈ εh, we define as

ωT = {T ′ ∈ τh : T ′ ∩ T 6= ∅} ,
and

ωE = {T ′ ∈ τh : T ′ ∩ E 6= ∅} .

The right hand side f is not necessarily continuous function across two neighboring
elements of τh having Eas a common side, [f ] denotes the jump of f across E and ηE
the normal vector of E.

We have the following theorem which gives an a posteriori error estimate for the discrete
GODDM.

6. An Asymptotic Behavior for the Problem

Theorem 6.1. Let uθ,ks = uθ,k |Ωs
where u is the solution of problem (1.1), the sequences(

uθ,k,m+1
1,h , uθ,k,m2,h

)
m∈U∗(F )2115

are solutions of the discrete problems (4.4) and (4.5). Then

there exists a constant C independent of h such that∥∥∥uθ,k,m+1
1,h − uθ,k1

∥∥∥
1,Ω1

+
∥∥∥u,θ,k,m2,h − uθ,k2

∥∥∥
1,Ω2

≤ C

{
2∑
i=1

∑
T∈τh

(
ηT
i

)
+ ηΓs

}
,

where

ηΓs
=
∥∥∥uθ,k,∗h,s − u

i,θ,k,∗−1
h,t

∥∥∥
Wh,s

+
∥∥∥εθ,k,∗i,h

∥∥∥
Wh,s
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and

ηTs = hT

∥∥∥∥∥ F
(
uθ,k−1,∗
h,s

)
+ uθ,k−1

h,s +

∆ uθ,k,∗h,s −
(
1 + λakh0

)
u,θ,kh,s

∥∥∥∥∥
0,T

+
∑
E∈εh

h
U∗(F )bd
E

∥∥∥∥∥
[
∂uθ,k,∗h,s

∂ηE

]∥∥∥∥∥
0,E

,

where C is a constant independent of h and k and the symbol ∗ is corresponds to m + 1
when s = 1 and to m when s = 2.

Proof. The proof is based on the technique of the residual a posteriori estimation see [16]
and Theorem 5.1. We give the main steps by the triangle inequality we have

2∑
s=1

∥∥∥uθ,ks − uθ,k,∗h,s

∥∥∥
1,Ωs

≤
2∑
s=1

∥∥∥uθ,ks − uθ,kh,s∥∥∥
1,Ωs

+

2∑
s=1

∥∥∥uθ,kh,s − u∗s,h∥∥∥
1,Ωs

. (6.1)

The second term on the right hand side of (6.1) is bounded by

2∑
s=1

2∑
i=1

∥∥∥uθ,kh,s − u∗s,h∥∥∥
1,Ωs

≤
2

C
∑
s=1

ηΓs
.

To bound the first term on the right hand side of (6.1) we use the residual equation and
apply the technique of the residual a posteriori error estimation [16], to get for vh ∈ V h

c(uθ,ks − u
θ,k
h,s, vs) = c(uθ,ks − u

θ,k
h,s, vs − vh,s)

≤
∑

T⊂Ωs

∫
T

(
F θ
(
uθ,k−1
h,s

)
+ uθ,k−1

h,s + µ∆ uθ,kh,s−(
1 + µakh0

)
uθkh,s

)
(vs − vh,s) ds

−
∑

E⊂Ωs

∫
E

[
∂uθkh,s
∂η

E

]
(vs − vh,s) ds

−
∑

E⊂Γs

∫
E

∂uθkh,s
∂η

E

(vs − vh,s) ds
′

+
∑

E⊂Ωs

∫
T

(
F θ
(
uθ,ks

)
− F θ

(
uθkh,s

))
(vs − vh,s)dσ

+

(
∂uθkh,s
∂ηs

, vs − vh,s

)
Γs

,

where F θ
(
uθ,kh,s

)
is any approximation of F θ

(
uθ,ks

)
. Therefore

2∑
s=1

c(uθ,ks − u
θ,k
h,s, vs)

