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1. Introduction

In 1949, S. Bochner [1] introduced a new tensor as an analogue of the Weyl conformal
curvature tensor in a complex local coordinate system in an m complex dimensional

Kaehlerian manifold M̃ with Riemannian metric g̃ as follows:

B(X,Y )Z = R̃(X,Y )Z − 1

2(m+ 2)
{g̃(Y, Z)Q̃(X)− g̃(Q̃X,Z)Y + g̃(Q̃Y, Z)X

−g̃(X,Z)Q̃Y + g̃(JY, Z)Q̃JX − g̃(Q̃JX,Z)JY + g̃(Q̃JY, Z)JX

−g̃(JX,Z)Q̃JY − 2g̃(JX, Q̃Y )JZ − 2g̃(JX, Y )Q̃JZ}

+
τ̃

4(m+ 1)(m+ 2)
{g̃(Y, Z)X − g̃(X,Z)Y + g̃(JY, Z)JX

−g̃(JX,Z)JY − 2g̃(JX, Y )JZ}, (1.1)

where J is the almost complex structure, R̃ is the Riemannian curvature tensor, τ̃ is the

scalar curvature, Q̃ denotes the Ricci operator defined by

g̃(Q̃X, Y ) = R̃ic(X,Y ), (1.2)

for any X,Y, Z,W ∈ Γ(TM̃). Later, many mathematicians have obtained some neces-
sary and sufficient conditions for exploring the geometric meaning of vanishing Bochner
curvature tensor in some different spaces. For example, in [2], S. Tachibana studied and
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obtained an interesting expression for the Bochner curvature tensor in Kaehler manifold.
In [3], M. Sitaramayya and in [4], H. Mori obtained a generalized Bochner curvature tensor
as a component in its curvature tensor on Kaehlerian vector spaces. In [5], F. Tricerri and
L. Vanhecke generalized this notion, that is, they defined the generalized Bochner cur-
vature tensor as a component of the element of spaces of arbitrary generalized curvature
tensors on Hermitian vector space. In [6], L. Vanhecke proved that the Ricci operator
is complex linear for an almost Hermitian manifold with vanishing Bochner curvature
tensor if and only if the manifold is a para-Kahlerian manifold. In [7], L. Vanhecke and
K. Yano showed that the Ricci operator is complex linear if and only if the Riemannian
curvature tensor satisfies the following relation:

g̃(R̃(X,Y )Z,W ) = g̃(R̃(JX, JY )Z,W ) + g̃(R̃(JX, Y )JZ,W )

+g̃(R̃(JX, Y )Z, JW ) (1.3)

for all tangent vectors X,Y, Z,W of the manifold. In [8], D. E. Blair stated that every
totally geodesic anti-invariant submanifold of a Kaehler manifold of complex dimension
> 3 with vanishing Bochner curvature tensor is conformally flat. In [9], H. M. Abood
studied the geometric meaning of vanishing the generalized Bochner curvature tensor in
nearly Kaehler manifold. In [10], Y. Euh, J.H. Park, K. Sekigawa investigated the local
structures of nearly Kaehler manifolds with vanishing Bochner curvature tensor. Bochner
Kaehler manifolds were also discussed in [11–21] etc.

Furthermore, B.-Y. Chen and F. Dillen [22] established new simple geometric charac-
terizations of Bochner-Kaehler and Einstein-Kaehler spaces of complex space forms. They

stated that the manifold M̃ is an m-complex dimensional Bochner Kaehler manifold if
and only if the following statements satisfy for every orthonormal basis {X,Y } of any
totally real plane section:

(1) the totally real bisectional curvature H̃(X,Y ) depends on the totally real plane
section Π = Span{X,Y } and not on the choice of orthonormal basis X,Y ;

(2) H̃(X) + H̃(Y ) depends only on the totally real plain section Π = Span{X,Y } and
not on the choice of orthonormal basis X,Y ;

(3) the sectional curvatures satisfy K̃(X,Y ) = K̃(X, JY );

(4) H̃(X) + H̃(Y ) = 8K̃(X,Y );

(5) H̃(X) + H̃(Y ) = 4H̃(X,Y );

(6) R̃(X, JY, JY, Y ) = R̃(X, JX, JX, Y ).

