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1 Introduction

Let C be a nonempty closed convex subset of a real Banach space X and let
T : C → C be a mapping. Then T is said to be a Lipschitzian mapping if, for
each n ≥ 1, there exists a constant kn > 0 such that ‖Tnx−Tny‖ ≤ kn‖x−y‖ for
all x, y ∈ C (we may assume that all kn ≥ 1). A Lipschitzian mapping T is called
uniformly k-Lipschitzian if kn = k for all n ≥ 1, nonexpansive if kn = 1 for all
n ≥ 1, and asymptotically nonexpansive if limn→∞ kn = 1, respectively. The class
of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [12]
as a generalization of the class of nonexpansive mappings. They proved that if C
is a nonempty bounded closed convex subset of a uniformly convex Banach space
X, then every asymptotically nonexpanisve mapping T : C → C has a fixed point.

Recently, Alber et al. [2] introduced the wider class of total asymptotically
nonexpansive mappings to unify various definitions of classes of nonlinear map-
pings associated with the class of asymptotically nonexpansive mappings; see also
Definition 1 of [9]. They say that a mapping T : C → C is said to be total as-
ymptotically nonexpansive [2] if there exists nonnegative real sequences {µn} and
{ηn}, n ≥ 1 with µn, ηn → 0 as n →∞ and strictly increasing continuous function
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τ : R+ → R+ with ϕ(0) = 0 such that

‖Tnx− Tny‖ ≤ ‖x− y‖+ µn τ(‖x− y‖) + ηn, (1.1)

for all x, y ∈ C and n ≥ 1.
A point x ∈ C is a fixed point of T provided Tx = x. Denote by F (T ) the set

of fixed points of T ; that is, F (T ) = {x ∈ C : Tx = x}. A point p in C is said to be
an asymptotic fixed point of T [28] if C contains a sequence {xn} which converges
weakly to p such that the strong limn→∞(xn − Txn) = 0. The set of asymptotic
fixed points of T will be denoted by F̂ (T ). We say that a sequence {xn} in C is
said to be an approximating fixed point sequence for T if ‖xn − Txn‖ → 0.

Let X be a smooth Banach space and let X∗ be the dual of X. The function
φ : X ×X → R+ := [0,∞) is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2

for all x, y ∈ X, where J is the normalized duality mapping from X to X∗. We say
that a mapping T : C → C is relatively asymptotically nonexpansive [18] if F (T )
is nonempty, F̂ (T ) = F (T ) and, for each n ≥ 1 there exists a constant kn > 0
such that φ(p, Tnx) ≤ k2

nφ(p, x) for x ∈ C and p ∈ F (T ), where limn→∞ kn = 1.
In particular, T is called relatively nonexpansive [22] if kn = 1 for all n; see also
[3,4,5]. Further, we say that T : C → C is a mappings of relatively asymptotically
nonexpansive in the intermediate sense if F (T ) is nonempty, F̂ (T ) = F (T ) and
limn→∞ cn = 0, where cn = supx∈C cn(x) and

cn(x) = sup
p∈F (T )

[φ(p, Tnx)− φ(p, x)] ∨ 0. (1.2)

In this case, (1.2) reduces to

φ(p, Tnx) ≤ φ(p, x) + cn, (1.3)

for all x ∈ C, p ∈ F (T ), and n ≥ 1. Finally, motivated by the class of total
asymptotically nonexpansive mappings due to Alber et al. [2], we also say that T
is total relatively asymptotically nonexpansive if F (T ) is nonempty, F̂ (T ) = F (T ),
and there exists nonnegative real sequences {µn} and {ηn}, n ≥ 1 with µn, ηn → 0
as n →∞ and strictly increasing continuous function τ : R+ → R+ with ϕ(0) = 0
such that

φ(p, Tnx) ≤ φ(p, x) + µn τ(φ(p, x)) + ηn, (1.4)

for all x ∈ C, p ∈ F (T ), and n ≥ 1. Note that if τ(t) = t, then (1.4) reduces to

φ(p, Tnx) ≤ (1 + µn)φ(p, x) + ηn,

for all x ∈ C, p ∈ F (T ), and n ≥ 1. In addition, if ηn = 0, kn =
√

1 + µn for
all n ≥ 1, then the class of total relatively asymptotically nonexpansive mappings
coincides with the class of relatively asymptotically nonexpansive mappings. If
µn = 0 and ηn = 0 for all n ≥ 1, then (1.4) reduces to the class of relatively
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nonexpansive mappings, introduced by Matsushita and Takahashi [22]. Also, if
we take µn = 0 and ηn = cn as above, then (1.4) reduces to (1.3), the class of
mappings of relatively asymptotically nonexpansive in the intermediate sense.