≤
2∑
s=1

∑
T⊂Ωs

∥∥∥∥∥ F θ
(
uθ,kh,s

)
+ uθ,k−1

h,s + µ∆ uθ,kh,s

−
(
1 + µakh0

)
uθ,kh,s

∥∥∥∥∥
0,T

‖vs − vh,s‖0,T

+
2∑

s=1

∑
E⊂Ωs

∥∥∥∥∥
[
∂uθ,kh,s
∂η

E

]∥∥∥∥∥
0,E

‖vs − vh,s‖0,E +
2∑
s=1

∑
E⊂Γs

∥∥∥∥∥∂u
θ,k
h,s

∂η
E

∥∥∥∥∥
0,E

‖vs − vh,s‖0,E

+
2∑
s=1

∑
T⊂Ωs

c
∥∥∥uθ,ks − uθ,kh,s∥∥∥

0,T
‖vs − vh,s‖0,T +

2∑
s=1

∑
T⊂Ωs

∥∥∥∥∥∂u
θ,k
h,s

∂ηs

∥∥∥∥∥
0,T

‖vs − vh,s‖0,T ,
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(6.2)

Using the following fact∥∥∥uθ,ks − uθ,kh,s∥∥∥
1,Ωs

≤ sup
vis∈K

c(uθ,ks − u
θ,k
h,s, vs + chTs )

‖vs + chTs ‖1,Ωi

,

we get

2∑
s=1

c(ui,θ,ks − ui,θ,kh,s , vs + chi,Ts ) ≤
2∑
s=1

( ∑
T⊂Ωs

ηi,Ts

)
2∑
s=1

‖vs‖1,Ωs
. (6.3)

Finally, by combining 5.5, 6.1 and 6.2 the required result follows.

6.1. A Fixed Point Mapping Associated with Discrete Problem

We define the following mapping

Th: V h−→ H1
0 (Ωi)

W i−→ TW i= ξk,m+1
h = ∂h (F (w)) ,

(6.4)

where ξkh is the solution of the following problem

bi(ξ
k,m+1
h , vi) +

(
αi,hξ

k,m+1
h , vi,h

)
Γi

= (F (w), vh)Ωi
,

ξk,m+1
h = 0, on ∂Ωi ∩ ∂Ω,

∂ξk,m+1
h

∂η
+ αiξ

k,m+1
h =

∂ξk,mjh
∂η

+ αiξ
k,m
h , on Γi.

(6.5)

6.2. An Iterative Discrete Algorithm

Choosing u0
h = uh0 the solution of the following discrete equation

b
(
u0
h,, vh

)
=
(
g0, vh

)
, vh ∈ Vh, (6.6)

where g0 is a regular function.

Now we give the following discrete algorithm

uk,m+1
i,h = Thu

k−1,m+1
h , k = 1, ..., n, i = 1, ..., 4,

where ukh is the solution of the problem (6.5).

Proposition 6.2. Let ξkh be a solution of the problem (6.5) with the right hand side F i (wi)

and the boundary condition
∂ξk,m+1
h

∂η
+ αiξ

k,m+1
h , ξ̃khthe solution for F̃ and

∂ξ̃k,m+1
h

∂η
+
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αiξ̃
k,m+1
h . The mapping Th is a contraction in Vh with the rate of contraction

λ

β + λ
.

Therefore, Th admits a unique fixed point which coincides with the solution of the problem
(6.5).

Proof. We note that

‖W‖H1
0 (Ωi)

= ‖W‖1 .

Setting

φ =
1

β + λ
‖F (wi)− F (w̃i)‖1 .