The main purpose of the present paper is to continue this work.

2. Riemannian Invariants and Submanifolds

In this section, we recall a number of Riemannian invariants which are the intrin-
sic characteristics of a Riemannian manifold and affect the behavior of the Riemannian
manifold.

Let M̃ be an m-dimensional Riemannian manifold equipped with a Riemannian metric
g̃ and inner product of the metric g̃ is denoted by 〈, 〉. Let {e1, . . . , em} be an orthonormal

basis for TpM̃ . The sectional curvature, denoted K̃ij , of the plane section spanned by ei
and ej at p ∈M is given by

K̃ij ≡ K̃M (ei, ej) ≡ R̃ (ei, ej , ej , ei) ≡ R̃ (ej , ei, ei, ej) , (2.1)
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where R̃ is the Riemannian curvature tensor.

The Ricci tensor R̃ic is defined by

R̃ic (X,Y ) =

m∑
j=1

R̃ (ej , X, Y, ej) (2.2)

for any X,Y ∈ TpM̃ .

For a fixed i ∈ {1, . . . ,m}, we have

R̃ic (ei, ei) =

m∑
j=1

R̃ (ej , ei, ei, ej) =

m∑
j=1

R̃ (ei, ej , ej , ei)

=

m∑
j 6=i

R̃ (ei, ej , ej , ei) =

m∑
j 6=i

K̃ij .

Let u be a unit vector in TpM̃ . We choose an orthonormal basis {e1, ..., em} of TpM̃ such

that e1 = u. The Ricci curvature R̃ic (u) of u is defined by

R̃ic(u) = K̃12 + K̃13 + · · ·+ K̃1m =

m∑
j=2

K̃1j . (2.3)

The scalar curvature τ̃ at p is defined by

τ̃ (p) =
∑
i<j

K̃ij . (2.4)

The Chen invariant which is certainly an intrinsic character of a (sub)manifold [23] is
given by

δ
M̃

(p) = τ̃(p)− (inf K̃)(p), (2.5)

where

(inf K̃)(p) = inf{K̃(Π) |Π is a plane section ⊂ TpM̃}.
We note that new optimal inequalities involving the Chen invariant have been recently

proved in [24–38] etc.

Let Lk be a k-plane section of TpM̃ and u be a unit vector in Lk. We choose an

orthonormal basis {e1, ..., ek} of Lk such that e1 = u. The Ricci curvature R̃icLk of Lk at
u is defined by

R̃icLk(u) = K̃12 + K̃13 + · · ·+ K̃1k. (2.6)

Here, R̃icLk(u) is called a k-Ricci curvature [39]. Thus for each fixed ei, i ∈ {1, ..., k} we
get

R̃icLk(ei) =

k∑
j 6=i

K̃ij . (2.7)

The scalar curvature τ̃
(
Lk
)

of the k-plane section Lk is given by

τ̃
(
Lk
)

=
∑

1≤i<j≤k

K̃ij . (2.8)
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We note that

τ̃
(
Lk
)

=
1

2

k∑
i=1

k∑
j 6=i

K̃ij =
1

2

n∑
i=1

R̃icLk(ei). (2.9)

Let M be an n-dimensional submanifold in a manifold M̃ equipped with a Riemannian
metric g̃. The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + σ (X,Y )

and

∇̃XN = −ANX +∇⊥XN

for all X,Y ∈ TM and N ∈ T⊥M , where ∇̃, ∇ and ∇⊥ are the Riemannian, the induced
Riemannian and the induced normal connections in M̃ , M and the normal bundle T⊥M
of M , respectively, and σ is the second fundamental form related to the shape operator
A by

g̃ (σ (X,Y ) , N) = g̃ (ANX,Y ) .

The equation of Gauss is given by

R̃(X,Y, Z,W ) = R(X,Y, Z,W )− g̃(σ(X,W ), σ(Y,Z))

+g̃(σ(X,Z), σ(Y,W )) (2.10)

for all X,Y, Z,W ∈ TM , where R̃ and R are the curvature tensors of M̃ and M , respec-
tively.

