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1. Introduction

In algebra and also in other fields of Mathematics, associative operations on a given
set of mathematical objects are defined and the resulting structures, which are called
semigroups, are studied. Let us mention for example the following sets of mathematical
objects: transformations on a given set (transformation semigroups); partitions (diagram
monoids); matrices of given type (matrices semigroups); Boolean operations on a given
set; but also linear transformations in a Hilbert space. In particular, the set on which
the associative operation is defined can be the power set of a given set. For example,
such semigroups were already studied in the case of tree languages [1] and in the case of
Boolean operations on a finite set [2, 3]. In the present paper, we consider a semigroup
whose universe consists of sets of full transformations on a finite set, where the image is in
a fixed two-element subset of this set. This semigroup can be regarded as a representation
of a semigroup of sets of Boolean operations. This justifies that we restrict us to trans-
formations with image in a two-element set. The purpose of this paper is a description
of the algebraic structure of this semigroup. First results are published in [4]. Let X be
a finite set, let Y := {y1, y2} be a two-element subset of X, and denote by T (X,Y ) the
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semigroup (under composition) of all full transformations on the set X with image in Y .
This semigroup is called semigroup of transformations with restricted range Y [5] and is
studied by several authors [6–10]. It is interesting to note that several subsets of T (X,Y )
have an important interpretation in the automata theory and thus in the wider sense
also in the Theoretical Computer Sciences, namely as non-deterministic transformations.
A non-deterministic transformation from X in Y is a mapping αnd from X in the set
{Y, {y1}, {y2}} of all non-empty subsets of Y [11]. In an algebraic setting, αnd can be
regarded as a set of transformations {α ∈ T (X,Y ) : xα ∈ xαnd for all x ∈ X}, i.e. as an
element of the set TP (X,Y ) of all non-empty subsets of T (X,Y ).
In a canonical way, one can define an associative operation · on the set TP (X,Y ) by

A ·B := {αβ : α ∈ A, β ∈ B},
i.e. TP (X,Y ) forms a semigroup under the operation ·. We will write AB rather than
A · B. For sets K,L ⊆ TP (X,Y ), we put KL := {AB | A ∈ K,B ∈ L}. If K is a
singleton set K = {A} then we write AL rather than {A}L. Dually, we write KB rather
than K{B}, whenever L is a singleton set {B}. It is interesting to note that the set
of non-deterministic transformations from X to Y forms a subsemigroup of TP (X,Y ).
On the other hand, each semigroup of binary relations on X with codomain in Y is a
subsemigroup of TP (X,Y ). Note that semigroups of binary relations on X are studied
intensively. In particular, R. J. Plemmons and M. T. West characterized the Green’s
relations [12].
In 2016, the authors of this paper determined the maximal idempotent subsemigroups and
the maximal regular subsemigroups of TP (X,Y ) [13]. The semigroup TP (X,Y ) had been
already studied by Y. Susanti several years ago, but from a different point of view, namely
as the multiplicative reduct of the semiring associated to the semigroup of Boolean oper-
ations on a finite set. In particular, she determined the k-regular elements of TP (X,Y )
in [3].
For the study of TP (X,Y ), the structure of the monoid T (X,Y ) is central. Therefore, we
summarize several important facts about T (X,Y ). Since |Y | = 2, it is obvious to define
a unary operation ∗ on T (X,Y ) by

xα∗ :=

{
y1 if xα = y2;
y2 if xα = y1.

Clearly, (α∗)∗ = α for any α ∈ T (X,Y ) and we put A∗ := {α∗ | α ∈ A} for A ∈
TP (X,Y ) . Moreover, α restricted to Y is one of the four full transformations on Y :(
y1 y2
y1 y2

)
,

(
y1 y2
y2 y1

)
,

(
y1y2
y1

)
, and

(
y1y2
y2

)
. We can decompose T (X,Y ) in four

sets, namely in

T1 := {α ∈ T (X,Y ) : yiα = yi for i = 1, 2},
T2 := T∗1,
T3 := {α ∈ T (X,Y ) : y1α = y2α = y1}, and
T4 := T∗3 = {α ∈ T (X,Y ) : y1α = y2α = y2}.

Recall that T (X,Y ) is a so-called 4-part semigroup [2]. This concept of 4-part semi-
group is essential in the present paper and can be used only in the case |Y | = 2. For solving
similar problems in the case |Y | > 2, one has to search for other tools. Analogously, one
can decompose any A ∈ TP (X,Y ) in four (also possible empty) sets:
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Ai := A ∩Ti for i = 1, 2, 3, 4.

