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Abstract In this paper, an algorithm called inertial P-iteration method is proposed for finding a common

fixed point of a family of nonexpansive mappings and proved under some suitable conditions that the

sequence generated by the proposed method weakly converges to a common fixed point of a family of

nonexpansive mappings. In application, our method can be applied for finding zero point of sum of two

monotone operators and minizer of sum of two convex functions.
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1. Introduction

Let H be a Hilbert space together with norm ‖·‖ and X be a nonempty subset of
H. A mapping T : X → X is said to have a fixed point if there exists a point x̄ ∈ X
such that x̄ = T x̄. The fixed point problem is mathematical problem to find a fixed
point of specific mapping, e.g. contraction, L-Lipschitz, nonexpansive mapping. The
classical theorem in fixed point theory is Banach contraction theorem which guarantee
existence and uniqueness fixed point of a contraction mapping in complete metric space.
In 1965, the existence of a fixed point of nonexpansive mapping on Hilbert space was
proved by Browder theorem. In this work, we focus on approximation problem of a fixed
point of nonexpansive mapping on Hilbert space. In order to find a fixed point x̄, many
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researchers proposed various methods for finding the approximate solution. One of most
popular iterative methods, called Picard iteration method, was defined by:

xn+1 = Txn, (1.1)

where initial point x1 is chosen randomly. In addition, other iterative methods for im-
proving picard iteration method have been studied extensively such as follows.

Mann iteration method [1] is defined by:

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.2)

where initial point x1 is chosen randomly and {αn} is a sequence in [0, 1]. In case of
αn = 1 for all n ≥ 1, this iteration method reduces to the Picard iteration method.

Ishikawa iteration method [2] is defined by:

{
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, n ≥ 1,
(1.3)

where initial point x1 is chosen randomly and {αn}, {βn} are sequences in [0, 1]. This
iteration method reduces to the Mann iteration method when βn = 0 for all n ≥ 1.

S-iteration method [3] is defined by:

{
yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, n ≥ 1,
(1.4)

where initial point x1 is chosen randomly and {αn}, {βn} are sequences in [0, 1]. In 2017,
Agarwal, O’Regan and Sahu proved that this iteration method is independent of Mann
and Ishikawa iteration method and converges faster than both of them.

SP-iteration method [4] is defined by:


zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)yn + αnTyn, n ≥ 1,

(1.5)

where initial point x1 is chosen randomly and {αn}, {βn}, {γn} are sequences in [0, 1].
In 2011, Phuengrattana and Suantai proved convergence theorem of the SP-iteration of
continuous function on arbitary interval and compared the convergence speed which ob-
tained the results that SP-iteration method is faster than Mann, Ishikawa, Noor iteration
methods. In 2015, P-iteration method was introduced and studied by Sainuan.

P-iteration method [5] is defined by:


zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)Tzn + αnTyn, n ≥ 1,

(1.6)
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where initial point x1 is chosen randomly and {αn}, {βn}, {γn} are sequences in [0, 1].
Sainuan proved the convergence theorem of P-iteration method and compared the rate of
convergence between P-iteration ans S-iteration. However, the methods mentioned above
have a badly convergence rate. Thus, to speed up, the technique for improving speed and
giving a better convergence behavior was introduced firstly by [6] by adding an inertial
step. Motivated by those works mentioned above, the idea of P-iteration method will be
combined with inertial step. Thus, a novel algorithm called inertial P-iteration method is
constructed and defined by:


un = xn + θn(xn − xn−1)

zn = (1− γn)un + γnTun,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)Tzn + αnTyn, n ≥ 1,

(1.7)

where initial point x0, x1 is chosen randomly and {αn}, {βn}, {γn} and {θn} are sequences
in [0, 1]. This paper is organized as follows: The basic concept and lemmas will be ginven
in Section 2. The convergence theorem of our method will be proved in Section 3. Finally,
in Section 4, we apply the proposed method for zero point of monotone operators problem
and minimization problem.

2. Preliminaries

Let X be a nonempty subset of a Hilbert space H. A mapping T : X → X is said to
be L-Lipschtiz operator if there exists L > 0 such that

‖Tx− Ty‖ ≤ L ‖x− y‖
for any x, y ∈ X. An L-Lipschtiz operator is called nonexpansive operator if L = 1. A
point x is said to be fixed point of T if x = Tx. The set of all fixed point of T is denoted
by F (T ). Let {Tn} be a family of nonexpansive mappings. A point x is called a common
fixed point of Tn if x ∈

⋂∞
n=1 F (Tn).

