Thai Journal of Mathematics (2003) 1: 91-102

Limit Distributions for Random Sums of Reciprocals of Independent Random Variables

A. Suntadkarn

Abstract: Let $X_1, X_2, ...$ be a sequence of independent not necessary identically distributed continuous random variables. Conditions are found for the distribution functions of random sums of reciprocals of these random variables converge to a Cauchy distribution function.

Keywords and phases: Levy's representation, infinitely divisible distribution function. Cauchy distribution function.

2000 Mathematics Subject Classification: 60E07,60F05,60G50.

1 Introduction

The problem of limit distribution for convergence of the reciprocals of random variables are investigated by many authors (see for examples, Shapiro([8],[9],[10]), Termwutipong[11], Neammanee([3],[4],[5]) and Neammanee and Suntadkarn [6]. The problem can be stated as follows.

Let $X_1, X_2, ...$ be a sequence of independent continuous random variables. If r is a positive real number, find suitable conditions which guarantees that there exist sequences of real constants $(A_n(r))$ and $(B_n(r))$ such that the distribution functions of the sums

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{|X_k|^r} - A_n(r)$$

converge to a limit.

In 1975-1977, Shapiro considered this problem in the case of X_1, X_2, \ldots are identically distributed random variables. The limit distribution function is the normal distribution function for $0 < r \le \frac{1}{2}$ and is a stable distribution function with characteristic exponent $\frac{1}{r}$ for $r > \frac{1}{2}$.

In 1986, Termwuttipong[11] considered the problem when $0 < r \le \frac{1}{2}$ and shown that the limit distribution function is normal.

In 1988, Shapiro[10] considered the problem when the random variables are not necessary identically distributed and the parameter r is greater than $\frac{1}{2}$. In this case, the limit distribution function is also a stable distribution function with characteristic exponent $\frac{1}{r}$.

In this paper, we consider the random sums of the reciprocals of the random variables in the general form

$$\frac{1}{Z_n} \sum_{k=1}^{Z_n} \frac{1}{g(X_k)} - A_{Z_n}$$

where (Z_n) is a sequence of positive integers random variables with independent with (X_n) and g is a continuous function from an interval subset A of \mathbb{R} into \mathbb{R} which satisfied the following conditions:

(g-1) there exists an a in A such that g(a)=0,

(g-2) g is strictly monotone on $A \cap (-\infty, a]$ and $A \cap [a, \infty)$,

(g-3) g' exists and continuous on $(a-\delta^*,a+\delta^*)$ for some $\delta^*>0$ and g'(a) is positive.

The following is main theorem.

Main theorem Assume that

- (i) $(f_k(x))$ is equicontinuous at a and
- (ii) the Cesaro limit L of the sequence $(f_k(a))$ exists and is positive.
- (iii) $Z_n^p \to \infty$.

Then there exists a sequence of real constants (A_n) such that the distribution functions of the sums

$$\frac{1}{Z_n} \sum_{k=1}^{Z_n} \frac{1}{g(X_k)} - A_{Z_n}$$

converge weakly to the Cauchy distribution function F which defined by

$$F(x) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{\pi [g^{-1}(0)]'L} \right).$$

2 Auxiliary Results

To prove the main theorem we often deal with the q-quantiles of the random variable Z_n which defined by $l_n(q) = \max\{k \in \mathbb{N} \mid P(Z_n < k) \leq q\}$ for $q \in (0,1)$. Clearly, l_n is well defined, nondecreasing in q and

$$P(Z_n < l_n(q)) \le q < P(Z_n < l_n(q)).$$

Next, we will give lemma and theorems which be basic in the proof of are main theorem.

Lemma 2.1. If $Z_n^p \to \infty$ then $l_n(q) \to \infty$ for every $q \in (0,1)$.