The purpose of this paper is firstly to introduce some recent results and open
questions relating to strong convergence for modified Mann (or Ishikawa) itera-
tion processes, and secondly to carry the previous results over the wider class of
total relatively asymptotically nonexpansive mappings. In section 2, we intro-
duce three famous iteration processes introduced by Halpern [13], Mann [20], and
Ishikawa [14], respectively. In section 3, we give some properties of generalized
projection relating to the above function φ : X × X → R, and furthermore, in
section 4, we give some recent developments and open questions for strong conver-
gence of approximating fixed point sequences in Hilbert spaces or general Banach
spaces. Finally, in section 5, we prove strong convergence of modified Ishikawa
type iteration for both uniformly equicontinuous and total relatively asymptoti-
cally nonexpansive mappings in uniformly convex and uniformly smooth Banach
spaces. Some applications are also added.

2 Three famous iteration algorithms

Construction of approximating fixed points of nonexpansive mappings is an im-
portant subject in the theory of nonexpansive mappings and its applications in a
number of applied areas, in particular, in image recovery and signal processing.
However, the sequence {Tnx} of iterates of the mapping T at a point x ∈ C may
not converge even in the weak topology. Thus three averaged iteration methods
often prevail to approximate a fixed point of a nonexpansive mapping T . The first
one is introduced by Halpern [13] and is defined as follows: Take an initial guess
x0 ∈ C arbitrarily and define {xn} recursively by

xn+1 = tnx0 + (1− tn)Txn, n ≥ 0, (2.1)

where {tn} is a sequence in the interval [0, 1].
The second iteration process is now known as Mann’s iteration process [20]

which is defined as

xn+1 = αnxn + (1− αn)Txn, n ≥ 0, (2.2)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn} is in the
interval [0, 1].

The third iteration process is referred to as Ishikawa’s iteration process [14]
which is defined recursively by

{
yn = βnxn + (1− βn)Txn,
xn+1 = αnxn + (1− αn)Tyn,

n ≥ 0, (2.3)

where the initial guess x0 is taken in C arbitrarily and {αn} and {βn} are sequences
in the interval [0, 1]. By taking βn = 1 for all n ≥ 0 in (2.3), Ishikawa’s iteration
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process reduces to the Mann’s iteration process (2.2). It is known in [8] that the
process (2.2) may fail to converge while the process (2.3) can still converge for a
Lipschitz pseudo-contractive mapping in a Hilbert space.

In general, the iteration process (2.1) has been proved to be strongly convergent
in both Hilbert spaces [13, 19, 33] and uniformly smooth Banach spaces [26, 29, 35],
while Mann’s iteration (2.2) has only weak convergence even in a Hilbert space
[11].

3 Some properties of generalized projections

Let X be a real Banach space with norm ‖ ·‖ and let X∗ be the dual of X. Denote
by 〈·, ·〉 the duality product. When {xn} is a sequence in X, we denote the strong
convergence of {xn} to x ∈ X by xn → x and the weak convergence by xn ⇀ x.
We also denote the weak ω-limit set of {xn} by ωw(xn) = {x : ∃xnj

⇀ x}. The
normalized duality mapping J from X to X∗ is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for x ∈ X.

A Banach space X is said to be strictly convex if ‖(x + y)/2‖ < 1 for all
x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y, equivalently, the function x 7→ ‖x‖2 is
strictly convex; see Proposition 2.13 of [4]. It is also said to be uniformly convex if
‖xn− yn‖ → 0 for any two sequences {xn}, {yn} in X such that ‖xn‖ = ‖yn‖ = 1
and ‖(xn + yn)/2‖ → 1.

Let U = {x ∈ X : ‖x‖ = 1} be the unit sphere of X. Then the Banach space
X is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

(3.1)

exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit in (3.1)
is attained uniformly for x, y ∈ U . It is also known that if X is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of X. Some
properties of the duality mapping have been given in [10, 27, 31]. A Banach space
X is said to have the Kadec-Klee property if a sequence {xn} of X satisfying that
xn ⇀ x ∈ X and ‖xn‖ → ‖x‖, then xn → x. It is known that if X is uniformly
convex, then X has the Kadec-Klee property; see [10, 31] for more details.

Let X be a smooth Banach space. Recall that the function φ : X ×X → R is
defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉+ ‖x‖2
for all x, y ∈ X. It is obvious from the definition of φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖+ ‖x‖)2 (3.2)

for all x, y ∈ X. Further, we have that for any x, y, z ∈ X,

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, J(z)− J(y)〉. (3.3)
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In particular, it is easy to see that if X is strictly convex, for x, y ∈ X, φ(y, x) = 0
if and only if y = x (see, for example, Remark 2.1 of [22]).

Let X be a reflexive, strictly convex and smooth Banach space and let C be a
nonempty closed convex subset of X. Then, for any x ∈ X, there exists a unique
element x̃ ∈ C such that

φ(x̃, x) = inf
z∈C

φ(z, x).