It is easy to verify that αβ = α and αβ∗ = α∗ for any α ∈ T (X,Y ) and β ∈ T1.
In particular, T1 operates as a right-identity element, more precisely, for any A,B ∈
TP (X,Y ) with B1 6= ∅, it holds A ⊆ AB and A = AB, whenever B1 = B. This becomes
clear by the fact that T1 consists of all idempotents in T (X,Y ), except of the constant

mappings. So, there are exactly 22
n−2 − 1 right-identity elements in TP (X,Y ). Note that

T (X,Y ) contains exactly two constant mappings, denoted by c1 and c2, with the image
y1 and y2, respectively. Clearly, c∗1 = c2 and AB = {ci} for any A ∈ TP (X,Y ) and
B ⊆ T2+i, i ∈ {1, 2}. This shows that TP (X,Y ) has no identity element and it is not a
monoid, but becomes a monoid TP (X,Y )1 adding an identity element, denoted by 1.
The structure of a semigroup can be described very well by its Green’s relations as well
as by the ideals. S. Mendes-Gonçalves and R. P. Sullivan [8] described the ideal structure
of the semigroups with restricted range. The Green’s relations on these semigroups were
described by J. Sanwong and W. Sommanee [9]. In particular, a characterization of all
minimal and maximal congruences on a semigroup of transformations with restricted
range is given in [14]. Here, we will characterize the Green’s relations and their greatest
included congruences as well as the (left, right, and two-sided) ideals of the semigroup
TP (X,Y ). Recall that a subset I ⊆ TP (X,Y ) is called left (right) ideal if TP (X,Y )I ⊆ I
(and ITP (X,Y ) ⊆ I, respectively). If I is both a left ideal and a right ideal then it is
called two-sided ideal (for short: ideal). In particular, we have TP (X,Y )ITP (X,Y ) ⊆ I,
whenever I is an ideal. Let L,R, H, and J (= D) be the Green’s relations on TP (X,Y ),
with other words

ALB ⇔ ∃P,Q ∈ TP (X,Y )1
(
PA = B,QB = A

)
,

ARB ⇔ ∃P,Q ∈ TP (X,Y )1
(
AP = B,BQ = A

)
,

AHB ⇔ ALB and ARB, and
AJB ⇔ ∃P1, P2, Q1, Q2 ∈ TP (X,Y )1

(
P1AP2 = B,Q1BQ2 = A

)
.

Since J = D, we have J = L◦R = R◦L = {(A,B) : there is D ∈ TP (X,Y ) with (A,D) ∈
L and (D,B) ∈ R}. One of the purposes of this paper is the characterization of the
Green’s relations. Sets containing only constant mappings have particular properties.
It is routine to verify that the set of the non-empty subsets of the set C := {c1, c2} of
constant mappings forms an R-class as well as a J -class. But each non-empty subset
A ⊆ C forms a singleton L-class {A} but not an R-class. Therefore, the main work will
be the description of the ρ-classes, for ρ ∈ {L,R,H,J }, whose representatives A do not
be contained in C, i.e. AC := A ∩ C 6= A.
Notice that neither the right-congruence L nor the left-congruence R nor one of the
relations H and J is a congruence in general. But we determine the greatest congruence
ρ© contained in ρ, i.e.

ρ© :=
{

(A,B) ∈ ρ : ∀P,Q ∈ TP (X,Y )1
(
(PAQ,PBQ) ∈ ρ

)}
will be described, for ρ ∈ {L,R,H,J }. The given description will base on the character-
ization of the respective Green’s relation.
In the next section, we characterize the Green’s relations R,L,H, and J , respectively.
Section 3 is devoted to the ideal structure of TP (X,Y ). We characterize the left ideals as
well as the right ideals. In particular, we are able to provide a constructive description of
the ideals and the principal ideals.
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2. Green’s Relations

We begin with the characterization of the relationR and of the greatest congruenceR©
contained inR. As already mentioned, {C, {c1}, {c2}} is anR-class. The characterization
of the relation R will show that the remaining R-classes contain at most two elements.

Lemma 2.1. Let A,B ∈ TP (X,Y ). If ARB then A,B ⊆ C or |AC| = |BC|.

Proof. Suppose that ARB with |AC| 6= |BC|, say |AC| < |BC|. Then there is a set
V ∈ TP (X,Y ) with A = BV . Since |(BC)α| = |BC| for any α ∈ T1 ∪T2, from A = BV
and |AC| < |BC|, we conclude V ⊆ T3 ∪T4 and thus A = BV ⊆ C. Since {C, {c1}, {c2}}
forms an R-class, we have B ⊆ C, too.