Proof. Fixes $q \in (0,1)$ and let M be a given positive integer. Since $\lim_{n \to \infty} P(Z_n \ge m) = 1$, there exists n_0 such that $n > n_0$ implies $P(Z_n \ge m) > 1 - q$. Then for $n > n_0$ $P(Z_n < m) < q$ This shows that for $n > n_0$, $l_n(q) \ge M$

Theorem 2.2. Let (X_{nk}) , $k=1,2,\ldots,n=1,2,\ldots$ be a double sequence of random variables such that

(2.2-1) $Z_n, X_{n1}, X_{n2}, \ldots$ are independent,

(2.2-2) there exist sequence (A_n) and (B_n) such that for every $q \in (0,1)$, the distribution functions of the sums of

$$\frac{1}{B_{l_n(q)}} \Big(X_{n1} + X_{n2} + \dots + X_{nl_n(q)} \Big) - A_{l_n(q)}$$

weakly converge to a distribution function F. Then the distribution functions of random sums of

$$\frac{1}{B_{Z_n}} \Big(X_{n1} + X_{n2} + \dots + X_{nZ_n} \Big) - A_{Z_n}$$

weakly converge to F.

Proof. For each n, let $F_n^{(j)}$ and $\overline{F_n}$ be the distribution functions of $\frac{1}{B_j}\Big(X_{n1}+X_{n2}+\cdots+X_{nj}\Big)-A_j$ and $\frac{1}{B_{Z_n}}\Big(X_{n1}+X_{n2}+\cdots+X_{nZ_n}\Big)-A_{Z_n}$ respectively. For each n, let Im $Z_n=\{k_{nj}\}$, numbered so that $k_{nj}< k_{n(j+1)}$. For each n and $j\in\mathbb{N}$, let $q_{nj}=\sum_{k=1}^{k_{nj}}P(Z_n=k)$ and $q_{n0}=0$. Then for each $q\in[q_{n(j-1)},q_{nj})$, we have $l_n(q)=k_{nj}$. Hence for a continuity point x of $\overline{F_n}$, we have

$$\overline{F_n}(x) = P\left(\frac{1}{B_{Z_n}} \left(X_{n1} + X_{n2} + \dots + X_{nZ_n}\right) - A_{Z_n} \le x\right) \\
= \sum_{k_{nj} \in \text{Im} Z_n} P\left(\frac{1}{B_{k_{nj}}} \left(X_{n1} + X_{n2} + \dots + X_{nk_{nj}}\right) - A_{k_{nj}} \le x \land Z_n = k_{nj}\right) \\
= \sum_{k_{nj} \in \text{Im} Z_n} P(Z_n = k_{nj}) F_n^{(k_{nj})}(x) \\
= \sum_{k_{nj} \in \text{Im} Z_n} (q_{nj} - q_{n(j-1)}) F_n^{(k_{nj})}(x) \\
= \sum_{k_{nj} \in \text{Im} Z_n} \int_{q \in \lfloor q_{n(j-1)}, q_{nj} \rfloor} F_n^{(l_n(q))}(x) dq \\
= \int_0^1 F_n^{(l_n(q))}(x) dq.$$

By Lebesgue Dominated Convergence Theorem,

$$\lim_{n\to\infty}\overline{F_n}(x)=\int_0^1\lim_{n\to\infty}F_n^{(l_n(q))}(x)\ dq=\int_0^1F(x)\ dq=F(x).$$

In the proofs of main theorem we also need the classical theorems on convergence of a sequence of distribution functions of sums of independent random variables which stated as follows:

Theorem 2.3. (Gnedenko and Kolmogorov, p.116) In order that for some suitably chosen constants (A_n) the distributions of the sums $X_{n1} + X_{n2} + \cdots + X_{nk_n} - A_n$ of independent infinitesimal random variables (X_{nk}) converge to a limit if and only if there exist non-decreasing functions M(x) and N(x), defined on the intervals $(-\infty,0)$ and $(0,\infty)$ respectively with $M(-\infty) = 0$ and $N(\infty) = 0$ and a constant $\sigma > 0$ such that

(2.3-1)
$$\lim_{n\to\infty}\sum_{k=1}^{k_n}F_{nk}(x)=M(x)$$
 for a continuity point x of M ,

(2.3-2)
$$\lim_{n\to\infty}\sum_{k=1}^{\kappa_n}[F_{nk}(x)-1]=N(x)$$
 for a continuity point x of N ,

$$(2.3-3) \lim_{\varepsilon \to \infty} \liminf_{n \to \infty} \sum_{k=1}^{k_n} \left\{ \int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right\}$$

$$= \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \sum_{k=1}^{k_n} \left\{ \int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right\}$$

$$= \sigma^2$$

where F_{nk} denotes the distribution function of X_{nk} .

A constant A_n may be chosen according to the formula

$$A_n = \sum_{k=1}^n \int_{|x| < \tau} x dF_{nk}(x)$$

where $-\tau$ and τ are continuity points of M and N respectively.

The logarithms of the characteristic function of the limit distribution is defined by

$$\ln \psi(t) = -\frac{\sigma^2}{2}t^2 + \int_{-\infty}^0 \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) dM(x) + \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) dN(x). \tag{1}$$

3 Proof of the Main Theorem

We shall prove main theorem only the case of g are both strictly increasing on $A\cap(-\infty,a]$ and $A\cap[a,\infty)$. In the other cases, we can use the same arguments. For each n and k, we let $X_{nk}=\frac{1}{l_n(q)g(X_k)}$ and F_{nk} be the distribution function of X_{nk} . We divide the proof into 5 steps as follows.

Step 1 We will show that

$$F_{nk}(x) = P(X_{nk} \le x) = P\left(\frac{1}{l_n(q)g(X_k)} \le x\right)$$

$$= \begin{cases} F_k(a) - F_k\left(g^{-1}\left(\frac{1}{l_n(q)x}\right)\right) & \text{if } x < 0 \text{ and } \frac{1}{l_n(q)x} \in \text{ Im } g \\ F_k(a) & \text{if } x = 0 \\ 1 + F_k(a) - F_k\left(g^{-1}\left(\frac{1}{l_n(q)x}\right)\right) & \text{if } x > 0 \text{ and } \frac{1}{l_n(q)x} \in \text{ Im } g. \end{cases}$$
(2)

Case x = 0

$$F_{nk}(x) = P\left(\frac{1}{l_n(q)g(X_{nk})} \le 0\right)$$

$$= P(g(X_{nk}) \le 0)$$

$$= P(X_k \le g^{-1}(0))$$

$$= P(X_k \le a)$$

$$= F_{nk}(a).$$

Case x < 0 and $\frac{1}{l_n(q)x} \in \text{Im } g$

$$F_{nk}(x) = P\left(\frac{1}{l_n(q)g(X_{nk})} \le x\right)$$

$$= P\left(\frac{1}{l_n(q)x} \le g(X_{nk}) < 0\right)$$

$$= P\left(g^{-1}\left(\frac{1}{l_n(q)x}\right) \le X_k < g^{-1}(0)\right)$$

$$= F_k(a) - F_k\left(g^{-1}\left(\frac{1}{l_n(q)x}\right)\right).$$

Case x > 0 and $\frac{1}{l_n(q)x} \in \text{Im } g$

$$F_{nk}(x) = P\left(\frac{1}{l_n(q)g(X_{nk})} \le 0\right) + P\left(0 < \frac{1}{l_n(q)g(X_{nk})} \le x\right)$$

$$= F_k(a) + P\left(\frac{1}{l_n(q)x} \le g(X_{nk})\right)$$

$$= F_k(a) + P\left(X_k \ge g^{-1}\left(\frac{1}{l_n(q)x}\right)\right)$$

$$= F_k(a) + 1 - F_k\left(g^{-1}\left(\frac{1}{l_n(q)x}\right)\right).$$

Step 2 We show that $\lim_{n\to\infty} \frac{F_k(a_n) - F_k(b_n)}{a_n - b_n} = f_k(a)$ uniform on k where $b_n < a_n$, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 1$ and f_k , F_k be the density functions and distribution functions of X_k , respectively.

Let ε be any positive number such that $\varepsilon < \min\{-g(a-\delta^*), g(a+\delta^*)\}$. Since $(f_k(x))$ is equicontinuous at a for and g^{-1} is continuous at 0, we have a positive number $\delta(\delta < \delta^*)$ and a natural number n_0 such that

$$|f_k(x) - f_k(a)| < \varepsilon \text{ for } |x - a| < \delta \text{ and all } k \in \mathbb{N}$$
 (3)

and

$$g^{-1}\left(-\frac{1}{n\varepsilon}\right), g^{-1}\left(\frac{1}{n\varepsilon}\right) \in [a-\delta, a+\delta] \text{ for } n \ge n_0.$$
 (4)

Hence for $n > n_0$ we have

$$a - \delta < b_n < a_n < a + \delta. \tag{5}$$

By Mean Value Theorem, for each k there exists $x_{nk} \in (b_n, a_n)$ such that

$$\frac{F_k(a_n) - F_k(b_n)}{a_n - b_n} = f_k(x_{nk}).$$

Hence

$$\left|\frac{F_k(a_n) - F_k(b_n)}{a_n - b_n} - f_k(a)\right| = |f_k(x_{nk}) - f_k(a)| < \varepsilon.$$

Step 3 We show that a sequence $(X_{nk}) k = 1, 2, \ldots, l_n(q)$; $n = 1, 2, \ldots$ is infinitesimal for every $q \in (0,1)$ i.e. $\lim_{n \to \infty} \max_{1 \le k \le l_n(q)} P(|X_{nk}| \ge \varepsilon) = 0$.

We note that

$$0 \le P(|X_{nk}| \ge \varepsilon) = P(X_{nk} \le -\varepsilon) + P(X_{nk} \ge \varepsilon)$$

$$= P(X_{nk} \le -\varepsilon) + 1 - P(X_{nk} \le \varepsilon)$$

$$= F_k \left(g^{-1} \left(\frac{1}{l_n(q)\varepsilon} \right) \right) - F_k \left(g^{-1} \left(-\frac{1}{l_n(q)\varepsilon} \right) \right). \tag{6}$$

By step 2 we have
$$\lim_{n\to\infty} \frac{F_k\Big(g^{-1}\Big(\frac{1}{l_n(q)\varepsilon}\Big)\Big) - F_k\Big(g^{-1}\Big(\frac{-1}{l_n(q)\varepsilon}\Big)\Big)}{g^{-1}\Big(\frac{1}{l_n(q)\varepsilon}\Big) - g^{-1}\Big(\frac{-1}{l_n(q)\varepsilon}\Big)} = f_k(a)$$
 uniform on k .

Hence

$$\left| \frac{F_k \left(g^{-1} \left(\frac{1}{l_n(q)\varepsilon} \right) \right) - F_k \left(g^{-1} \left(-\frac{1}{l_n(q)\varepsilon} \right) \right)}{g^{-1} \left(\frac{1}{l_n(q)\varepsilon} \right) - g^{-1} \left(-\frac{1}{l_n(q)\varepsilon} \right)} - f_k(a) \right| < \varepsilon$$

for every k and $n \ge n_0$, i.e.

$$F_{k}\left(g^{-1}\left(\frac{1}{l_{n}(q)\varepsilon}\right)\right) - F_{k}\left(g^{-1}\left(-\frac{1}{l_{n}(q)\varepsilon}\right)\right)$$

$$\leq \left[g^{-1}\left(\frac{1}{l_{n}(q)\varepsilon}\right) - g^{-1}\left(-\frac{1}{l_{n}(q)\varepsilon}\right)\right](\varepsilon + f_{k}(a))$$

$$= \varepsilon\left[g^{-1}\left(\frac{1}{l_{n}(q)\varepsilon}\right) - g^{-1}\left(-\frac{1}{l_{n}(q)\varepsilon}\right)\right] + l_{n}(q)\left[g^{-1}\left(\frac{1}{l_{n}(q)\varepsilon}\right) - g^{-1}\left(-\frac{1}{l_{n}(q)\varepsilon}\right)\right]\frac{f_{k}(a)}{l_{n}(q)}$$

$$(7)$$

From (6) and (7), we have

$$\max_{1 \le k \le l_n(q)} P(|X_{nk}| \ge \varepsilon)$$

$$\leq \Big[g^{-1}\Big(\frac{1}{l_n(q)\varepsilon}\Big) - g^{-1}\Big(-\frac{1}{l_n(q)\varepsilon}\Big)\Big]\varepsilon + l_n(q)\Big[g^{-1}\Big(\frac{1}{l_n(q)\varepsilon}\Big) - g^{-1}\Big(-\frac{1}{l_n(q)\varepsilon}\Big)\Big]\max_{1\leq k\leq l_n(q)}\frac{f_k(a)}{l_n(q)}$$

which implies that

$$\lim_{n\to\infty} \max_{1\leq k\leq l_n(q)} P(|X_{nk}|\geq \varepsilon) \leq \lim_{n\to\varepsilon} (l_n(q)) \left[g^{-1}\left(\frac{1}{l_n(q)\varepsilon}\right) - g^{-1}\left(-\frac{1}{l_n(q)\varepsilon}\right)\right] \lim_{n\to\infty} \max_{1\leq k\leq l_n(q)} \frac{f_k(a)}{l_n(q)}$$

By the fact that
$$\lim_{n\to\infty} (l_n(q)) \left(g^{-1} \left(\frac{1}{l_n(q)\varepsilon}\right) - g^{-1} \left(-\frac{1}{l_n(q)\varepsilon}\right)\right)$$
 exists and (ii) ,

we can show that $\lim_{n\to\infty}\max_{1\leq k\leq l_n(q)}\frac{f_k(a)}{l_n(q)}=0$ so we have $\lim_{n\to\infty}\max_{1\leq k\leq l_n(q)}P(|X_{nk}|\geq \varepsilon)=0$.

Hence (X_{nk}) , k = 1, 2, ..., n, n = 1, 2, ... is infinitesimal.

Step 4

Let $M: (-\infty,0) \to \mathbb{R}$ and $N: (0,\infty) \to \mathbb{R}$ be defined by $M(x) = -[g^{-1}(0)]' \frac{L}{x}$ and $N(x) = -[g^{-1}(0)]' \frac{L}{x}$ where $[g^{-1}(0)]'$ is derivative of g^{-1} at 0. We shall show that conditions (3-1) and (3-2) of Theorem 3 are satisfied. Note that for x < 0 and sufficient large n

$$\left| \sum_{k=1}^{l_n(q)} (F_{nk}(x)) + [g^{-1}(0)]' \frac{L}{x} \right| \\
= \left| \sum_{k=1}^{l_n(q)} \left(F_k(a) - F_k \left(g^{-1} \left(\frac{1}{l_n(q)x} \right) \right) + [g^{-1}(0)]' \frac{L}{x} \right| \right|$$

$$\leq \left| l_{n}(q) \left(a - g^{-1} \left(\frac{1}{l_{n}(q)x} \right) \right) \frac{1}{l_{n}(q)} \left| \sum_{k=1}^{l_{n}(q)} \left(\frac{F_{k}(a) - F_{k} \left(g^{-1} \left(\frac{1}{l_{n}(q)x} \right) \right)}{a - g^{-1} \left(\frac{1}{l_{n}(q)x} \right)} - f_{k}(a) \right) \right| \\
+ \left| l_{n}(q) \left(a - g^{-1} \left(\frac{1}{l_{n}(q)x} \right) \right) \left| \frac{1}{l_{n}(q)} \sum_{k=1}^{l_{n}(q)} f_{k}(a) - L \right| \\
+ \left| l_{n}(q) \left(a - g^{-1} \left(\frac{1}{l_{n}(q)x} \right) \right) L + \left[g^{-1}(0) \right]' \frac{L}{x} \right| \tag{8}$$

Since

$$\lim_{n \to \infty} \left[\frac{F_k(a) - F_k\left(g^{-1}\left(\frac{1}{l_n(q)x}\right)\right)}{a - g^{-1}\left(\frac{1}{l_n(q)x}\right)} - f_k(a) \right] = 0 \text{ uniform on } k, \tag{9}$$

$$\lim_{n \to \infty} \frac{1}{l_n(q)} \sum_{k=1}^{l_n(q)} f_k(a) = L \text{ and } \lim_{n \to \infty} l_n(q) \left(a - g^{-1} \left(\frac{1}{l_n(q)x} \right) \right) = \frac{-[g^{-1}(0)]'}{x} \text{ we have}$$

$$\lim_{n \to \infty} \sum_{k=1}^{l_n(q)} F_{nk}(a) = -[g^{-1}(0)]' \frac{L}{x}.$$

i.e., condition (2.3-1) of Theorem 2.3 is satisfied. In the same way we can show that the condition (2.3-2) of Theorem 2.3 is satisfied for $N(x) = -[g^{-1}(0)]'\frac{L}{x}$.

Step 5

We will show that the condition (2.3-3) of Theorem 2.3 is also satisfied for $\sigma=0$. Since domain of g is an interval and g is continuous, $\operatorname{Im} g$ is also an interval. In this case we shall show the condition (2.3-3) of Theorem 2.3 is satisfied where $\operatorname{Im} g=(-\infty,\infty)$. In the other cases we can show in the same argument. Let δ

and n_0 defined as in step 2. Hence for $n \ge n_0$

$$0 \le \sum_{k=1}^{l_n(q)} \left\{ \int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right\}$$

$$\le \sum_{k=1}^{l_n(q)} \int_{|x| < \varepsilon} x^2 dF_{nk}(x)$$

$$= -\sum_{k=1}^{l_n(q)} \int_{|x| < \varepsilon} x^2 d\left(F_k \left(g^{-1} \left(\frac{1}{l_n(q)x} \right) \right) \right)$$

$$= \frac{1}{l_{n}(q)} \sum_{k=1}^{l_{n}(q)} \int_{|x| < \varepsilon} f_{k} \left(g^{-1} \left(\frac{1}{l_{n}(q)x}\right)\right) \left[g^{-1} \left(\frac{1}{l_{n}(q)x}\right)\right]^{'} dx
= \frac{1}{(l_{n}(q))^{2}} \sum_{k=1}^{l_{n}(q)} \left[\lim_{t \to 0^{-}} \int_{g^{-1} \left(\frac{1}{l_{n}(q)t}\right)}^{g^{-1} \left(-\frac{1}{l_{n}(q)\varepsilon}\right)} \frac{f_{k}(y)}{(g(y))^{2}} dy + \lim_{t \to 0^{+}} \int_{g^{-1} \left(\frac{1}{l_{n}(q)\varepsilon}\right)}^{g^{-1} \left(\frac{1}{l_{n}(q)\varepsilon}\right)} \frac{f_{k}(y)}{(g(y))^{2}} dy \right]
\left(y = g^{-1} \left(\frac{1}{l_{n}(q)x}\right)\right)
\leq \frac{1}{(l_{n}(q))^{2}} \sum_{k=1}^{l_{n}(q)} \left[\int_{\inf A}^{g^{-1} \left(-\frac{1}{l_{n}(q)\varepsilon}\right)} \frac{f_{k}(y)}{(g(y))^{2}} dy + \int_{g^{-1} \left(\frac{1}{l_{n}(q)\varepsilon}\right)}^{\sup A} \frac{f_{k}(y)}{(g(y))^{2}} dy \right]
= \frac{1}{(l_{n}(q))^{2}} \sum_{k=1}^{l_{n}(q)} \left[\int_{\inf A}^{a-\delta} \frac{f_{k}(y)}{(g(y))^{2}} dy + \int_{a-\delta}^{g^{-1} \left(-\frac{1}{l_{n}(q)\varepsilon}\right)} \frac{f_{k}(y)}{(g(y))^{2}} dy + \int_{g^{-1} \left(\frac{1}{l_{n}(q)\varepsilon}\right)}^{g+\delta} \frac{f_{k}(y)}{(g(y))^{2}} dy \right]
+ \int_{g^{-1} \left(\frac{1}{l_{n}(q)\varepsilon}\right)}^{a+\delta} \frac{f_{k}(y)}{(g(y))^{2}} dy + \int_{a+\delta}^{\sup A} \frac{f_{k}(y)}{(g(y))^{2}} dy \right]. \tag{10}$$

Since g is increasing and g(y) < 0 on (inf $A, a - \delta$),

$$\int_{\inf A}^{a-\delta} \frac{f_k(y)}{(g(y))^2} dy \leq \frac{1}{(g(a-\delta))^2} \int_{\inf A}^{a-\delta} f_k(y) dy$$

$$\leq \frac{1}{(g(a-\delta))^2} \int_{-\infty}^{\infty} f_k(y) dy$$

$$= \frac{1}{(g(a-\delta))^2}.$$
(11)

Similarly we can show that

$$\int_{a+\delta}^{\sup A} \frac{f_k(y)}{(g(y))^2} dy \le \frac{1}{(g(a+\delta))^2}.$$
 (12)

Note that there exist constants c_1 and c_2 such that

$$\int_{a-\delta}^{g^{-1}(-\frac{1}{l_n(q)\varepsilon})} \frac{f_k(y)}{(g(y))^2} dy \leq (\varepsilon + f_k(a)) \int_{a-\delta}^{g^{-1}(-\frac{1}{l_n(q)\varepsilon})} \frac{1}{(g(y))^2} dy \quad (by(3)and(4))$$

$$= (\varepsilon + f_k(a)) \int_{g(a-\delta)}^{-\frac{1}{l_n(q)\varepsilon}} \frac{(g^{-1}(u))'}{u^2} du \quad (u = g(y))$$

$$= (\varepsilon + f_k(a)) c_1 \int_{g(a-\delta)}^{-\frac{1}{l_n(q)\varepsilon}} \frac{1}{u^2} du \quad (by(g-3))$$

$$= (\varepsilon + f_k(a)) c_1 \left((l_n(q))\varepsilon + \frac{1}{g(a-\delta)} \right) \quad (13)$$

and

$$\int_{g^{-1}(\frac{1}{\ln(q)\varepsilon)}}^{a+\delta} \frac{f_k(y)}{l_n(q)(g(y))^2} dy \le (\varepsilon + f_k(a))c_2\Big(l_n(q)\varepsilon - \frac{1}{g(a+\delta)}\Big). \tag{14}$$

From (10)-(14) we have

$$0 \le \sum_{k=1}^{l_n(q)} \left(\int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right)$$

$$\le \frac{1}{(l_n(q))^2} \sum_{k=1}^{l_n(q)} [c_3 + c_4(\varepsilon + f_k(a))(l_n(q))\varepsilon + c_5(\varepsilon + f_k(a))]$$

for some constants c_3 , c_4 and c_5 . Hence, by (ii) we have

$$0 \le \limsup_{n \to \infty} \sum_{k=1}^{l_n(q)} \left(\int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right) \le c_6 \varepsilon$$

for some constant c_6 which implies that

$$\lim_{\varepsilon \to 0^+} \limsup_{n \to \infty} \sum_{k=1}^{l_n(q)} \left(\int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right) = 0.$$

Similarly we can show that

$$\lim_{\varepsilon \to 0^+} \liminf_{n \to \infty} \sum_{k=1}^{l_n(q)} \left(\int_{|x| < \varepsilon} x^2 dF_{nk}(x) - \left(\int_{|x| < \varepsilon} x dF_{nk}(x) \right)^2 \right) = 0.$$

Hence the condition (2.3-3) of Theorem 2.3 is satisfied. By Theorem 2.3 the distribution functions of the sums

$$\frac{1}{l_n(q)} \sum_{k=1}^{l_n(q)} \frac{1}{g(X_k)} - A_{l_n(q)}$$

converge to the distribution function which the logarithm of its characteristic function is defined by formula (1) where $\sigma=0, M(x)=-[g^{-1}(0)]'\frac{L}{x}$ and

 $N(x)=-[g^{-1}(0)]'\frac{L}{x}$. From [Lukas, p.93] we know that the limit distribution function is Cauchy distribution function F which defined by

$$F(x) = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan \frac{x}{\pi [g^{-1}(0)]'L} \right).$$

Hence, by theorem 2.2, we have the main theorem.

References

- [1] B.V.Gnedenko and A.N.Kolmogorov, *Limit distributions for sums of independent random variables*, Addison-Wesley, Cambridge, 1954.
- [2] E. Lukas, Characteristic functions. Griffin, London, 1960.
- [3] K. Neammanee, Limit distribution for random sums of reciprocals of logarithms of independent continuous random variables, *J.Sci.Res. Chula. Univ.*, (23) 2(1998), 79-99.
- [4] K. Neammanee, Limit distributions for sums of reciprocals of independent random variables , *East-West J.Math.*, (4)1(2002), 13-18.
- [5] K. Neammanee, Limit Distribution for Sums of the Reciprocals of Sine of Random Variables , *Kyungpook Math. J.*, **(43)2**(2003), 175-189.
- [6] K. Neammanee and A.Suntadkarn, On the rate of convergence of distributions of sums of reciprocals of logarithms to the Cauchy distribution, *Stochastic Modelling and Appl.*, (5)1(2002), 40-52.
- [7] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, New York, 1975.
- [8] J.M. Shapiro, Domain of attraction reciprocals of power of random variables, SIAM Journal Appl. Math. 29(1975), 734-739.
- [9] J.M. Shapiro, On domains of normal attraction to stable distributions, *Houston J. Math* **3**(1977), 539-542.
- [10] J.M. Shapiro, Limit distributions for sums of the reciprocals of independent random variables. *Houston J.Math* **14**(1988), 281-290.
- [11] I. Termwuttipong, Limit Distributions for Sums of the Reciprocals of a Positive Power of Independent Random Variables, Ph.D.thesis, Chulalongkorn Univ., 1986.

(Received 23 July 2003)

A.Suntadkarn Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand E-mail: sangka@kku.ac.th