Then, for ξk,m+1
h + φ is solution of

b
(
ξk,m+1
h + φ, (vh + φ)

)
= (F (w) + αφ, (vh + φ)) ,

ξk,m+1
h = 0, on ∂Ωi ∩ ∂Ω,

∂ξk,m+1
h

∂ηi
+ αiξ

k,m+1
h =

∂ξk,mh
∂η

+ αiξ
k,m
h , on Γ,

From assumption (1.2), we have

F (w) ≤ F (w̃) + ‖F (w)− F (w̃)‖1

≤ F (w̃) +
α

β + λ
‖F (w)− F (w̃)‖1

≤ F (w̃) + αφ.

It is very clear that if F (w) = F (w̃) then ξk,m+1
h = ξ̃k,m+1

h . Thus

ξk,m+1
h ≤ ξ̃k,m+1

h + φ.

But the role of wi and w̃i are symmetrical, thus we have the similar prof

ξ̃k,m+1
h ≤ ξk,m+1

h + φ,

yields

‖T (w)− T (w̃)‖1 ≤ 1

β + λ
‖F (wi)− F (w̃i)‖1

=
1

β + λ

∥∥f i + λwi − f i − λw̃i
∥∥

1

≤ λ

β + λ
‖wi − w̃i‖1 .
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Proposition 6.3. Under the previous hypotheses and notations, we have the following
estimate of convergent∥∥∥un,m+1

h − u∞,m+1
i,h

∥∥∥
1
≤
(

1

1 + βθ (∆t)

)n ∥∥∥u∞,m+1
h − uh0

∥∥∥
1
, k = 0, ..., n, (6.7)

where u∞,m+1 is an asymptotic continuous solution. and uh0
solution of (6.5).

Proof. We have

u∞h = Thu
i∞
h ,∥∥∥u1,m+1

h − u∞,m+1
h

∥∥∥
1

=
∥∥∥Thu0,m+1

h − Thu∞,m+1
h

∥∥∥
1
≤
(

1

1 + βθ (∆t)

)∥∥∥ui,0h − u∞,m+1
h

∥∥∥
1

and for n+ 1, we have∥∥∥un+1,m+1
h − ui,∞h

∥∥∥
1

=
∥∥∥Thun,m+1

h − Thu∞,m+1
h

∥∥∥
1
≤
(

1

1 + βθ (∆t)

)∥∥∥un,m+1
i,h − ui,∞i,h

∥∥∥
1
,

then ∥∥∥un,m+1
h − u∞i,h

∥∥∥
1
≤
(

1

1 + βθ (∆t)

)n ∥∥∥u∞,m+1
h − uh0

∥∥∥
1
.

Now we evaluate the variation in H1
0 -norm between u (T, x) , the discrete solution

calculated at the moment T = n∆t and u∞, the asymptotic continuous solution (1.1).

Theorem 6.4. Under the previous hypotheses, notations, results, we have

∥∥∥un,m+1
h − u∞

∥∥∥
1
≤ C


∥∥∥uk,m+1

1,h − uk,m2,h

∥∥∥
W1

+
∥∥∥uk,m2,h − u

k,m−1
1,h

∥∥∥
W2

+
∥∥∥en+1,m

1,h

∥∥∥
W1

+
∥∥∥en+1,m−1

2,h

∥∥∥
W2

+

(
1

1 + βθ (∆t)

)n

(6.8)

and ∥∥∥un,m+1
h − u∞

∥∥∥
1
≤ C

[
h2 |log h|+

(
1

1 + βθ (∆t)

)n]
. (6.9)

Proof. It can be easily proved this theorem by using the results of Theorem 6.1 and
Proposition 6.3.

7. Conclusion

In this paper, A posteriori error estimates for the generalized overlapping domain
decomposition method with mixed boundary boundary conditions on the interfaces for
parabolic equation with second order boundary value problems are studied using theta
time scheme combined with a Galerkin approximation. Furthermore, a result of an as-
ymptotic behavior using H1

0 -norm is presented using Benssoussan-Lions’ Algorithm. In
future, . The geometrical convergence of both the continuous and discrete corresponding
Schwarz algorithms error estimate for linear elliptic PDEs will be established and the
results of some numerical experiments will be presented to support the theory.
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