For any orthonormal basis {e1, ..., en} of the tangent space TpM , the mean curvature
vector ~(p) is given by

~(p) =
1

n

n∑
i=1

σ (ei, ei) . (2.11)

The submanifold M is called totally geodesic in M̃ if σ = 0 and it is called minimal if
~ = 0. If σ (X,Y ) = g (X,Y ) ~ for all X,Y ∈ TM , then the submanifold M is called
totally umbilical [40].

3. Bochner Kaehler Manifolds

Let M̃ be an almost Hermitian manifold with complex structure J and Riemannian
metric g̃. If the almost complex structure J satisfies

(∇̃XJ)Y + (∇̃Y J)X = 0 (3.1)

for any vector fields X and Y on TM̃ , then the manifold is called a nearly Kaehlerian
manifold, if

∇̃XJ = 0 (3.2)

for all X vectors on TM̃ , then the manifold is called a Kaehlerian manifold [41].



Bochner-Chen Ideal Submanifolds 1757

Let M̃ be an m complex dimensional Kaehlerian manifold. Then the Bochner curvature
tensor, defined in [2], is given by

B̃(X,Y, Z,W ) = R̃(X,Y, Z,W )− 〈X,W 〉L(Y, Z) + 〈Y,W 〉L(X,Z)

−〈Y,Z〉L(X,W ) + 〈X,Z〉L(Y,W )− 〈JX,W 〉M(Y, Z)

+〈JY,W 〉M(X,Z)− 〈JY, Z〉M(X,W ) + 〈JX,Z〉M(Y,W )

+2〈JZ,W 〉M(X,Y ) + 2〈JX, Y 〉M(Z,W ), (3.3)

where

L(Y,Z) =
1

2(m+ 2)
R̃ic(Y,Z)− τ̃

4(m+ 1)(m+ 2)
〈Y,Z〉, (3.4)

L(Y, Z) = L(Z, Y ), L(JY, JZ) = L(Y, Z), L(JY, Z) = −L(Y, JZ), (3.5)

M(Y, Z) = −L(Y, JZ) = −L(JZ, Y ) (3.6)

for any X,Y, Z,W ∈ TM̃ . The manifold M̃ is called a Bochner Kaehler manifold if the
tensor B vanishes identically.

Let Π = Span{X,Y }, X,Y ∈ TpM̃ , be a 2-dimensional plane section on TpM̃ . The
plane Π is called anti-holomorphic if

g̃(X,Y ) = g̃(JX, Y ) = 0, (3.7)

in other words, JΠ ⊂ Π⊥, where Π⊥ is complementary space of Π in TM̃ . Furthermore,
the plane Π is called holomorphic if JΠ ⊂ Π. In this case, the holomorphic sectional
curvature is given by

H̃(Π) = H̃(X) = R̃(X, JX, JX,X), (3.8)

where Π = Span{X, JX}, X is a unit vector on Π.

If Π and Π′ are two holomorphic plane sections in TpM̃ , then the holomorphic bisec-

tional curvature H̃(Π,Π′) is defined by

H̃(Π,Π′) = H̃(X,Y ) = R̃(X,JX, JY, Y ), (3.9)

where X is a unit vector on Π and Y is a unit vector on Π′ [42].

On the other hand, if Π⊥Π′, then H̃(X,Y ) is called totally real bisectional curvature
and

H̃(X,Y ) = K̃(X,Y ) + K̃(X, JY ) (3.10)

for a totally real plane spanned by any vector pair {X,Y } [22].

We now recall the following important facts.