Definition 2.1. [7, 8] Let {Tn} and T be families of nonexpansive operators such that
∅ 6= F (T ) ⊂

⋂∞
n=1 F (Tn). Then, {Tn} is said to satisfy NST-condition(I) with T if for

each bounded sequence {xn},
lim
n→∞

‖xn − Tnxn‖ = 0 implies lim
n→∞

‖xn − Txn‖ = 0 for all T ∈ T .

If T is singleton, i.e. T = {T}, then {Tn} is said to satisfy NST-condition(I) with T .

Lemma 2.2. [9] Let {an}, {bn} and {δn} be sequences of nonnegative numbers such that

an+1 ≤ (1 + δn)an + bn,∀n ∈ N.
If
∑∞
n=1 δn <∞ and

∑∞
n=1 bn <∞, then limn→∞ an exists.

Lemma 2.3 (Opial lemma). Let H be a Hilbert space and {xn} be a sequence in H such
that there exists a nonempty subset Ω of H satisfying the following conditions:

• for all y ∈ Ω, limn→∞ ‖xn − y‖ exists,
• Any weak-cluster point of {xn} belongs to Ω.

Then, there exists x̄ ∈ Ω such that xn ⇀ x̄.



1746 Thai J. Math. Vol. 18 (2020) /A. Kaewkhao et al.

3. Main Results

Let H be a Hilbert space together with norm ‖·‖ and inner product 〈·|·〉 and {Tn}
be a family of nonexpansive mappings on H. In this section, we generalize the inertail
P-iteration method (1.7) as follows.

un = xn + θn(xn − xn−1)

zn = (1− γn)un + γnTnun,

yn = (1− βn)zn + βnTnzn,

xn+1 = (1− αn)Tnzn + αnTnyn, n ≥ 1,

(3.1)

where initial point x0, x1 is chosen randomly and {αn}, {βn}, {γn} and {θn} are sequences
in [0, 1].

Theorem 3.1. Let a family of nonexpansive mappings {Tn} on a Hilbert space H and
a nonexpansive mapping T on H be such that {Tn} satisfies NST-condition(I) with T .
Suppose that ∅ 6= F (T ) ⊂

⋂∞
n=1 F (Tn). Let {xn} be a sequence in H generated by (3.1)

such that

(a). x0, x1 are choosen randomly,
(b).

∑∞
n=1 θn ‖xn − xn−1‖ <∞,

(c). 0 < p < βn < q < 1,

Then, {xn} converges weakly to a point in F (T ).

Proof. Let x∗ ∈ F (T ) and let {xn} be a sequence in H generated by (3.1). Then,

‖un − x∗‖ ≤ ‖xn − x∗‖+ θn ‖xn − xn−1‖

and

‖zn − x∗‖ ≤ (1− γn) ‖un − x∗‖+ γn ‖Tnun − x∗‖ ≤ ‖un − x∗‖
‖yn − x∗‖ ≤ (1− βn) ‖zn − x∗‖+ βn ‖Tnzn − x∗‖ ≤ ‖zn − x∗‖ .

Thus,

‖xn+1 − x∗‖ ≤ (1− αn) ‖Tnzn − x∗‖+ αn ‖Tnyn − x∗‖
≤ (1− αn) ‖un − x∗‖+ αn ‖un − x∗‖
≤ ‖un − x∗‖
≤ ‖xn − x∗‖+ θn ‖xn − xn−1‖ .

Since
∑∞
n=1 θn ‖xn − xn−1‖ <∞, by using Lemma 2.2, we obtain that limn→∞ ‖xn − x∗‖

exists. Thus, {xn} is bounded which implies that {un} is also bounded. From (3.1), we
have

‖un − x∗‖2 = ‖xn − x∗ + θn(xn − xn−1)‖2

= ‖xn − x∗‖2 + θ2n ‖xn − xn−1‖
2

+ 2θn 〈xn − x∗|xn − xn−1〉

≤ ‖xn − x∗‖2 + θ2n ‖xn − xn−1‖
2

+ 2θn ‖xn − x∗‖ ‖xn − xn−1‖ .
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Then,

‖zn − x∗‖2 = ‖(1− γn)(un − x∗) + γn(Tnun − x∗)‖2

= (1− γn) ‖un − x∗‖2 + γn ‖Tnun − x∗‖2 − γn(1− γn) ‖un − Tnun‖2

≤ ‖un − x∗‖2 − γn(1− γn) ‖un − Tnun‖2 ,

and

‖yn − x∗‖2 = ‖(1− βn)(zn − x∗) + βn(Tnzn − x∗)‖2

= (1− βn) ‖zn − x∗‖2 + βn ‖Tnzn − x∗‖2 − βn(1− βn) ‖zn − Tnzn‖2

≤ ‖zn − x∗‖2 − βn(1− βn) ‖zn − Tnzn‖2

≤ ‖zn − x∗‖2 .

Thus,

‖xn+1 − x∗‖2 = (1− αn) ‖Tnzn − x∗‖2 + αn ‖Tnyn − x∗‖2

− αn(1− αn) ‖Tnzn − Tnyn‖2

≤ (1− αn) ‖Tnzn − x∗‖2 + αn ‖Tnyn − x∗‖2

≤ ‖zn − x∗‖2

≤ ‖xn − x∗‖2 + θ2n ‖xn − xn−1‖
2

+ 2θn ‖xn − x∗‖ ‖xn − xn−1‖

− βn(1− βn) ‖un − Tnun‖2 .

Since limn→∞ ‖xn − x∗‖ exists, it follows that ‖un − Tnun‖ → 0. Since {un} is bounded
and {Tn} satisfies NST-conditon(I) with T , we get ‖un − Tun‖ → 0. From

‖xn − Txn‖ ≤ ‖xn − un‖+ ‖un − Tun‖+ ‖Tun − Txn‖
≤ 2 ‖xn − un‖+ ‖un − Tun‖
≤ 2θn ‖xn − xn−1‖+ ‖un − Tun‖ ,

we obtain ‖xn − Txn‖ → 0. Let w be a weak cluster point of {xn}. Then w ∈ F (T ) by
demicloseness of I − T at 0. Hence, by using Opial lemma, we conclude that there exists
x̄ ∈ F (T ) such that xn ⇀ x̄.

4. Applications

In this section, we apply our result to find a zero point of sum of two monotone
operators and minimizer of sum of two convex functions.

4.1. Zero Point of Sum of Two Monotone Operators

Let H be a Hilbert space. A mapping A : H → 2H is called monotone operator if

〈x− y|u− v〉 ≥ 0,

for any (x, u), (y, v) ∈ graA, where graA = {(x, y) ∈ H×H : x ∈ H, y ∈ Ax} is the graph
of A. A monotone operator A is called maximal monotone operator if the graph graA is
not properly contained in the graph of any other monotone operator.
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Let A : H → 2H be a maximal monotone operator and c > 0. The resolvent operator
of A is defined by JA = (I + A)−1 where I is an identity operator. The zero of sum of
two monotone operators problem is to find a point x ∈ H such that

0 ∈ Ax+Bx (4.1)

where A : H → 2H , B : H → 2H are two monotone operators. The set of all zero point of
A+B is denoted by zer(A+B) = {x ∈ H : 0 ∈ Ax+Bx}.

Let A : H → 2H be maximal monotone operator and B : H → H be an L-Lipschitz
operator. By Proposition 26.1(iv)(a) in [10], we see that a point x̄ ∈ H is a solution of
(4.1) if and only if x̄ ∈ F (T ) where T = JcA(I − cB) and c ∈ (0, 2

L ).

Proposition 4.1. Let H be a Hilbert space and let A : H → 2H be a maximal monotone
operator and B : H → H be an L-Lipschitz operator. Let α > 0 and x, p ∈ H. Setting
Ãα = 1

α (I − JαA(I − αB)). Then, the following hold:

(i) Ãαx ∈ AJαA(I − αB)x+Bx.

(ii) p ∈ Ãαx if and only if (x− αp, p−Bx) ∈ graA.

(iii)
∥∥∥Ãαx∥∥∥ ≤ ‖Ax+Bx‖ where ‖Ax+Bx‖ := inf{‖z‖ : z ∈ Ax+Bx}.

Proof.

(i) Let u = Ãαx. Then x − αu = JαA(I − αB)x which implies that u − Bx ∈
A(x− αu). Thus, Ãαx ∈ AJαA(I − αB)x+Bx.

(ii) By using definition of Ãα and JαA, we have

p = Ãαx⇔ x− αp = JαA(I − αB)x⇔ (I − αB)x ∈ (I + αA)(x− αp)
⇔ p−Bx ∈ A(x− αp)⇔ (x− αp, p−Bx) ∈ graA.

(iii) Let w = Ãαx and u ∈ Ax+Bx. Then, by monotonic of A, we have

〈u− w|w〉 =
1

α
〈(u−Bx)− (w −Bx)|x− (x− αw)〉 ≥ 0.