Then a mapping
∏

C : X → C defined by
∏

C x = x̃ is called the generalized
projection (see [1, 3, 15]). In Hilbert spaces, notice that the generalized projection
is clearly coincident with the metric projection.

The following result is well known (see, for example, [1, 3, 15]).

Proposition 3.1. ([1, 3, 15]) Let K be a nonempty closed convex subset of a real
Banach space X and let x ∈ X.

(a) If X is smooth, then, x̃ =
∏

K x if and only if 〈x̃ − y, Jx − Jx̃〉 ≥ 0 for
y ∈ K.

(b) If X is reflexive, strictly convex and smooth, then φ(y,
∏

K x)+φ(
∏

K x, x) ≤
φ(y, x) for all y ∈ K.

The following subsequent two lemmas are recently given in [16].

Lemma 3.2. ([16]) Let C be a nonempty closed convex subset of a smooth Banach
space X, x, y, z ∈ X and λ ∈ [0, 1]. Given also a real number a ∈ R, the set

D := {v ∈ C : φ(v, z) ≤ λφ(v, x) + (1− λ)(φ(v, y) + a)}

is closed and convex.

Lemma 3.3. ([16]) Let X be a reflexive, strictly convex and smooth Banach space
with the Kadec-Klee property, and let K be a nonempty closed convex subset of X.
Let x0 ∈ X and q :=

∏
K x0, where

∏
K denotes the generalized projection from

X onto K. If {xn} is a sequence in X such that ωw(xn) ⊂ K and satisfies the
condition

φ(xn, x0) ≤ φ(q, x0)

for all n. Then xn → q (=
∏

K x0).

Recently, Kamimura and Takahashi [15] proved the following result, which
plays a crucial role in our discussion.

Proposition 3.4. ([15]) Let X be a uniformly convex and smooth Banach space
and let {xn}, {zn} be two sequences of X. If φ(xn, zn) → 0 and either {xn} or
{zn} is bounded, then xn − zn → 0.

Also, it is not hard to prove the converse of Proposition 3.4 in smooth Banach
spaces; see Proposition 2.7 of [16] for details.
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Proposition 3.5. ([16]) Let X be a smooth Banach space and let {xn}, {zn} be
two sequences in X. If xn − zn → 0 and either {xn} or {zn} is bounded, then
φ(xn, zn) → 0.

Now combing Proposition 3.4 and 3.5 yields the following equivalent form in
uniformly convex and smooth Banach spaces.

Proposition 3.6. ([16]) Let X be a uniformly convex and smooth Banach space
and let {xn}, {zn} be two sequences of X. If either {xn} or {zn} is bounded, then
φ(xn, zn) → 0 if and only if xn − zn → 0.

Similarly, we can prove the following variation of Proposition 3.6 in a more
general Banach space; see Proposition 2.10 in [16] for details.

Proposition 3.7. ([16]) Let X be a reflexive, strictly convex and smooth Banach
space with the Kadec-Klee property. If {xn} is a sequence in X and x (6= 0) ∈ X,
then φ(xn, x) → 0 if and only if xn → x.

Finally, concerning the set of fixed points of continuous mappings which are
total relatively asymptotically nonexpansive, we can prove the following result.

Proposition 3.8. Let X be a reflexive, strictly convex and smooth Banach space
with the Kadec-Klee property, let C be a nonempty closed convex subset of X,
and let T : C → C be a continuous total relatively asymptotically nonexpansive
mapping. Then F (T ) is closed and convex.

Proof. First, we show that F (T ) is closed. Let {pn} be a sequence of F (T ) such
that pn → p ∈ C. Using (1.4), for this p ∈ C, we have that

φ(pn, Tnp) ≤ φ(pn, p) + µn τ(φ(pn, p)) + ηn

for each n ≥ 1. As taking the limsup on both sides as n → ∞, since the right
hand side tends to 0, we get φ(pn, Tnp) → 0. This combined with (3.3), since

φ(p, Tnp) = φ(p, pn) + φ(pn, Tnp) + 2〈p− pn, J(p)− J(pn)〉 → 0

as n →∞, yields φ(p, Tnp) → 0. Immediately, Proposition 3.7 gives Tnp → p and
so p ∈ F (T ) by continuity of T .

Next, we show that F (T ) is convex. For p, q ∈ F (T ) and λ ∈ (0, 1), put
r = λp + (1 − λ)q. It suffices to show that r ∈ F (T ). Indeed, as in [22], we have
that for n ≥ 1,

φ(r, Tnr) = ‖r‖2 − 2〈λp + (1− λ)q, JTnr〉+ ‖Tnr‖2
= ‖r‖2 − 2λ〈p, JTnr〉 − 2(1− λ)〈q, JTnr〉+ ‖Tnr‖2
= ‖r‖2 + λφ(p, Tnr) + (1− λ)φ(q, Tnr)− λ‖p‖2 − (1− λ)‖q‖2
= ‖r‖2 + λ[φ(p, r) + µn τ(φ(p, r)) + ηn] + (1− λ)[φ(q, r) + µn τ(φ(q, r)) + ηn]

−λ‖p‖2 − (1− λ)‖q‖2
≤ ‖r‖2 + λφ(p, r) + (1− λ)φ(q, r)− λ‖p‖2 − (1− λ)‖q‖2

+µn[λτ(φ(p, r)) + (1− λ)τ(φ(q, r))] + ηn.
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Since µn, ηn → 0 as n →∞, together with

‖r‖2 + λφ(p, r) + (1− λ)φ(q, r)− λ‖p‖2 − (1− λ)‖q‖2
= ‖r‖2 − 2〈λp + (1− λ)q, Jr〉+ ‖r‖2
= ‖r‖2 − 2〈r, Jr〉+ ‖r‖2 = 0,

the right hand side of the above inequality converges to 0. By Proposition 3.7
again, we have Tnr → r and hence r ∈ F (T ) by the continuity of T .

4 Recent Developments and Open Questions

Let C be a nonempty closed convex subset of a real Banach space X and let
T : C → C be a mapping with F (T ) 6= ∅. Recalling that a sequence {xn} in
C is said to be an approximating fixed point sequence for T if ‖xn − Txn‖ → 0,
there are several ways to construct an approximating fixed point sequences for
a nonexpansive mapping T . We now introduce two cases mentioned in Xu [36].
Firstly we can use Banach’s contraction principle to obtain a sequence {xn} in C
such that

xn = tnx0 + (1− tn)Txn, n ≥ 1

where the initial guess x0 is taken arbitrarily in C and {tn} is a sequence in
the interval (0, 1) such that tn → 0 as n → ∞, which is called as a Halpern’s
iteration process (2.1). Due to the assumption that F (T ) 6= ∅, this sequence {xn}
is bounded (indeed ‖xn − p‖ ≤ ‖x0 − p‖ for all p ∈ F (T )). Hence

‖xn − Txn‖ = tn‖x0 − Txn‖ → 0

and {xn} is an approximating fixed point sequence for T .
Secondly, we recall a sequence {xn} in C generated by Mann’s iteration process

(2.2) in a recursive way. This sequence {xn} is bounded since, for any p ∈ F (T ),
we have

‖xn+1 − p‖ ≤ αn‖xn − p‖+ (1− αn)‖Txn − p‖ ≤ ‖xn − p‖.

That is, {|xn − p‖} is a nonincreasing sequence. Moreover, since

‖xn+1 − Txn+1‖ = ‖αnxn + (1− αn)Txn − Txn+1‖
= ‖αn(xn − Txn) + (Txn − Txn+1)‖
≤ αn‖xn − Txn‖+ ‖xn − xn+1‖ = ‖xn − Txn‖,

the sequence {|xn − Txn‖} is also nonincreasing and hence limn→∞ ‖xn − Txn‖
exists.

However, it is not known whether this sequence {xn} is always an approximat-
ing fixed point sequence for T . Only partial answers have been obtained. Indeed,
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if the space X is uniformly convex and if the control sequence {αn} satisfies the
condition ∞∑

n=0

αn(1− αn) = ∞,

then Reich [25] showed that the sequence {xn} generated by Mann’s iteration
process (2.2) is an approximating fixed point sequence for T . For the sake of
completeness, we include a brief proof to this fact. Let δX be the modulus of
convexity of X. Pick a p ∈ F (T ). Assuming ‖xn−p‖ > 0 and noticing ‖Txn−p‖ ≤
‖xn − p‖, we deduce that

‖xn+1 − p‖ ≤ ‖xn − p‖
[
1− 2αn(1− αn)δX

(‖xn − Txn‖
‖xn − p‖

)]
.

Hence
∞∑

n=0

αn(1− αn)‖xn − p‖δX

(‖xn − Txn‖
‖xn − p‖

)
≤ ‖x0 − p‖ < ∞. (4.1)

Put ‖xn − p‖ → r. If r = 0, we are done. So assume r > 0. If
∑∞

n=0 αn(1 −
αn) = ∞, we obtain from (3.1) that δX (‖xn − Txn‖/r) → 0. This implies that
‖xn − Txn‖ → 0 and {xn} is an approximating sequence for T .

Recently, numerous attempts to modify the Mann iteration method (2.2) or
the Ishikawa iteration method (2.3) so that strong convergence is guaranteed have
recently been made.

Firstly, motivated by Solodov and Svaiter [30], Nakajo and Takahashi [24]
proposed the following modification of Mann’s iteration process (2.2) for a single
nonexpansive mapping T with F (T ) 6= ∅ and also proved the existence of an ap-
proximating fixed point sequence for T and strong convergence of such a sequence
as follows.

Theorem NT. ([24]) Let H be a real Hilbert space, let C be a nonempty closed
convex subset of H and let T : C → C be a nonexpansive mapping. Assume that
F (T ) is nonempty. Define a sequence {xn} in C by the algorithm:





x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(4.2)

where PK denotes the metric projection from H onto a closed convex subset K of
H. If the sequence {αn} is bounded above from one, then {xn} generated by (4.2)
is an approximating fixed point sequence for T and strongly convergent to PF (T )x0.

As a special case, taking αn = 0 for all n in Theorem NT, the above iteration
scheme (4.2) reduces to the following:
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



x0 ∈ C chosen arbitrarily,
Cn = {z ∈ C : ‖Txn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0.

(4.3)

Recently, Kim and Xu [17] generalized Nakajo and Takahashi’s iteration process
(4.2) to the following iteration process for an asymptotically nonexpansive map-
ping T in a Hilbert space, under the hypothesis of boundedness of C.

Theorem KX. ([17]) Let C be a nonempty bounded closed convex subset of a
Hilbert space H and let T : C → C be an asymptotically nonexpansive mapping.
Assume that {αn} is a sequence in (0, 1) such that αn ≤ a for some 0 < a < 1.
Define a sequence {xn} in C by the following algorithm:





x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Tnxn,
Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(4.4)

where
θn = (1− αn)(k2

n − 1)(diam C)2 → 0 as n →∞. (4.5)

Then {xn} is an approximating fixed point sequence for T and strongly convergent
to PF (T )x0.

Very recently, Martinez-Yanez and Xu [21] generalized Nakajo and Takahashi’s
iteration process (4.2) to the following modification of Ishikawa’s iteration process
(2.3) for a nonexpansive mapping T : C → C with F (T ) 6= ∅ in a Hilbert space H:





x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Tzn,
zn = βnxn + (1− βn)Txn,
Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2

+(1− αn)(‖zn‖2 − ‖xn‖2 + 2〈xn − zn, v〉)},
Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≤ 0},
xn+1 = PCn∩Qnx0,

(4.6)

and proved that the sequence {xn} generated by (4.6) converges strongly to
PF (T )x0 provided the sequence {αn} is bounded above from one and limn→∞ βn =
1.

Kamimura and Takahashi [15] considered the problem of finding an element u
of a Banach space X satisfying 0 ∈ Au, where A ⊂ X×X∗ is a maximal monotone
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operator and X∗ is the dual space of X. They studied the following algorithm:




x0 ∈ X chosen arbitrarily,
0 = vn + 1

rn
(Jyn − Jxn), vn ∈ Ayn,

Hn = {z ∈ X : 〈yn − z, v〉 ≥ 0},
Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 =

∏
Hn∩Wn

x0,

(4.7)

where J is the duality mapping on X, {rn} is a sequence of positive real numbers
and

∏
K denotes the generalized projection from X onto a closed convex subset

K of X; see the section 2 for more details. They proved that if A−10 6= ∅ and
lim infn→∞ rn > 0, then the sequence {xn} generated by (4.7) converges strongly
to an element of A−10. This generalizes the result due to Solodov and Svaiter [30]
in a Hilbert space.

Question 1. Can we carry Theorem NT in Hilbert spaces over more general Ba-
nach spaces?

The crucial key to solve this question is to show the convexity of Cn in (4.2) in
general, which is not easy to prove it in Banach spaces. Professor H. K. Xu raised
the following question to me:

Question 2. Let C be a nonempty closed convex subset of a normed linear space
X. For any choice of a, b ∈ C,

Ca,b = {z ∈ C : ‖a− z‖ ≤ ‖b− z‖}
is a convex subset of C if and only if X is a Hilbert space.

Note that if X is a Hilbert space, then

z ∈ Ca,b ⇔ 〈b− a, z〉 ≤ 1
2

(‖b||2 − ‖a‖2) .

So, Ca,b is convex in C. However, the proof of the converse still remains open.
Owing to these troubles, we need another hypotheses for mappings T . In view of
this point, for relatively nonexpansive mappings, Matsushita and Takahashi [22]
recently extended Nakajo and Takahashi’s iteration process (4.2) to the following
modification of Mann’s iteration process in general Banach spaces.

Theorem MT. ([22]) Let X be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of X, let T : C → C be a relatively
nonexpansive mapping with F (T ) 6= ∅, and let {αn} be a sequence of real numbers
such that 0 ≤ αn < 1 and lim supn→∞ αn < 1. Suppose that {xn} is given by





x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTxn),
Hn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 =

∏
Hn∩Wn

x0,

(4.8)
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where J is the normalized duality mapping. Then {xn} generated by (4.8) is an
approximating fixed point sequence for T and strongly convergent to

∏
F (T ) x0,

where
∏

K denotes the generalized projection from X onto a closed convex subset
K of X.