Theorem 3.1. [22] Let M̃ be a complex dimensional Kaehlerian manifold of complex

dimension m > 1. Then M̃ is Bochner-Kaehler manifold if and only if every totally real

bisectional curvature H̃(X,Y ) depends only on the totally real plane section spanned by
X,Y but it does not depend on the choice of orthonormal basis X, Y .
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Theorem 3.2. [12] Let M̃ be a Kaehler manifold of complex dimension m > 1. Then M̃
is a Bochner-Kaehler manifold if and only if there is a Hermitian quadratic form Q on

M̃ such that the holomorphic sectional curvature H̃(X) of the holomorphic plane spanned

by X and JX satisfies H̃(X) = Q(X,X) for any unit tangent vector X. Furthermore, if
such Q exists, then

Q =
4

(m+ 2)
R̃ic− 2τ

(m+ 1)(m+ 2)
g̃. (3.11)

Let M̃ be an m complex dimensional Bochner Kaehler manifold and

{e1, . . . , en, Je1, . . . , Jen} be an orthonormal basis of TpM̃ at p ∈ M . Then the scalar
curvature τ̃(p) is given by

τ̃(p) =

n∑
i=1

H̃(ei) + 2
∑
i<j

H̃(ei, ej). (3.12)

If L is a complex subspace of real dimension r ≥ 2 in TpM̃ , the r-scalar curvature τ̃(L)
of L is defined as

τ̃(L) =

r∑
i=1

H̃(ei) + 2

r∑
i<j

H̃(ei, ej). (3.13)

From (3.3), (3.5), (3.6), (3.9) and (3.10), we get the following lemma:

Lemma 3.3. Let M̃ be an m complex dimensional Bochner Kaehler manifold. Then

H̃(X) = 2〈X,X〉L(X,X), (3.14)

H̃(X,Y ) = 2 (〈Y, Y 〉M(X, JX)− 〈X,X〉M(JY, Y ))

= 2 (〈Y, Y 〉L(X,X) + 〈X,X〉L(Y, Y )) , (3.15)

for a totally real plane spanned by any vector pair {X,Y }.

Taking into consider (3.4) equation and Lemma 3.3, we get the following proposition:

Proposition 3.4. Let M̃ be an m complex dimensional Bochner Kaehler manifold. Then
we have

H̃(X) =
1

(m+ 2)
R̃ic(X)− τ̃(p)

2(m+ 1)(m+ 2)
, (3.16)

H̃(X,Y ) =
1

(m+ 2)
[R̃ic(X) + R̃ic(Y )]− τ̃(p)

2(m+ 1)(m+ 2)
(3.17)

for a totally real plane spanned by any vector pair {X,Y }.

4. Submanifolds of a Bochner Kaehler Manifold

Let M be an n-dimensional submanifold of an almost Hermitian manifold (M̃, J, g̃).
For any X ∈ TpM , we decompose JX into tangential and normal parts given by

JX = PX + FX, PX ∈ TpM, FX ∈ T⊥p M ; (4.1)



Bochner-Chen Ideal Submanifolds 1759

thus PX is the tangential part of JX while FX is the normal part of JX. The squared
norm of P at p ∈M is defined to be

‖P‖2 =

n∑
i,j=1

〈Pei, ej〉2 , (4.2)

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM .

In an almost Hermitian manifold, its almost complex structure J transforms a vector
into a vector perpendicular to it. According to the behavior of the tangent bundle of a
submanifold under the action of the almost complex structure J of the ambient manifold,
there are two well-known classes of submanifolds, namely, invariant submanifolds and
anti-invariant submanifolds.

Let M be a submanifold of an almost Hermitian manifold (M̃, J, g̃). The tangent space
of the submanifold remains invariant under the action of the almost complex structure J
where as in the second case it is mapped into the normal space. Thus, M is invariant if
F = 0, and it is anti-invariant if P = 0 [41].

In 1978, A. Bejancu [43] generalized the concept of invariant and anti-invariant sub-
manifolds in to a CR-submanifold as follows.

A submanifold M of an almost Hermitian manifold is called a CR-submanifold if the
tangent bundle TM of M can be decomposed as the direct sum of a holomorphic (invari-
ant) distribution and a totally real (anti-invariant) distribution, that is,

TM = D ⊕D⊥,

where J(D) = D and J(D⊥) ⊂ TM⊥. In fact, we have D = ker (F ) and D⊥ = ker (P ).
Invariant and anti-invariant submanifolds are CR-submanifolds with D = {0} and D⊥ =
{0}, respectively.

