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functions of random sums of reciprocals of these random variables converge to a
Cauchy distribution function.
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1 Introduction

The problem of limit distribution for convergence of the reciprocals of random
variables are investigated by many authors (see for examples, Shapiro([8],[9],[10]),
Termwutipong[11], Neammanee([3],[4],[5]) and Neammanee and Suntadkarn [6].
The problem can be stated as follows.

Let X7, Xs,... be a sequence of independent continuous random variables. Tf
r is a positive real number, find suitable conditions which guarantees that there
exist sequences of real constants (A, (r)) and (B,(r)) such that the distribution
functions of the sums

1w 1
=N A(r
n;leIT (r)

converge to a limit.
Tn 1975-1977, Shapiro considered this problem in the case of X, X5, ... are
identically distributed random variables. The limit distribution function is the

normal distribution function for 0 < r < 3 and is a stable distribution function

. . 1 1
with characteristic exponent — for r > 3
r

—_

In 1986, Termwuttipong[11] considered the problem when 0 < » < — and

No

shown that the limit distribution function is normal.
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In 1988, Shapiro[10] considered the problem when the random variables are
not necessary identically distributed and the parameter r is greater than 1 In
this case, the limit distribution function is also a stable distribution function with
characteristic exponent 1

Tn this paper, we cogsider the random sums of the reciprocals of the random

variables in the general form

Li": LI
Zn e g(Xy)

=1

where (Z,) is a sequence of positive integers random variables with independent
with (X,,) and ¢ is a continuous function from an interval subset A of R into R
which satisfied the following conditions:
(g — 1) there exists an a in A such that g(a) =0,
(g — 2) g is strictly monotone on AN (—o00,a] and AN [a, o),
(g — 3) g’ exists and continuous on (a — 6*,a + 6*) for some &* > 0 and ¢'(a) is
positive.

The following is main theorem.

Main theorem Assume that

(7) (fu(x)) is equicontinuous at a and

(73) the Cesaro limit L of the sequence (fi(a)) exists and is positive.

(4i1) Z,F — 0.
Then there exists a sequence of real constants (A,,) such that the distribution func-
tions of the sums

1 i 1,
il — Ay,
Zn =1 g(Xk)
conwverge weakly to the Cauchy distribution function F which defined by

F(z) = %(g + arctan m)

2 Auxiliary Results

To prove the main theorem we often deal with the g-quantiles of the random
variable Z,, which defined by [,,(¢) = max{k € N | P(Z, < k) < ¢} for g € (0,1).
Clearly, 1,, is well defined, nondecreasing in ¢ and

P(Zy, <1n(q) < g < P(Zn <In(q))-

Next, we will give lemma and theorems which be basic in the proof of are main
theorem.
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Lemma 2.1. If Z,” —oc then l,(q) = oc for every g € (0,1).

Proof. Fixes g € (0,1) and let M be a given positive integer. Since lim P(Z, >
n—00

m) = 1, there exists ng such that n > ng implies P(Z, > m) > 1 — ¢g. Then for
n > ng P(Z, < m) < g This shows that for n > ng,{,(¢g) > M O

Theorem 2.2. Lei (X,) , £ = 1,2,...,n = 1,2,... be a double sequence of
random variables such that

(2.2-1) Z,, X1, X2, - .. are independent,

(2.2-2) there exist sequence (A,) and (By,) such that for every g € (0,1), the
distribution functions of the sums of

X+ X+ -+ Xy, ) -4,

Bln(q) ( nln (q) (a)

weakly converge to a distribution function F. Then the distribution functions of
random sums of

n

1
(Xt + Koz -+ + Xz, ) = Az
Bz,

weakly converge to F'.

Proof. For each n, let F,S,j) and F,, be the distribution functions of

B;,-(an + Xpa +--- —l—an) — A; and i(an + Xpo + - +ann) — Ay

respectively. For each n, let Tm Z, = {kmn}, numbered so that ky; < kp(ji1)-

n

knj
For each n and j € N, let g,; = ZP(Zn = k) and g,9 = 0. Then for each
k=1

q € [gn(j—1)>nj), We have l,(q) = ky;. Hence for a continuity point z of F,, we
have

Fote) = P (g (o + X+ X, ) — Az, < 2)
_ Z P(BL(an—*—XnQ_*_"'—f—Xnkn]‘)_Aknj Sm/\Zn:knj)
kn;€lmZ, Fons
= Z P(Z, = knj)F’V(Lknj)(:I:)
knji€IMZ,

> (Gns — Gag-1)FF (@)

kni€lmZ,
/ FT(Lln(Q))(m) dgq
kn;€lmZ, Y 9€ [gn(i—1)+qnj)

1
/ FO@) (z) dg.
0
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By Lebesgue Dominated Convergence Theorem,

1 1
lim F,(z) = / lim F{(0)(z) dg = / F(z) dg = F(z). O
n—oo 0 n—oo 0

In the proofs of main theorem we also need the classical theorems on con-
vergence of a sequence of distribution functions of sums of independent random
variables which stated as follows:

Theorem 2.3.(Gnedenko and Kolmogorov, p.116) In order that for some suitably
chosen constants (Ay,) the distributions of the sums X1+ Xpo++ - -+ X, — A of

if there exist non-decreasing functions M(x) and N(z), defined on the intervals
(—00,0) and (0,00) respectively with M(—o0) = 0 and N(oco) = 0 and a constant
o > 0 such that

kn
(2.8-1) lim Z Fop(x) = M(z) for a continuity point x of M.,
n—oo
k=1

kn
(2.8-2) lim Z[Fnk(m) — 1] = N(x) for a continuity point x of N,
n—oo
k=1
n 2
(2.3-3) lim liminf / 22 dFpp () — / z dFi(x)
£200 n—00 k;{ 2| <e " ( le|<e ) }
kn 2
= lim lim sup / z? dFy(z) — / z dF(x)
liptimanp 3 { [ a* dFuo) = (] )}

where Fpy denotes the distribution function of X,.
A constant A,, may be chosen according to the formula

A=Y / 2B (2)

=17 lz|<T

where —7 and T are continuity points of M and N respectively.
The logarithms of the characteristic function of the limit distribution is defined
by

2

lnw(t)——(;t2+/0 (eit1—1— i )dM(:z:)—i—/OOO (em—l—ﬂ)djv(x).

oo 1+ 22 1+ 22
(1)
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3 Proof of the Main Theorem

We shall prove main theorem only the case of g are both strictly increasing
on AN(—o00,a] and ANJa,o00). In the other cases, we can use the same arguments.
For each n and k, we let X,,; = —————— and F,;, be the distribution function

b (q)g(Xk)
of X, . We divide the proof into 5 steps as follows.

Step 1 We will show that

Foa(e) = P(Xpp <) = P < a)

In(9)g(Xk)
Fk(a)_Fk(g_l<ln(1])m)> if <0 and @E Im g
= Fi(a) if =0 2)
1+ Fi(a) —Fk<g_1(ln(t]>x>) if ¢ >0and o€ Tmg,
Casexz =0
Foi() = P(m <0)

= P(g(Xnk) <0)
= P(Xx < g7'(0))
= P(X <a)

= nk(a)

1
Casez < 0and ——— €Tmyg
In(g)x

A )



96 A. Suntadkarn

Case x > 0 and e €lmy
1 1
Furl@) = Py <0+ P00 < migaian <)
= Fi(a) + P<ln(;)x < g(Xnk))
= )+ P(%> 07 (7))
1

F — F
Step 2 We show that lim M

n—00 Ay — b

k1
lim a, = lim b, = 1 and f;, Fx be the density functions and distribution
Nn—oC Nn—oC

functions of X, respectively.

Let & be any positive number such that £ < min{—g(a — 6*), g(a + §*)}. Since
(fe(x)) is equicontinuous at a for and g~! is continuous at 0, we have a positive
number 6(d < 6*) and a natural number ng such that

= fr(a) uniform on k where b,, < a,,

|fe(z) — fr(a)] <e for [xr—al] <dandall k €N (3)
and 1 1

—1 —1

77 (=)0 (2) €la—d.a+9] for n > no. (4)

Hence for n > ng we have
a—06<b, <a, <a+?d. (5)
By Mean Value Theorem, for each k there exists «ni € (by,ay) such that

Fy(an) — Fi(bn)

an_bn

= filznr)-

Hence Fiulan) — Fulby)
k\Qn) — Ik

% — fula)| = |fr(znr) — fela)| <e.

Step 3 We show that a sequence (X,x)k = 1,2,...,1,(¢q) ;n = 1,2,... is

infinitesimal for every ¢ € (0,1) i.e. lim  max P(|Xpi| > ¢) = 0.
n—00 1<k<I, (g)

We note that

0 < P(IXnk| 2 €)

PXp < —e)+ P(Xp > €)
— P(Xak <)+ 1= P(Xpp < o)

= Fk<9_1(zn(lq)g>) ~Fi(o (- ln(lq)g))‘ (6)
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By step 2 we have lim

Nn—>r0

fr{a) uniform

on k.

Hence

‘ ) » — fk(a)‘ <e
g zn(lq)g) (- ln(lq)a)
for every k and n > ng, i.e
Ei (g_1<ln(1q)a>) - B (971(_ ln(lq)a))
< [9_1(ln(1q)5) —g (- ln(lq)g)](”fk(“))
-1 1 -1 1 -1 1 -1 1 fr(a)
- g[g (ln(q)a) —9 (_ ln(q)a)} +In(g) [g (ln(q)a) g (_ ln(q)a)} l:(q)

From (6) and (7), we have

P Xk >
1<) POl 2 €)

_1 -1 -1 -1 fr(a)
<[ () ol ()= o) 1

which implies that

. . _if 1 _ 1 : fi(a)
1 1

L P<|Xnk\2€>éignz<ln<Q>>[9 () G i sy T

n—00 1<k<l, (q) In(g)e ln(g)e NORMC)
By the fact that 1 ( ) ( ! ))e ists and (%)
1m — .
y ac L Ln( (@)e In(q)e X1 nd (2z),
we can show that lim  max k(@) =0 so we have lim max P(| Xl >
n—00 1<k<l, (q) 1,(q) n—00 1<k<ly, (q)

g)=0.

Hence (X)) , k=1,2,...,n,n = 1,2, ... is infinitesimal.

Step 4
Let M : (—00,0) > Rand N : (0,00) = R be defined by M (z) = —[g’l(O)]l£

r

! L !
and N(z) = —[¢g71(0)] = where [g71(0)] is derivative of g~! at 0. We shall show
T

that conditions (3-1) and (3-2) of Theorem 3 are satisfied. Note that for x < 0
and sufficient large n
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n ()
> B+l O] 2
k=1

~(q)
_ \’; (ko - o™ () + oo &

n(q)z

< |ln(q) (a - g—1<ln(2)x>) lniq) H ; ( . 971( 1 ”(‘;)m - fk(a))‘
ln(q)z
» 1 1 I (q) '
+ ln(q)<a—g (ln(q)x>)‘ 1,(q) I; Je(a) L‘
#@(a=g () ) L+ o g )
Since
1
Fiy(a) — Filg™!
r}LH;o[ ' kEg Eln(q)m)) - fk(a)} = 0 uniform on k, (9)
a9 (ln(q)x)
ln(q) -1y
Jim @ z_: fr(a) = L and Jim. 1,(q) <a—g_1 (ln(Z)w>) il I(O)] we have
L I
T > Fue) =l 0] 2.
k=1

i.e.,condition (2.3-1) of Theorem 2.3 is satisfied. In the same way we can show

? L

that the condition (2.3-2) of Theorem 2.3 is satisfied for N(z) = —[g~1(0)] =.
xr

Step 5

We will show that the condition (2.3-3) of Theorem 2.3 is also satisfied for
o = 0. Since domain of g is an interval and g is continuous, Img is also an interval.
In this case we shall show the condition (2.3-3) of Theorem 2.3 is satisfied where
Im g = (—00,00). Tn the other cases we can show in the same argument. Let §
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and ng defined as in step 2. Hence for n > ng

0= {/z<5 m2ank @) - (/|z|<ex ank(x))2}

k=1
ln(q)
< / z? dFyi(x)
=1 7lzl<e
ln{q) , . 1
> f A ()

l
k=1
1 e CaE) g o ) )
B (ln(Q))2 ; [tgrgl_ ‘/g_l(ln(lq)t) (g(y))2 dy+t£rél+ /g_l(ln(lfJ)a) (g(y))2 dy]

Lf*(ﬁm)ﬂ@ e [T AWy

—_
-
3
| =
=
Nt
NS
L |

by -Jinf A (9(y))® —1(,n(1q)€) (9(y))?
I Al X0 ) g
‘<um»222[f;A<g@»2@**l.a w7 ¥
oo fe(y) A fily)
+£45m)wa@+LM e @) (10

Since ¢ is increasing and g(y) < 0 on (inf 4,a — ),

“ fily) Y
/ian (g(y))2dy = (g(a — 8))2 /ian fe(y)dy

1 o0
< (gla — 9))2 ﬁm fe(y)dy
1
" (gla—0)> (11)
Similarly we can show that
sup A fk (y)
/Ws (g(y))zdy S Glaroy (12)
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Note that there exist constants ¢; and ¢y such that

_1(7#) _1(*#)
/96 @ fk(y)Qdy < (6+fk(a))/g6 O] #dy (by(3)and(4))

(9(y)) (9(y))?
= e nt) [ TS w =)
= Crnlaa [ T de (by(gd)
gla—d) U
= e+ el ((ala)s + ———) (13)
and »
¢ fi(y) aNe 1
/g—u,na,)gj P < €+ @ (o - o) )

From (10)-(14) we have

0< Z (/I - 2 dF () — (/l - xank(x)>2)
ln(q)
= (ln(lq))Q kzzl [es + ea(e + fe(a))(1n(@))e + cs(e + fi(a))]

for some constants cg, ¢4 and cs. Hence, by (i4) we have

la(a) 9
0< hrrlanOLip Z (/|I|<E 22dFpy () — (/|z|<6 xank(x)) ) < cqe

k=1
for some constant ¢g which implies that

in(q)

Egrgl hrrlanOLip ; (/|I|<E *dF o, (z) — (/|z|<5 xank(x)) ) =0.

Similarly we can show that

Elir(r)lJr linrgigf Z / 22 dFp (x (/|.z|<6 xank(x))z) = 0.

|lz|<e

Hence the condition (2.3-3) of Theorem 2.3 is satisfied.
By Theorem 2.3 the distribution functions of the sums

ln(q)

n\q) T
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converge to the distribution function which the logarithm of its characteristic func-
! L
tion is defined by formula (1) where 0 = 0, M (z) = —[g1(0)] = and
r

N(z) = —[971(0)]'£. From [Lukas, p.93] we know that the limit distribution func-
T
tion is Cauchy distribution function £ which defined by

F(z) = %(g + arctan m)

Hence, by theorem 2.2, we have the main theorem. |
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