By CauchySchwarz inequality, we obtain that ‖w‖ ≤ ‖u‖. Thus,∥∥∥Ãαx∥∥∥ = inf{‖z‖ : z ∈ Ãαx} ≤ inf{‖z‖ : z ∈ Ax+Bx} = ‖Ax+Bx‖ .

Lemma 4.2. Let H be a Hilbert space. Let A : H → 2H be a maximal monotone operator
and B : H → H be an L-Lipschitz operator. Let α, β > 0. Then,

1

β
‖JαA(I − αB)x− JβA(I − βB)JαA(I − αB)x‖ ≤ 1 + αL

α
‖x− JαA(I − αB)x‖ ,

for every x ∈ H.
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Proof. Let x ∈ H. Set Ãα = 1
α (I − JαA(I − αB)). Then, by using Proposition 4.1, we

obtain

1

β
‖JαA(I − αB)x− JβA(I − βB)JαA(I − αB)x‖

=
∥∥∥ÃβJαA(I − αB)x

∥∥∥
≤ ‖AJαA(I − αB)x+BJαA(I − αB)x‖
≤ ‖AJαA(I − αB)x+Bx‖+ ‖Bx−BJαA(I − αB)x‖

≤
∥∥∥Ãαx∥∥∥+ L ‖x− JαA(I − αB)x‖

=
1 + αL

α
‖x− JαA(I − αB)x‖ .

Theorem 4.3. Let H be a Hilbert space. Let A : H → 2H be a maximal monotone
operator and B : H → H be an L-Lipschitz operator. Let c ∈ (0, 2

L ) and {cn} ⊂ (a, 2
L )

for some a > 0. Define Tn = JcnA(I − cnB). Then, {Tn} satisfies the NST-condition(I)
with Tc where Tc = JcA(I − cB).

Proof. Let {xn} be a bounded sequence in H. Suppose that ‖xn − Tnxn‖ → 0. Since Tn
and Tc are nonexpansive for all n ∈ N, see Theorem 26.14 in [10] for detail, by Lemma
4.2, we obtain that

‖xn − Tcxn‖ = ‖xn − JcA(I − cB)xn‖
≤ ‖xn − JcnA(I − cnB)xn‖
+ ‖JcnA(I − cnB)xn − JcA(I − cB)JcnA(I − cnB)xn‖
+ ‖JcA(I − cB)JcnA(I − cnB)xn − JcA(I − cB)xn‖

≤ 2 ‖xn − JcnA(I − cnB)xn‖+
c(1 + cnL)

cn
‖xn − JcnA(I − cnB)xn‖

= (2 +
c(1 + cnL)

cn
) ‖xn − Tnxn‖

≤ (2 +
3c

a
) ‖xn − Tnxn‖ → 0

Thus, {Tn} satisfies the NST-condition(I) with Tc.

By Theorem 4.3, we can apply our method for finding a solution of (4.1) as follows.

Corollary 4.4. Let H be a Hilbert space. Let A : H → 2H be maximal monotone operator
and B : H → H be an L-Lipschitz operator. Let c ∈ (0, 2

L ) and {cn} ⊂ (a, 2
L ) for some

a > 0. Define Tn = JcnA(I − cnB) and T = JcA(I − cB). Suppose that zer(A+B) 6= ∅.
Let {xn} be a sequence in H generated by (3.1). Then, {xn} converges weakly to a point
in zer(A+B).

4.2. Minimization of Sum of Two Convex Functions

Let f : H → R be a smooth convex function with gradient having Lipschtiz constant L
and g : H → R be a convex smooth (or possible non-smooth) function. The minimization
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problem of f + g is to find a point x ∈ H such that

f(x) + g(x) = min
y∈H

f(y) + g(y). (4.2)

This problem can be apply to image processing problems, machine learning problems etc.
Note that argmin(f+g) is the set of all solutions of (4.2). As in [11], x̄ is a solution of (4.2)
if and only if x is a fixed point of forward-backward operator, i.e. x̄ = Jc∂g(I − c∇f)(x̄)
where c > 0. The following corollary obtained by setting A = ∂g and B = ∇f as Corollary
4.4.

Corollary 4.5. Let H be a Hilbert space. Let g ∈ Γ0(H) and f : H → R be convex and
differentiable with an L-Lipschitz continuous gradient, let c ∈ (0, 2

L ) and {cn} ⊂ (a, 2
L )

for some a > 0. Define Tn = Jcn∂g(I − cn∇f) and T = Jc∂g(I − c∇f). Suppose that
argmin(f+g) 6= ∅. Let {xn} be a sequence in H generated by (3.1). Then, {xn} converges
weakly to a point in argmin(f + g).
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