Proposition 2.2. Let A,B ∈ TP (X,Y ) with A 6= B. Then ARB if and only if A,B ⊆ C
or B = A∗.

Proof. Suppose that ARB. Then there is V ∈ TP (X,Y ) with B = AV . If V1 ∪ V2 = ∅
then B = AV ⊆ A(T3 ∪T4) = C and thus A ⊆ C since {C, {c1}, {c2}} is an R-class. If
V1 6= ∅ and V2 = ∅ then B = AV = A∪A(V3 ∪V4), which provides A,B ⊆ C. Otherwise,
we have |AC| = |BC| by Lemma 2.1 and B = A ∪A(V3 ∪ V4) implies A(V3 ∪ V4) ⊆ A, i.e.
A = B, a contradiction. It remains to consider that either V1 = ∅ and V2 6= ∅ or V1 6= ∅
and V2 6= ∅, i.e. B = A∗∪A(V3∪V4) or B = A∪A∗∪A(V3∪V4), respectively. Suppose that
A,B * C. Lemma 2.1 implies |AC| = |BC|, i.e. A(V3∪V4) ⊆ A∗ and A(V3∪V4) ⊆ A∪A∗,
respectively. Thus, B = A∗ or B = A ∪ A∗. Dually, we obtain A = B∗ (i.e. B = A∗)
or A = B ∪ B∗, whenever A,B * C. The case A = B ∪ B∗ and B = A ∪ A∗ is not
possible. Otherwise, we have A = B ∪B∗ = B ∪ (A ∪A∗)∗ = B ∪ (A∪A∗) = B ∪B = B,
a contradiction.
The converse direction is clear.

An immediately consequence of Proposition 2.2 is the fact that the R-classes are of
the form {A,A∗} for all A ∈ TP (X,Y ) with A 6= AC. Obviously, R is not a congruence.
But we can verify that R© consists of all non-singleton classes {A,A∗} with C $ A ∈
TP (X,Y ), together with {C, {c1}, {c2}}, as the following proposition will show.

Proposition 2.3. R© = {(A,A) : A ∈ TP (X,Y )}∪{(A,B) : ∅ 6= A,B ⊆ C}∪{(A,A∗) :
C ⊆ A ∈ TP (X,Y )}.

Proof. Clearly, {(A,A) : A ∈ TP (X,Y )} ⊆ R©. Let U, V ∈ TP (X,Y )1. Further,
let ∅ 6= A,B ⊆ C. Then (A,B) ∈ R and UAV,UBV ⊆ C and (UAV,UBV ) ∈ R by
Proposition 2.2. Let now C ⊆ A ∈ TP (X,Y ). Then (A,A∗) ∈ R. Since A1 = AT1,
we can skip the case V = 1. So, we have UAV = (UA)V1 ∪ (UA)V2 ∪ UA(V3 ∪ V4) and
UBV = (UB)V1∪(UB)V2∪UB(V3∪V4) for B := A∗. If V1∪V2 = ∅ then UAV,UBV ⊆ C,
i.e. (UAV,UBV ) ∈ R by Proposition 2.2. Admit that V1 ∪ V2 6= ∅. Then UA(V3 ∪ V4) ⊆
C ⊆ A ⊆ UAV1 ∪ UAV2 as well as UB(V3 ∪ V4) ⊆ C ⊆ B ⊆ UBV1 ∪ UBV2. If V1 6= ∅
and V2 = ∅ then AV = A and BV = B. If V1 = ∅ and V2 6= ∅ then AV = A∗ = B and
BV = B∗ = A. In both cases, we have (AV,BV ) ∈ R and thus (UAV,UV B) ∈ R since
R is a left-congruence. Finally, if V1, V2 6= ∅ then UAV = UAV1 ∪ UAV2 = UA ∪ UA∗ =
UB∗ ∪ UB = UBV2 ∪ UBV1 = UBV , i.e. (UAV,UBV ) ∈ R.
Conversely, let (A,B) ∈ R©. Then, (A,B) ∈ R. By Proposition 2.2, it remains to
consider the case A = B∗. Assume that C * A (and thus B 6= A 6= AC). Without
loss of generality, we assume that c1 /∈ A. We choose U = 1 and V = T1 ∪ {c1}, i.e.
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UAV = A ∪ {c1} and UBV = B ∪ {c1}. Note that c∗1 = c2 /∈ B = A∗. This shows
(A ∪ {c1})∗ = A∗ ∪ {c2} = B ∪ {c2}. Thus, (A ∪ {c1}, B ∪ {c1}) /∈ R by Proposition 2.2,
i.e. (UAV,UBV ) /∈ R, a contradiction.

On the other hand, we have eight L-classes of size greater than one. It is a straight-
forward consequence of the following proposition characterizing the relation L. Only the
sets A ∈ TP (X,Y ) with either A ⊆ T3 ∪T4 or A1, A2 6= ∅ and A \AC 6= (A \AC)∗ form
singleton L-classes.

Proposition 2.4. Let A,B ∈ TP (X,Y ) with A 6= B. Then ALB if and only if the
following four statements are satisfied:
(i) Ai+2 6= ∅ ⇐⇒ Bi+2 6= ∅ ⇐⇒ ci ∈ A ∩B for i ∈ {1, 2};
(ii) A1 ∪A2 6= ∅ and B1 ∪B2 6= ∅;
(iii) A1 = ∅ or A2 = ∅ if and only if B1 = ∅ or B2 = ∅;
(iv) if A1, A2 6= ∅ then B \BC = (B \BC)∗.

Proof. Suppose that ALB. Then there are V,W ∈ TP (X,Y ) such that A = V B and
B = WA. This implies AC = BC.
Let i ∈ {1, 2} and admits that Ai+2 6= ∅. Then we obtain ci ∈ WA = B, i.e. ci ∈ BC =
AC ⊆ A∩B. Thus, Ai+2 6= ∅ if and only if ci ∈ A∩B. Dually, we can check that Bi+2 6= ∅
if and only if ci ∈ A ∩B. This shows (i).
Assume that A1 ∪ A2 = ∅. Then B = WA ⊆ W (T3 ∪ T4) ⊆ C and thus A = V B ⊆
V C ⊆ C. This provides A = AC = BC = B, a contradiction. Hence, A1 ∪ A2 6= ∅ and we
can show B1 ∪B2 6= ∅ dually. So, (ii) is shown.
We observe that W ⊆ WA = B if A1 6= ∅, V ⊆ V B = A if B1 6= ∅, W ∗ ⊆ WA = B if
A2 6= ∅, and V ∗ ⊆ V B = A if B2 6= ∅. Thus, W ∪W ∗ ⊆WA and V ∪V ∗ ⊆ V B, whenever
A1, A2 6= ∅ and B1, B2 6= ∅, respectively. Let A1 = ∅ or A2 = ∅ and assume that B1 6= ∅
and B2 6= ∅. Then V ∪V ∗ ⊆ V B = A implies V ⊆ T3∪T4, i.e. A ⊆ (T3∪T4)B ⊆ T3∪T4,
a contradiction to (ii). Hence, B1 = ∅ or B2 = ∅. Dually, we can show the converse
implication in (iii). Consequently, we have (iii).
Suppose that A1, A2 6= ∅. Then W (A1 ∪ A2) = W ∪ W ∗ and B = WA = W (A1 ∪
A2) ∪W (A3 ∪A4) = W ∪W ∗ ∪W (A3 ∪A4), where W (A3 ∪A4) ⊆ BC. Thus, B \BC =
(W ∪W ∗)\C. If (W ∪W ∗)∩C = ∅ then B\BC = (W ∪W ∗)\C = W ∪W ∗ = (W ∪W ∗)∗ =
((W ∪W ∗) \ C)∗ = (B \BC)∗. If (W ∪W ∗) ∩ C 6= ∅ then C ⊆ W ∪W ∗, BC ⊆ C, and it
is easy to verify that ((W ∪W ∗) \ C)∗ = (W ∪W ∗) \ C. Thus, (B \BC)∗ = B \BC. So,
(iv) is shown.
For the converse direction, we assume that (i), (ii), (iii), and (iv) hold. Suppose that
A1 6= ∅ and A2 = ∅. Then we have BA = B ∪B(A3 ∪A4). By (i), we can calculate that
B(A3 ∪A4) ⊆ B and thus BA = B. We can verify that B∗A = B, whenever A1 = ∅ and
A2 6= ∅, similarly. Because of (ii) and (iii), it remains the case A1, A2 6= ∅. Here, we have
B \ BC = (B \ BC)∗ by (iv). Moreover, we obtain (B \ BC)(A3 ∪ A4) = BC by (i). This
provides (B \ BC)A = (B \ BC) ∪ (B \ BC)∗ ