
ISSN 1686-0209

Thai Journal of Mathematics

Volume 18 Number 4 (2020)
Pages 1715–1731

http://thaijmath.in.cmu.ac.th

Application of Element Decomposing Method for

Solving Traveling Salesman Problems

Ekkaphon Jaiyen1 and Komgrit Leksakul2,∗

1Ph.D.’s Degree Program in Industrial Engineering, Department of Industrial Engineering, Faculty of
Engineering, Chiang Mai University
e-mail : bang0285@gmail.com (E. Jaiyen)
2Excellence Center in Logistics and Supply Chain Management, Chiang Mai University, Department of
Industrial Engineering, Faculty of Engineering, Chiang Mai University
e-mail : komgrit@eng.cmu.ac.th (K. Leksakul)

Abstract The objective of this research study was to solve the traveling salesman problem (TSP) in

order to provide a traveling sequence for the minimum total traveling time. This paper highlights the

significance of creating and developing the element decomposition method (EDCM) as a part of the

finite element method for solving TSP. There are two phase of research methodology. The first phase

involves simplex method. The second phase is about creating and developing the algorithm through

the application of the EDCM. The results obtained using the algorithm employing the EDCM were

then compared with branch and bound method (B&B) and ant colony optimization (ACO) in terms

of accuracy and time consumption, Regarding the problem, it can be solved with the number of cities,

that is 6 to 343. The (B&B) method has the capability of resolving problems with the limitation of 22

stations. However, between ACO and EDCM, which can resolve problems for 343 stations. It found that

the EDCM provides better value than ACO with an average of 1.31 % and the time consumption of 55.00

%.
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1. Introduction

The main transportation modes in Thailand consist of four types, namely road, water,
rail, and air transport [1]. Figure 1 demonstrates that road transport is the most impor-
tant transport mode for the logistics system in Thailand. However, 49% of the total road
transport cost is spent on construction of roads and related facilities, as reported by the
World Bank. Compared with the rail and the water transportation modes, the cost of the
road transportation mode is higher, by approximately 3.5 times and 7 times, respectively
[2], as shown in Figure 1.
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Figure 1. The percentages of the transportation modes in Thailand.

The traveling salesman problem (TSP) serves as a method for resolving transportation
issues; it is an optimization technique that solves for the optimal transport route. This
problem aims to find the shortest route answer. The principle of this technique involves
delivering the product to each customer in each of the stations and coming back to the
starting point [3].

The traveling salesman problem is NP-complete. It can be completed in polynomial
time; thus, TSP belongs to NP. When the problem is of large size, it takes more time to
solve the problem.

Operation research (OR) is the application of a model regarding mathematics, sta-
tistics, and methodology in making a decision when it is generally used in analyzing
complicated systems in real situations with the purpose of developing optimal efficiency.
Also, it is widely used in various fields including businesses, industries, and government
sectors; hence, search for optimality is regarded as the principal duty. Operation research
was initially employed during World War II when Britains military service section as-
signed a team of scientists to conduct research for finding out strategies and tactics to
be used in national defense with regard to both land and air [4]. Consequently, Britain,
after the end of World War II, was the first country to apply operation research in the
fields of industry and state enterprise, and coal industry was the first industry to ap-
ply this method. Since then, the application has been extended to other industries; it
is popularly used in transportation management. Algorithm is a method used in prob-
lem solving to determine the best or most approximate solution, and it can be divided
into two main types including the exact method and the heuristic method. These two
methods are different in both good-quality solutions and computation times. If the ex-
act method is used in calculation, it provides the best solution with longer computation
time, whereas heuristic techniques are powerful and flexible search methodologies that
successfully tackle practical, difficult problems. Heuristic and metaheuristic algorithms
seek to produce good-quality solutions in reasonable computation times and good enough
for practical purposes.The finite element method (FEM) is a widespread method used and
applied in the solid and structural mechanics of mechanical engineering [5, 6]. The FEM
cuts a structure into several elements (pieces of the structure) and reconnects elements at
nodes [7]. This process can cut other nodes that do not connect with the element. So, it
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is appropriate for application in optimization solutions which can seek answers by cutting
nodes more quickly to find the answers.

Now, the problem associated with the various kinds of software that have been de-
veloped to solve mathematical problems by application algorithm is that they may find
the best value but they are still limited and use a long time for processing. The present
paper is an attempt to highlight the significance of creating and developing the element
decomposing method as part of the finite element method for solving the optimization
problem in order to quickly obtain correct answers.

2. Theory and Literature Review

2.1. Traveling Salesman Problem

The traveling salesman problem (TSP), which is an optimization technique solving for
the optimal transport route, aims to find the shortest route answer. The principle of this
technique involves delivering the product to each of the customers in each of the stations
and coming back to the starting point.

The TSP serves as a method for resolving transportation issues, with the purpose of
identifying for clients those transportation routes that will incur minimal costs. Each
client receives a one-time service from the salesperson [8]. In-depth exploration of lit-
erature reviews, theories, and research identified related studies on traveling salesman
problems to increase operational effectiveness, reduce traveling distance, and lower costs
through integration of several techniques. Variations depend on the operations unique to
each factory and business.

The TSP is one of the most popular problems among the researchers who started the
development. The TSP was treated in the 1800s by the Irish mathematician Sir William
Rowan Hamilton and by the British mathematician Thomas Penyngton Kirkman who
solved Hamiltons Icosian Game in tours of 20 points [9]. Later, in 1930, Karl Menger, a
Viennese researcher, developed the journey from the nearest neighbor heuristics during
the period of 19501960, and Clarke and Wright, in 1964, also developed the method of
the saving algorithm. As the TSP gained a lot of interest, development of the mathe-
matic model and the exact method for solving the TSP also consequently started. In the
beginning, Dantzig et al. (1954) developed a mathematical model and established the
problem solving by the cutting plane method in order to deal with a problem consisting
of 49 cities, and obtained the optimal solution. Later, Richard M. Karp (1972) showed
that the TSP was NP-complete, which showed that the TSP was a difficult problem;
and, there was no method that used polynomial time to successfully solve the problem.
Therefore, several researchers were interested in optimal solution techniques, such as the
branch-and-bound method, brute-force method, branch-and-cut method, cutting plane
algorithm, column generation etc., as well as approximate solution techniques, such as
nearest neighbor, greedy approach, etc. As for the metaheuristic method, one popular
technique applied in solving the problem was ant colony optimization (ACO) which was
started by Dorigo M. (1997) [10] and which includes local search, genetic algorithm, and
particle swarm optimization. At present, the largest number of cities taken into account
while solving a problem was regarded as the visit to all 24,978 cities in Sweden by David
L. Applegate et al. (2004) who previously dealt with 13,509 cities in the United States in
1998, and 15,112 cities in Germany in 2001.
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At present, the TSP has become more complex [11] such as the TSP with the time
window which was important to the just-in-time system to deliver things punctually. In
case of uncertainty of time including traveling, servicing, and awaiting [12], Tabu search is
used for solving the equation [13, 14], as also in uncertainty regarding the traveling cost,
etc. Sometimes, when the TSP confronts the uncertainty of anything, such as period of
time for traveling, it is called the stochastic traveling salesman problem (STSP).

Additionally, the TSP can be applied in several areas such as Genome, Starlight, Scan
Chains, DNA, Whizzkids, Baseball, Coin Collection, Airport Tours, USA Trip, Sonet
Rings, Power Cables, etc. Obviously, the TSP has several different forms, depending on
the problems occurring in those realistic situations. Consequently, this leads to a different
solution to each of the different problems so that it is possible to plan a proper route and
manage the reduction of the traveling cost effectively.

2.2. Integer Programming Problem

Integer programming is a branch of mathematical programming. Integer programming
is optimal solution in linear programming to the integer number. There are two widely
used methods for generating the special constraints that will force the optimum point of
the relaxed LP problem toward the desired integer solution:

2.2.1. Branch and Bound

Branch and bound (B&B) is a widely popular method which uses tools for solving large-
scale (NP-hard) combinatorial optimization problems. B&B is an algorithm paradigm
which has to be filled out for each specific problem type, and there exist numerous choices
for each of the components. Even then, the principles for the design of efficient B&B
algorithms have emerged over the years [15]. The B&B algorithm operates according to
two principles:

(1) It recursively splits the search space into smaller spaces, thus minimizing the func-
tion on these smaller spaces; the splitting is called branching.

(2) Branching alone would amount to brute-force enumeration of candidate solutions
and the testing of them all. To improve the performance of the brute-force search, the
B&B algorithm keeps track of the bounds on the minimum that it is trying to find, and
uses these bounds to prune the search space, eliminating candidate solutions that it can
prove will not contain an optimal solution.

However, the explicit enumeration is normally impossible due to the exponentially
increasing number of potential solutions. The use of bounds for the function to be op-
timized combined with the value of the current best solution enables the algorithm to
search parts of the solution space only implicitly [16]. So, when there are many variables
in the solution, the time and the number of branches required are more. This method
gives the performance of the best value that is accurate and very precise in the solution.
This method takes a long time to process the answer.

2.2.2. Cutting Plane Method

The cutting plane method, which is an alternative to the branch-and-bound method,
can also be used to solve integer programs. The fundamental idea behind cutting planes
is to add constraints to a linear program until the optimal basic feasible solution takes on
integer values. Of course, this method has to be carefully performed as it has constraints,
and one would not want to change the problem because of the addition of the constraints.
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This method will add a special type of constraint called a cut. A cut relative to a current
fractional solution satisfies the following criteria [17]:

(1) Every feasible integer solution is feasible for cut, and
(2) The current fractional solution is not feasible for cut. This is illustrated in Figure

2.

Figure 2. A cut of the cutting plane method. [18]

In both the methods, the added constraint will eliminate portions of the relaxed so-
lution space, but never any of the feasible integer points. Neither of the two methods
can be claimed to be uniformly more effective in solving integer linear programs (ILPs).
Nevertheless, branch-and-bound methods are far more successful computationally than
cutting-plane methods. For this reason, most commercial codes are based on the use of
the branch-and-bound procedure.

2.2.3. Finite Element Method

The finite element method (FEM) is a numerical technique for finding approximate
solutions to boundary value problems for partial differential equations; it now enjoys
widespread use in solid and structural mechanics [5, 19]. It uses the subdivision of a
whole problem domain into simpler parts, called finite elements, and variation methods
from the calculus of variations to solve the problem by minimizing an associated error
function. Analogous to the idea that connecting many tiny straight lines can approximate
a large circle, FEM encompasses methods for connecting many simple element equations
over many small subdomains, named finite elements, to approximate a more complex
equation over a larger domain. [20].

FEM is a powerful technique originally developed for the numerical solution of com-
plex problems in structural mechanics and it remains the method of choice for complex
systems. In FEM, the structural system is modeled by a set of appropriate finite elements
interconnected at points called nodes. The elements may have physical properties such
as thickness, coefficient of thermal expansion, density, Youngs modulus, shear modulus,
and Poissons ratio.

The beginning step is the creation of the model area (geometric construction) which
defines boundaries or constraint functions to identify the areas or the shapes of the prob-
lem. Then, the model is separated into the domain of the elements, with each element
consisting of a node (discretization). The next step is that of creating equations (objec-
tive functions (for solving values from the linear or the nonlinear equations. The answer
consists of nodes at the edges of the area which offer the best value in objective functions.
This is illustrated in Figure 3.
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Figure 3. Illustration of a part in the finite element method. [20]

3. Research Methodology

The research study aims to solve an optimization problem using an algorithm that
applies the decomposed element method, as shown in Figure 4.

Figure 4. Steps of the algorithm. [21]

This research study has two phases. The first phase consists of the input data and
simplex method. The second phase is about creating and developing the algorithm via
application of the element decomposing method (EDCM).

Phase 1 consists of the input data and simplex method. This phase is shown at the
left in Figure 4, and is performed as follows.

Step 1.1 The input coefficients, the right-hand side (RHS) in constraint functions,
and coefficients in the objective function follow the mathematical equation form. In the
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case of the traveling salesman problem (TSP), it is the input coefficient in the objective
function. The mathematical equations of the traveling salesman problem have a detailed
format, as follows.

1. The objective function, which is finding the minimum total traveling distance.
2. The constraint functions which include the following equations.
- The constraint function that is the summation of the decision variables traveling from

station i to station j equaling 1 (traveling from station i to station j is permitted only
once).

- The constraint function that is the summation of the decision variables traveling from
station j to station i equaling 1 (traveling from station j to station i is permitted only
once).

- The constraint function which eliminates sub-tours.
- The constraint function which is a decision variable equal to one when traveling from

any station i to any station j, and zero if that condition fails.
The equation of the traveling salesman problem can be written as follows.

MinZ =

n∑
i=1

n∑
j=1

dij Xij (3.1)

Equation (3.1) is the objective function to calculate the minimum total traveling dis-
tance, where dij is the mean traveling distance.

n∑
j=1

Xij = 1, ∀i ε n (3.2)

Equation (3.2) is the summation of the decision variables traveling from station i to
station j equaling 1.

n∑
i=1

Xij = 1, ∀j ε n (3.3)

Equation (3.3) is the summation of the decision variables traveling from station j to
station i equaling 1.

ui − uj +N Xij ≤ N − 1 (3.4)

Equation (3.4) is the constraint function to eliminate sub-tours. i 6= j; i, j = 2, 3, , N ,
where N is the total number of stations.

Xij ε {0, 1} (3.5)

Equation (3.5) is the decision variable which is equal to 1 or 0.

In the case of Example 1 in the traveling salesman problem, it has four stations, as
shown in Table 1.
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Table 1. Distance of Example 1

Station 1 2 3 4
1 M 6 5 13
2 6 M 17 20
3 5 17 M 27
4 13 20 27 M

Coefficient of the objective function =
[
M 6 5 13 6 M 17 20 ... M

]

Coefficient of constraint functions =



1 1 1 1 0 0 0 0 ... 0
0 0 0 0 1 1 1 1 ... 0
0 0 0 0 0 0 0 0 ... 0
0 0 0 0 0 0 0 0 ... 1
1 0 0 0 1 0 0 0 ... 0
0 1 0 0 0 1 0 0 ... 0
0 0 1 0 0 0 1 0 ... 0
0 0 0 1 0 0 0 1 ... 1



RHS of constraint functions =



1
1
1
1
1
1
1
1


Step 1.2 Finding and checking the sizes of the coefficient of the objective function,

coefficient of constraint functions, and right-hand side of constraint functions, which can
be calculated using the following formulas.

Size of coefficient of objective function = 1 × 16 or 1× (number of stations * number
of stations)

Size of coefficient of constraint functions = 16 × 8 or (number of stations * number of
stations) × (number of stations *2)

Size of right-hand side of constraint functions = 1 × 8 or 1 × (number of stations *2)
After that, the number of columns and the number of rows in the objective function

and the constraint functions are examined according to the following conditions.
1. The number of columns in the coefficients of the objective function and the coeffi-

cients of the constraint functions are equal, and equal to the number of stations *number
of stations.

2. The number of rows in the coefficients of the objective function and the RHS of the
constraint functions are equal, and equal to the number of stations *2.

Subsequently, write all the values of the coefficient of the objective function, coefficient
of the constraint functions, and the right-hand side of the constraint functions in a simplex
table adjusted to the standard form but without including the sub-tour function, as shown
in Table 2. Then, adjust to the augmented form as preparation for the simplex method.
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Table 2. Distance of Example 1

Row X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 ... RHS

0 -M -6 -5 -13 -6 -M -17 -20 -5 -17 -M ... 0

1 1 1 1 1 0 0 0 0 0 0 0 ... 1

2 0 0 0 0 1 1 1 1 0 0 0 ... 1

3 0 0 0 0 0 0 0 0 1 1 1 ... 1

4 0 0 0 0 0 0 0 0 0 0 0 ... 1

5 1 0 0 0 1 0 0 0 1 0 0 ... 1

6 0 1 0 0 0 1 0 0 0 1 0 ... 1

7 0 0 1 0 0 0 1 0 0 0 1 ... 1

8 0 0 0 1 0 0 0 1 0 0 0 ... 1

Step 1.3 Solving the problem using the simplex method according to the following
steps.

(1) Checking the variable in row 0 and choosing the entering variable.
(2) Carrying out the ratio test and choosing the leaving variable.
(3) Using the Gaussian elimination method.

Step 1.4 Using sub-tour elimination.
From Step 1.3, while performing the step of choosing the entering variable, there is

a possibility of choosing the variable that leads to the sub-tour. Therefore, blocking of
the variable is done to prevent the sub-tour. For example, X12 consists of entering the
variable, so there is blocking of the variable in X12 and X21 when the block variable value
is determined to be equal to 0, as shown in Table 3. In contrast, each leaving variable
determines the block variable to be equal to 1.

Table 3. Block Variable in Sub-tour Elimination Step

Variable X11 X12 X13 X14 X21 X22 X23 X24 X31 X32 X33 ... X44

Block
Variable

1 0 1 1 0 1 1 1 1 1 1 ... 1

After Step 1.1 to Step 1.4, a node appears in each iteration when it is possible to obtain
nodes as both integer nodes and non-integer nodes.

Phase 2 consists of creating and developing the algorithm via application of the ele-
ment decomposing method (EDCM). This phase is shown at the right in Figure 1, and is
performed as follows.

Step 2.1 Using nodes from phase 1 to check the integer number in each iteration that
starts from the last iteration.

Example 2: The integer problem in the two variables solved by the graph method is shown
in Figure 5, and the Simplex method gives the node in each iteration, as shown in Table
4.
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Objective function: Max z = 4X1 + 3X2

Constraint function: X1 + 2X2 ≤ 9
3X1 + 2X2 ≤ 16
X1, X2 ≥ 0

Figure 5. The feasible region of the example from the graph method.

Table 4. Node of Example Problem 2 from Simplex Method

Iteration X1 X2 Z
Iteration 1 (N1) 0 0 0
Iteration 2 (N2) 5.33 0 21.33
Iteration 3 (N3) 3.5 2.75 22.25

According to Example no. 2, the answer is that the optimal value (Z) = 22.25 is at
node N3 which is (X1, X2) = (3.5, 2.75). However, if it is a pure integer problem, it is
necessary to use the element decomposing method (EDCM) for solving the problem. In
this method, the feasible region is divided into small sub-areas such as those of the integer
unit, or it is the feasible region which has the conner node as the integer node, as shown
in Figure 6.

Step 2.2 Using the nodes in each iteration by making them adjust to integer node by
using the element decomposing method (EDCM) which has three cases, namely Case 1
which is the complete integer node, Case 2 which is the non-complete integer node, and
Case 3 which is the non-integer node, as shown in Table 5.
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Figure 6. The feasible region with the integer problem.

Table 5. Type of Node in Example Problem 2

Iteration X1 X2 Z Type
Iteration 1 (N1) 0 0 0 Complete integer node
Iteration 2 (N2) 5.33 0 21.33 Non-complete integer node
Iteration 3 (N3) 3.5 2.75 22.25 Non-integer node

In Case 2 and Case 3, the non-integer node and the non-complete integer node adjust
to the integer node by using the element decomposing method (EDCM), which is shown
in Figure 7. The number of integer nodes is four, or 2numberofvariable.

The nodes are arranged in order according to the coefficient in each variable. If it is a
minimum problem, arrange them in the ascending order; but, if it is a maximum problem,
arrange them in the descending order, as shown in Table 6.

Table 6. Integer Node after Checking Constraint Functions

Iteration
Original
node

Node a Node b Node c Node d

Iteration 1 (N1) (0, 0) (0, 0) - - -
Iteration 2 (N2) (5.33, 0) (6, 1) (6, 0) (5, 1) (5, 0)
Iteration 3 (N3) (3.5, 2.75) (4, 3) (4, 2) (3, 3) (3, 2)
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Figure 7. Integer node by using the element decomposing method.

Step 2.3 Checking the integer node in each of the constraint functions. This starts
from the node arranged in Step 2.2, as shown in Figure 8 and Table 7.

Figure 8. The integer node after checking the constraint function.

Table 7. Integer Node by Using Element Decomposing Method

Iteration
Original
node

Node a Node b Node c Node d

Iteration 1 (N1) (0, 0) (0, 0) - - -
Iteration 2 (N2) (5.33, 0) (6, 1) (6, 0) (5, 1) (5, 0)
Iteration 3 (N3) (3.5, 2.75) (4, 3) (4, 2) (3, 3) (3, 2)

Step 2.4 Finding the value in the objective function using the integer node after
checking the constraint function (from Step 2.3), which is shown in Table 8.



Application of Element Decomposing Method ... 1727

Table 8. Integer Node and Value

Iteration
Original
node

Node a Node b Node c Node d

Iteration 1 (N1)
(0, 0)
Z = 0

(0, 0)
Z = 0

- - -

Iteration 2 (N2)
(5.33, 0)

Z = 21.33
(6, 1)

Z = 27
(6, 0)

Z = 24
(5, 1)

Z = 23
(5, 0)

Z = 20

Iteration 3 (N3)
(3.5, 2.75)
Z = 22.25

(4, 3)
Z = 25

(4, 2)
Z = 22

(3, 3)
Z = 21

(3, 2)
Z = 18

Checking all the points may need a lot of time, so there are steps for checking and
finding the answers in order to reduce length of time, as shown in Figure 9.

Figure 9. Steps for checking the node at each iteration. [21]

The node from the last iteration is firstly considered for use in checking the constraint
function (checking the feasible region) under the condition that it can pass all the con-
straint functions. After that, the value from the objective function is calculated. When
the node passes the condition, and stops at that step in the rest of the nodes in that
iteration, the node from the checking acts as the candidate of that iteration.

The first node of each iteration, in the cases of both the non-integer node and the
non-complete integer node, is out of the feasible region, or it cannot pass the constraint
function of at least one equation, such as Node3a and Node2a.

After that, a comparison is made between the value in one iteration and that in the
next iteration. If the result shows the value to be greater than that of the Maximum
Problem or less than that of the Minimum Problem, examining for the answer to this
problem must be stopped. If the result does not show, it is necessary to get the candidate
of the new node in the next iteration of checking.

In Example 2 and Figure 10, it starts from Node3a (Iteration 3) as (X1, X2) = (4, 3)
which cannot pass the condition of the constraint function no.2; 3*(4) + 2*(3) = 18 >
16. Now we consider Node3b.
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Figure 10. Steps for checking the node and finding the value in each
iteration in Example 2.

Then, consider Node3b as (X1, X2) = (4, 2) which can pass the conditions of both of
the constraint functions and possess the value (Z) = 22. After that, stop the examination
at iteration 3, which would make Node3b become the candidate of the iteration 3.

Subsequently, consider the value from Node3b in comparison to that from Node2 and
determine that Node3b is higher than Node2 (22 > 21.33). Then, stop the examination
for the answer to the problem when the answer is at Node3b as (X1, X2) = (4,2) and
value (Z) = 22.

Accordingly, the element decomposing method provides a feasible region where the
Conner node is the integer node, as shown in Figure 11.

Figure 11. Feasible region from EDCM in each of the iterations.

4. Result and Discussion

A comparison of results was carried out between the results from the algorithm obtained
by the application of the element decomposing method (EDCM) and the results from other
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algorithms such as ant colony optimization (ACO) and exact solution (B&B method).
The results from four methods focus on the values and the time consumed, as shown
in Table 9. As far as the problem is concerned, it can be solved with the number of
cities, which are 6, 12, 22, 29, 30, 32, 50, 75, 100, 113, 237 and 343. The data with the
problem of Symmetry-TSP are from the database OR Library and NSERC.These results
are compared by percentages of difference in terms of value and time consumed, as shown
in Table 10.

Table 9. Values and Time Consumed

NO.
Station

Value (Distance) Time consumed
B&B EDCM ACO B&B EDCM ACO

6 66 66 66 1 1 1
12 132 132 132 10 1 1
22 469 476 476 1750 1 2
29 - 534 513 - 1 4
30 - 311 275 - 1 5
32 - 414 418 - 2 5
50 - 481 496 - 7 17
75 - 589 620 - 25 75
100 - 751 778 - 46 194
113 - 501 539 - 133 249
237 - 1220 1344 - 479 3656
343 - 1774 1852 - 8711 21626

Table 10. Percentages of Difference in Terms of Value and Time Consumed

NO.
Station

B&B vs EDCM ACO vs EDCM

Value
Time

consumed
Value

Time
consumed

6 0% 0% 0% 0%
12 0% 90% 0% 0%
22 1% 100% 0% 50%
29 - - 4% 75%
30 - - 13% 80%
32 - - 1% 60%
50 - - 3% 59%
75 - - 5% 67%
100 - - 3% 76%
113 - - 7% 47%
237 - - 9% 87%
343 - - 4% 60%

Based on Table 9, the results are solved by ACO and EDCM that can resolve prob-
lems for 343 stations. However, the exact solution method has the capability to resolve
problems for 22 stations.
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Table 10 shows the percentages of difference in terms of time consumed and value when
a comparison is made between the exact method, ACO, saving algorithm, and EDCM.
When compared with the exact method, the values in the cases of 6 cities and 12 cities
are the same when the value of the difference in the answer is at an average of 0.50% and
that in the less time used for solving the problem is at an average of 63.31%. In addition,
when it is compared to ACO, it can be found that EDCM provides better results in the
case of the values at 1.31% and less time consumed at 55.00%.

This can be established in the following two categories:
1. Small number of stations: The values of the EDCM, ACO, and the exact method

are equal or with a minor difference and the time consumed is short for problem-solving.
2. Large number of stations: The results of the EDCM and ACO are very different

(not identical) and the time consumed is very short. EDCM provides better value in the
case of large number of stations.
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