Let M be an n-dimensional CR-submanifold of an m complex dimensional Bochner
Kaehler manifold and {e1, . . . , es, es+1, . . . , en} be an orthonormal basis of TpM such
that the invariant distribution of TpM is spanned by the vectors e1, . . . , es and the anti-
invariant distribution of TpM is spanned by the vectors es+1, . . . , en. Let us define

~D(p) =
1

s

s∑
i=1

σ(ei, ei) and ~D⊥(p) =
1

n− s

n∑
j=s+1

σ(ej , ej). (4.3)

The submanifold M is called D-minimal if ~D = 0, called D⊥-minimal if ~D⊥ = 0 for all
point of M [16].

Theorem 4.1. Let (M, g) be an n-dimensional invariant submanifold of an m complex

dimensional Bochner Kaehler manifold (M̃, g̃). For all mutually orthogonal unit vectors
X,Y ∈ TM , we have

K(X,Y ) =
3

(m+ 2)
R̃ic(JX, Y )− 3τ̃(p)

2(m+ 1)(m+ 2)
− ‖σ(X,Y )‖2

+g(σ(X,X), σ(Y, Y )) +
1

2

(
H̃(X) + H̃(Y )

)
. (4.4)

where σ is the second fundamental form is given in the Gauss and Weingarten formulas.
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Proof. Let {e1, . . . , em, Je1, . . . , Jem} be an orthonormal basis of TpM̃ . By doing straight-
forward computation in (3.3), we get

K̃(ei, ej) = L(ei, ei) + L(ej , ej) + 6〈Jei, ej〉L(Jei, ej). (4.5)

If we put (3.14) in (4.5), we have

K̃(ei, ej) =
1

2

(
H̃(ei) + H̃(ej)

)
+ 6〈Jei, ej〉L(Jei, ej), (4.6)

for i 6= j ∈ {1, . . . ,m}. Using (2.10), (3.4) and (4.6) equalities, we get

K(ei, ej) =
3

(m+ 2)
R̃ic(Jei, ej)−

3τ̃(p)

2(m+ 1)(m+ 2)
+ g̃(σ(ei, ei), σ(ej , ej))

−‖σ(ei, ej)‖2. (4.7)

Finally, putting ei = X and ej = Y , we have (4.4).

We recall now the following theorem of B.-Y. Chen in [44] for future uses.

Theorem 4.2. Let M be an n-dimensional (n ≥ 3) submanifold in a real space form R(c)
of constant sectional curvature c. Then, for each point p ∈M we have

δ(2) ≤ n2(n− 2)

2 (n− 1)
‖~(p)‖2 +

1

2
(n+ 1)(n− 2)c. (4.8)

The equality in (4.8) holds at p ∈ M if and only if there exist an orthonormal basis
{e1, . . . , en} of TpM and an orthonormal basis {en+1, . . . , em} of T⊥p M such that (a)
Π = Span {e1, e2} and (b) the forms of shape operators Aer , r = n+ 1, . . . ,m, become

Aen+1
=

 a 0 0
0 b 0
0 0 µIn−2

 , µ = a+ b, (4.9)

Aer =

 cr dr 0
dr −cr 0
0 0 0n−2

 , r ∈ {n+ 2, . . . ,m} . (4.10)

Next, we give a generalization of Theorem 4.2 in terms of the Chen’s invariant in
submanifolds of any Riemannian manifold. We note that the following theorem is a
special case of Theorem 3.1 in [45] of B.-Y. Chen:

Theorem 4.3. Let M be an n-dimensional (n ≥ 3) submanifold in an m-dimensional

Riemannian manifold M̃ . Then, for each point p ∈M and each plane section Π ⊂ TpM ,
we have

δ(2) ≤ n2(n− 2)

2 (n− 1)
‖~(p)‖2 + τ̃ (TpM)− K̃ (Π2) . (4.11)

The equality in (4.11) holds at p ∈ M if and only if there exist an orthonormal basis
{e1, . . . , en} of TpM and an orthonormal basis {en+1, . . . , em} of T⊥p M such that the
forms of shape operators Aer , r = n+ 1, . . . ,m, become as (4.9) and (4.10).

Using Theorem 4.1 and Theorem 4.3, we have the following theorem:
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Theorem 4.4. Let (M, g) be an invariant submanifold of a Bochner Kaehler manifold

(M̃, g̃) and Π = Span{e1, e2} is a 2-dimensional plane section TpM . Then we have

τ(p) ≤ 3

(m+ 2)
R̃ic(JX, Y )− 3τ̃(p)

2(m+ 1)(m+ 2)
+
n2(n− 2)

2(n− 1)
‖~(p)‖2

+ τ̃TpM (p)− K̃(Π) + 4 ‖~|Π(p)‖2 +
1

2

(
H̃(e1) + H̃(e2)

)
, (4.12)

where

‖~|Π(p)‖2 =
g̃(σ(e1, e1), σ(e2, e2))

4
. (4.13)

The equality in (4.12) holds at p ∈M if and only if the shape operators take the following
forms:

Aen+1
=

 a 0 0
0 b 0
0 0 µIn−2

 , µ = a+ b, (4.14)

Aer =

 cr 0 0
0 −cr 0
0 0 0n−2

 , r ∈ {n+ 2, . . . ,m} . (4.15)

Now we state the following definition:

Definition 4.5. Let (M, g) be an invariant submanifold of a Bochner Kaehler manifold

(M̃, g̃). We call the manifold M as a Bochner-Chen ideal invariant submanifold if the
shape operators take the form as (4.14) and (4.15).

Let (M, g) be a Bochner-Chen ideal invariant submanifold of a Bochner Kaehler man-

ifold (M̃, g̃) and Π = Span{e1, e2}. Then, from (4.14) and (4.15), we get

K(e1, e2) = K̃(e1, e2) + ab−
m∑

r=n+2

(cr)
2, (4.16)

K(e1, ej) = K̃(e1, ej) + aµ, (4.17)

K(e2, ej) = K̃(e2, ej) + bµ, (4.18)

K(ei, ej) = K̃(ei, ej) + µ2, (4.19)

Ric(e1) = R̃icTpM (e1) + ab−
m∑

r=n+2

(cr)
2 + (n− 2)aµ2, (4.20)

Ric(e2) = R̃icTpM (e2) + ab−
m∑

r=n+2

(cr)
2 + (n− 2)bµ2, (4.21)

Ric(ei) = R̃icTpM (ei) + (n− 2)µ2, (4.22)

where i, j > 2 and R̃icTpM is n-plane Ricci curvature given in (2.7).

Taking trace in (4.5), we have the following lemma:
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Lemma 4.6. Let (M, g) be an n-dimensional submanifold of a Bochner Kaehler manifold

(M̃, g̃) and {e1, . . . , en} be an orthonormal basis of TpM . Then we have

R̃icTpM (ej) = trace(L|M ) + (n− 2)L(ej , ej) + 6

n∑
i=1

〈Jei, ej〉L(ei, ej). (4.23)

Taking into consideration (4.20), (4.21) equalities and Lemma 4.6, we get the following
theorem:

Theorem 4.7. Let (M, g) be an n-dimensional Bochner-Chen ideal invariant submanifold

of Bochner Kaehler manifold (M̃, g̃). If the submanifold (M, g) is Einstein, then there
exist a plane section spanned by unit vectors X,Y such that

L(X,X)− L(Y, Y ) = b2 − a2, (4.24)

where a, b given in (4.14).

Proof. Let Π = Span{e1, e2} and the submanifold (M, g) be Einstein. Then

R̃icTpM (e1)− R̃icTpM (e2) = (n− 2)(b2 − a2). (4.25)

Furthermore, from Lemma 4.6, we have

R̃icTpM (e1)− R̃icTpM (e2) = (n− 2) (L(e1, e1)− L(e2, e2)) . (4.26)

Puting e1 = X and e2 = Y , we obtain (4.24).

Lemma 4.8. Let (M, g) be an n-dimensional anti-invariant submanifold of a Bochner

Kaehler manifold (M̃, g̃). Then we have

H̃(X,Y ) = 2K̃(X,Y ) (4.27)

where X,Y are vector fields on M such that Span{X,Y } is an anti-holomorphic plane
section.

Theorem 4.9. Let (M, g) be an n-dimensional anti-invariant submanifold of a Bochner

Kaehler manifold (M̃, g̃). Then, for each point p ∈ M and each plane section Π =
Span {e1, e2}, we have

τ (p)−K (Π) ≤ n2(n− 2)

2 (n− 1)
‖~(p)‖2 + τ̃ (TpM)− 1

2
H̃ (e1, e2) . (4.28)

The equality in (4.28) holds at p ∈ M if and only if there exist an orthonormal basis
{e1, . . . , en} of TpM and an orthonormal basis {en+1, . . . , em} of T⊥p M such that the
forms of shape operators Aer , r = n+ 1, . . . ,m, become

Aen+1
=

 a 0 0
0 b 0
0 0 (a+ b) In−2

 , (4.29)

Aer =

 cr dr 0
dr −cr 0
0 0 0n−2

 , r ∈ {n+ 2, . . . ,m} . (4.30)
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Definition 4.10. Let (M, g) be an anti invariant submanifold of a Bochner Kaehler

manifold (M̃, g̃). We call the submanifold (M, g) as a Bochner-Chen ideal anti invariant
submanifold if the shape operators take the form as (4.29) and (4.30).

Let M be an n-dimensional CR-submanifold of an m-dimensional Bochner Kaehler
manifold and {e1, . . . , es, es+1, . . . , en} be an orthonormal basis of TpM such that the
invariant distribution of TpM is spanned by the vectors e1, . . . , es and the anti-invariant
distribution of TpM is spanned by the vectors es+1, . . . , en. Let Pi : TM → Di, i ∈ {1, 2}
be be orthogonal projections. For any mutually orthogonal unit vector fields X,Y ∈ TM ,
it can be written that

X = P1X + P2X, and Y = P1Y + P2Y. (4.31)

Then we have

R̃(X,Y, Y,X) = R̃(P1X + P2X,P1Y + P2Y, P1Y + P2Y, P1X + P2X)

= R̃(P1X,P1Y, P1Y, P1X) + R̃(P1X,P2Y, P1Y, P1X)

+R̃(P1X,P1Y, P2Y, P1X) + R̃(P1X,P2Y, P1Y, P2X)

+R̃(P1X,P1Y, P1Y, P2X) + R̃(P1X,P2Y, P2Y, P1X)

+R̃(P1X,P1Y, P2Y, P2X) + R̃(P1X,P2Y, P2Y, P2X)

+R̃(P2X,P1Y, P1Y, P1X) + R̃(P2X,P1Y, P1Y, P2X)

+R̃(P2X,P1Y, P2Y, P1X) + R̃(P2X,P1Y, P2Y, P2X)

+R̃(P2X,P2Y, P1Y, P1X) + R̃(P2X,P2Y, P1Y, P2X)

+R̃(P2X,P2Y, P2Y, P1X) + R̃(P2X,P2Y, P2Y, P2X).

From (3.3), we obtain the followings:

R̃(P1X,P1Y, P1Y, P1X) = 〈P1X,P1X〉L(P1Y, P1Y ) + 〈P1Y, P1Y 〉L(P1X,P1X)

+6〈JP1X,P1Y 〉L(P1X,P1Y ),

R̃(P1X,P1Y, P2Y, P1X) = 〈P1X,P1X〉L(P1Y, P2Y ) + 3〈JP1X,P1Y 〉L(JP1X,P2Y ),

R̃(P1X,P2Y, P1Y, P2X) = 〈JP1X,P1Y 〉L(JP2X,P2Y ),

R̃(P1X,P1Y, P1Y, P2X) = 〈P1Y, P1Y 〉L(P1X,P2X) + 3〈JP1X,P1Y 〉L(JP2X,P1Y ),

R̃(P1X,P2Y, P2Y, P1X) = 〈P1X,P1X〉L(P2Y, P2Y ) + 〈P2Y, P2Y 〉L(P1X,P1X),

R̃(P1X,P1Y, P2Y, P2X) = 2〈JP1X,P1Y 〉L(JP2X,P2Y ),

R̃(P1X,P2Y, P2Y, P2X) = 〈P2Y, P2Y 〉L(P1X,P2X),

R̃(P2X,P1Y, P1Y, P2X) = 〈P2X,P2X〉L(P1Y, P1Y ) + 〈P1Y, P1Y 〉L(P2X,P2X),

R̃(P2X,P1Y, P2Y, P2X) = 〈P2X,P2X〉L(P1Y, P2Y ),

R̃(P2X,P2Y, P2Y, P2X) = 〈P2X,P2X〉L(P2Y, P2Y ) + 〈P2Y, P2Y 〉L(P2X,P2X).
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Let us choose P1X = 1√
2
eα, P1Y = 1√

2
eβ , P2X = 1√

2
eγ , P2Y = 1√

2
eω for any

α, β ∈ {1, . . . , s} and γ, ω ∈ {s+ 1, . . . , n}. Then we have

R̃(X,Y, Y,X) =
1

2
[L(eα, eα) + L(eβ , eβ)L(eγ , eγ) + L(eω, eω)

+2L(eα, eγ) + 2L(eβ , eω)] + 6〈Jeα, eβ〉 (L(Jeα, eβ)

+L(Jeα, eω) + L(Jeγ , eω) + L(Jeγ , eβ)) . (4.32)

Using the equation of Gauss, (3.4) and (4.32), we state the following lemma:

Lemma 4.11. Let M be an n-dimensional CR-submanifold of an m complex dimensional
Bochner Kaehler manifold. For any mutually orthogonal unit vectors X,Y ∈ TpM and
Π = Span{X,Y }, we have

K̃(Π) =
1

(m+ 2)

[
R̃ic(P1X) + R̃ic(P2X) + R̃ic(P1Y ) + R̃ic(P2Y )

2R̃ic(P1X,P2X) + 2R̃ic(P1Y, P2Y )
]

+
3

(m+ 2)
〈JP1X,P1Y 〉(

R̃ic(JP1X,P1Y ) + R̃ic(JP1X,P2Y ) + R̃ic(JP2X,P1Y )

+R̃ic(JP2X,P2Y )
)
− 2τ̃(p)

(m+ 1)(m+ 2)
. (4.33)

From Lemma 4.11, we get the following theorems:

Theorem 4.12. Let M be an n-dimensional CR-submanifold of an m complex dimen-
sional Bochner Kaehler manifold.

i) If Π = Span{X,Y } is a plane section in Γ(D), then

K̃(Π) =
1

(m+ 2)

[
R̃ic(X) + R̃ic(Y ) + 3〈JX, Y 〉R̃ic(X,Y )− τ̃(p)

2(m+ 1)

]
. (4.34)

ii) If Π = Span{X,Y } is a plane section in Γ(D⊥), then

K̃(Π) =
1

(m+ 2)

[
R̃ic(X) + R̃ic(Y )− τ̃(p)

2(m+ 1)(m+ 2)

]
. (4.35)

Theorem 4.13. Let M be an n-dimensional CR-submanifold of an m complex dimen-
sional Bochner Kaehler manifold. Then, for each point p ∈ M and each plane section
Π = Span {X,Y } of TM , we have

τ(p)−K(Π) ≤ n2(n− 2)

2(n− 1)
‖~(p)‖2 +

(
1 +

1

(m+ 1)(m+ 2)

)
τ̃(p)

− 1

(m+ 2)

[
R̃ic(P1X) + R̃ic(P2X) + R̃ic(P1Y ) + R̃ic(P2Y )

+ 2R̃ic(P1X,P2X) + 2R̃ic(P1Y, P2Y )
]
− 3

(m+ 2)
〈JP1X,P1Y 〉(

R̃ic(JP1X,P1Y ) + R̃ic(JP1X,P2Y ) + R̃ic(JP2X,P1Y )

+R̃ic(JP2X,P2Y )
)
. (4.36)
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The equality in (4.36) holds at p ∈ M if and only if the forms of shape operators Aer ,
r = n+ 1, . . . ,m, become as (4.9) and (4.10).
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