As a special case, taking αn = 0 for all n in (4.8), the iteration scheme reduces
to the following:





x0 ∈ C chosen arbitrarily,
Hn = {z ∈ C : φ(z, Txn) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 =

∏
Hn∩Wn

x0,

(4.9)

which generalizes the iteration scheme (4.3) in Hilbert spaces. Also, they estab-
lished that even though the condition of uniformly smooth of X is only weakened
by the smooth condition of X, the sequence {xn} generated by (4.9) still converges
strongly to

∏
F (T ) x0.

Recently, Kim and Takahashi [18] generalized Matsushita and Takahashi’s iter-
ation process (4.8) to the following iteration process for a uniformly k-Lipschitzian
mapping T which is relatively asymptotically nonexpansive.

Theorem KT. ([18]) Let X be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of X and let T : C → C be a
uniformly k-Lipschitzian mapping which is relatively asymptotically nonexpansive.
Assume that F (T ) is a nonempty bounded subset of C and {αn} and {βn} are
sequences in [0, 1] such that lim supn→∞ αn < 1 and βn → 1. Define a sequence
{xn} in C by the algorithm:





x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTnzn),
zn = βnxn + (1− βn)Tnxn,
Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)φ(v, zn) + ηn},
Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},
xn+1 =

∏
Hn∩Wn

x0,

(4.10)

where J is the normalized duality mapping and

ηn = (1− αn)(k2
n − 1) · sup{φ(p, zn) : p ∈ F (T )}.

Then {xn} generated by (4.10) is an approximating fixed point sequence for T and
strongly convergent to

∏
F (T ) x0, where

∏
F (T ) is the generalized projection from

X onto F (T ).

Let C be a closed convex subset of a Hilbert space H and let T : C → C be
an asymptotically nonexpansive mapping with F (T ) 6= ∅. Then, after noticing
that φ(x, y) = ‖x − y‖2 for all x, y ∈ H, we see that ‖Tnx − Tny‖ ≤ kn‖x −
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y‖ is equivalent to φ(Tnx, Tny) ≤ k2
nφ(x, y). It is therefore easy to show that

every asymptotically nonexpansive mapping is both uniformly k-Lipschitzian and
relatively asymptotically nonexpansive. In fact, it suffices to show that F̂ (T ) ⊂
F (T ). The inclusion follows easily from the well-known demiclosedness at zero of
I − T (c.f., [34]), where I denotes the identity operator.

Can we remove the hypothesis of boundedness of C in Theorem KX in Hilbert
spaces? The question still remains open. However, if F (T ) is a nonempty bounded
subset of C, we now give a partial answer with the following ηn instead of θn in
(4.5), that is, a Hilbert space’s version in a case when βn = 1 for all n in Theorem
KT.

Corollary KT. ([18]) Let C be a nonempty closed convex subset of a Hilbert space
H and let T : C → C be an asymptotically nonexpansive mapping. Assume that
F (T ) is a nonempty bounded subset of C. Assume also that {αn} is a sequence in
[0, 1] such that lim supn→∞ αn < 1. Define a sequence {xn} in C by the following
algorithm: 




x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Tnxn,
Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + ηn},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,

(4.11)

where
ηn = (1− αn)(k2

n − 1) · sup{‖xn − p‖2 : p ∈ F (T )},
then {xn} in C generated by (4.11) is an approximating fixed point sequence for
T and strongly convergent to PF (T )x0.

The following question is naturally invoked.

Question 3. Can we extend the modified Ishikawa type iteration (see Theorem
KT) due to Kim and Takahashi over a wider class of mappings?

5 An Answer for Question 3

Recall that T : C → C is said to be uniformly equicontinuous provided for any
ε > 0 there exists δ > 0 such that

x, y ∈ C, ‖x− y‖ < δ ⇒ ‖Tnx− Tny‖ ≤ ε

for all n ≥ 1. In particular, it is uniformly continuous, and furthermore

‖xn − yn‖ → 0 ⇒ ‖Tnxn − Tnyn‖ → 0. (5.1)

In general, every uniformly continuous mapping does not satisfy the property (5.1).
For example, consider T : [0, 1] → [0, 1] defined by

Tx =
{

2x if 0 ≤ x ≤ 1/2,
1 if 1/2 ≤ x ≤ 1.
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It is easy to check that Tnx → 1 for 0 < x < 1/2, and so if we take xn = 1
n+2

and yn = 0 for all n, then |Tnxn− Tn0| → 1, which shows that T does not satisfy
(5.1).

Note that every uniformly k-Lipschitzian mapping is uniformly equicontinuous.
Obviously, all asymptotically nonexpansive mappings are uniformly k-Lipschitzian
(hence uniformly equicontinuous).

In this section, we give an answer for Question 3, that is, strong convergence
of the following modified Ishikawa’s iterative algorithm of (2.3), motivated by
the idea due to [21, 22], for both uniformly equicontinuous and total relatively
asymptotically nonexpansive mappings in uniformly convex and uniformly smooth
Banach spaces.

Theorem 5.1. Let X be a uniformly convex and uniformly smooth Banach space,
let C be a nonempty closed convex subset of X and let T : C → C be a uni-
formly continuous and total relatively asymptotically nonexpansive mapping satis-
fying (5.1). Assume that F (T ) is a nonempty bounded subset of C and {αn} and
{βn} are sequences in [0, 1] such that lim supn→∞ αn < 1 and βn → 1. Define a
sequence {xn} in C by the algorithm:





x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTnzn),
zn = βnxn + (1− βn)Tnxn,
Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)[φ(v, zn) + µn τn + ηn]},
Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},
xn+1 =

∏
Hn∩Wn

x0,

where τn = sup{τ(φ(p, zn)) : p ∈ F (T )} with µn, ηn, and τ in (1.4), and J is the
normalized duality mapping. Then {xn} converges in norm to

∏
F (T ) x0, where∏

F (T ) is the generalized projection from X onto F (T ).

Proof. First, observe that Hn is closed and convex by Lemma 3.2, and that Wn is
obviously closed and convex for each n ≥ 0. Next we show that F (T ) ⊂ Hn for all
n. Indeed, for p ∈ F (T ), using the convexity of ‖ · ‖2 for the first inequality and
(1.4) for the second inequality, we get

φ(p, yn) = φ(p, J−1(αnJxn + (1− αn)JTnzn))
= ‖p‖2 − 2〈p, αnJxn + (1− αn)JTnzn〉+ ‖αnJxn + (1− αn)JTnzn‖2
≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1− αn)〈p, JTnzn〉+ αn‖xn‖2 + (1− αn)‖Tnzn‖2
= αnφ(p, xn) + (1− αn)φ(p, Tnzn)
≤ αnφ(p, xn) + (1− αn)[φ(p, zn) + µnτ(φ(p, zn)) + ηn]
= αnφ(p, xn) + (1− αn)[φ(p, zn) + µn τn + ηn].

So p ∈ Hn for all n. Moreover, we show that

F (T ) ⊂ Hn ∩Wn (5.2)
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for all n ≥ 0. It suffices to show that F (T ) ⊂ Wn for all n ≥ 0. We prove this
by induction. For n = 0, we have F (T ) ⊂ C = W0. Assume that F (T ) ⊂ Wk

for some k ≥ 1. Since xk+1 is the generalized projection of x0 onto Hk ∩Wk, by
Proposition 3.1 (a) we have

〈xk+1 − z, Jx0 − Jxk+1〉 ≥ 0

for all z ∈ Hk ∩Wk. As F (T ) ⊂ Hk ∩Wk, the last inequality holds, in particular,
for all z ∈ F (T ). This together with the definition of Wk+1 implies that F (T ) ⊂
Wk+1. Hence (5.2) holds for all n ≥ 0. So, {xn} is well defined. Obviously,
since xn =

∏
Wn

x0 by the definition of Wn and Proposition 3.1 (a), and since
F (T ) ⊂ Wn, we have φ(xn, x0) ≤ φ(p, x0) for all p ∈ F (T ). In particular, we
obtain, for all n ≥ 0,

φ(xn, x0) ≤ φ(q, x0), where q :=
∏

F (T ) x0. (5.3)

Therefore, {φ(xn, x0)} is bounded; so is {xn} by (3.2). Consequently, {Tnxn} is
bounded. Indeed, using (1.4) and (3.2), we have

(‖Tnxn‖ − ‖q‖)2 ≤ φ(q, Tnxn) ≤ φ(q, xn) + µn τ(φ(q, xn)) + ηn

for n ≥ 1. Since {xn} is bounded and τ is increasing, the right hand side of above
inequality should be bounded and so is {Tnxn}. So {zn} is bounded. Therefore,
{τn} is also bounded.

Noticing that xn =
∏

Wn
x0 again and the fact that xn+1 ∈ Hn ∩Wn ⊂ Wn,

we get
φ(xn, x0) = min

z∈Wn

φ(z, x0) ≤ φ(xn+1, x0),

which shows that the sequence {φ(xn, x0)} is nondecreasing and so the limn→∞ φ(xn, x0)
exists. Simultaneously, from Proposition 3.1 (b), we have

φ(xn+1, xn) = φ

(
xn+1,

∏

Wn

x0

)
≤ φ(xn+1, x0)− φ(

∏

Wn

x0, x0)

= φ(xn+1, x0)− φ(xn, x0) → 0. (5.4)

By Proposition 3.6, we have

‖xn+1 − xn‖ → 0. (5.5)

Now since xn+1 ∈ Hn, we have

φ(xn+1, yn) ≤ αnφ(xn+1, xn) + (1− αn)[φ(xn+1, zn) + µn τn + ηn]
= φ(xn+1, xn) + (1− αn)[φ(xn+1, zn)− φ(xn+1, xn) + µn τn + ηn]
= φ(xn+1, xn) + (1− αn)[2〈xn+1, Jxn − Jzn〉+ ‖zn‖2 − ‖xn‖2 (5.6)

+µn τn + ηn].
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On the other hand, since βn → 0, and {xn}, {Tnxn} are bounded, we have

‖zn − xn‖ = (1− βn)‖xn − Tnxn‖ → 0. (5.7)

Since J is uniformly norm-to-norm continuous on bounded sets, we have ‖Jxn −
Jzn‖ → 0. Hence, we have

|2〈xn+1, Jxn − Jzn〉+ ‖zn‖2 − ‖xn‖2|
≤ 2‖xn+1‖ · ‖Jxn − Jzn‖+ (‖zn‖+ ‖xn‖)(‖zn − xn‖) → 0. (5.8)

Using (5.4), (5.8), and µn, τn → 0 together with boundedness of {τn}, we readily
see that the right hand of (5.6) converges to 0; hence φ(xn+1, yn) → 0. Using
Proposition 3.6 again, we obtain ‖xn+1 − yn‖ → 0. This, together with (5.5),
yields that ‖xn − yn‖ → 0. Since J is uniformly norm-to-norm continuous on
bounded sets, we have ‖Jxn − Jyn‖ → 0. Combining with lim supn→∞ αn < 1
and

Jxn − Jyn = Jxn − JJ−1(αnJxn + (1− αn)JTnzn)
= Jxn − (αnJxn + (1− αn)JTnzn)
= (1− αn)(Jxn − JTnzn)

(from the definition of yn) yields

‖Jxn − JTnzn‖ =
1

1− αn
‖Jxn − Jyn‖ → 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded sets, we have
‖xn − Tnzn‖ → 0. This combined together with (5.1)and (5.7) yields that

‖xn − Tnxn‖ ≤ ‖xn − Tnzn‖+ ‖Tnzn − Tnxn‖ → 0. (5.9)

Then, uniform continuity of T again combined with (5.5) and (5.9) gives

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − Tn+1xn+1‖
+‖Tn+1xn+1 − Tn+1xn‖+ ‖TTnxn − Txn‖ → 0. (5.10)

By (5.10), ωw(xn) ⊂ F̂ (T ) = F (T ). This, combined with (5.3) and Lemma 3.3
(with K = F (T )), guarantees that xn → q =

∏
F (T ) x0.

As a direct consequence of Theorem 5.1, Theorem KT due to Kim and Taka-
hashi [18] will be modified as follows.

Corollary 5.2. [18] Let X be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of X and let T : C → C be a
uniformly equicontinuous mapping which is relatively asymptotically nonexpansive.
Assume that F (T ) is a nonempty bounded subset of C and {αn} and {βn} are
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sequences in [0, 1] such that lim supn→∞ αn < 1 and βn → 1. Define a sequence
{xn} in C by the algorithm:





x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTnzn),
zn = βnxn + (1− βn)Tnxn,
Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)[φ(v, zn) + ζn]},
Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},
xn+1 =

∏
Hn∩Wn

x0,

where J is the normalized duality mapping and

ζn = (k2
n − 1) · sup{φ(p, zn) : p ∈ F (T )}.

Then {xn} converges in norm to
∏

F (T ) x0, where
∏

F (T ) is the generalized pro-
jection from X onto F (T ).

Proof. If T is relatively asymptotically nonexpansive, kn =
√

1 + µn is equivalent
to k2

n − 1 = µn. In this case, τ(t) = t for all t ≥ 0 and ηn = 0 in (1.4). Therefore,
µn τn = ζn. Now the conclusion is immediately obtained by Theorem 5.1

As another application of Theorem 5.1, we have the following.

Corollary 5.3. Let X be a uniformly convex and uniformly smooth Banach space,
let C be a nonempty closed convex subset of X and let T : C → C be a uniformly
equicontinuous mapping which is relatively asymptotically nonexpansive in the in-
termediate sense. Assume that F (T ) is a nonempty bounded subset of C and {αn}
and {βn} are sequences in [0, 1] such that lim supn→∞ αn < 1 and βn → 1. Define
a sequence {xn} in C by the algorithm:





x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTnzn),
zn = βnxn + (1− βn)Tnxn,
Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)[φ(v, zn) + cn]},
Wn = {v ∈ C : 〈xn − v, Jxn − Jx0〉 ≤ 0},
xn+1 =

∏
Hn∩Wn

x0,

where J is the normalized duality mapping. Then {xn} converges in norm to∏
F (T ) x0, where

∏
F (T ) is the generalized projection from X onto F (T ).

Proof. Noticing that µn = 0 and ηn = cn, the conclusion is immediately fulfilled
from Theorem 5.1.
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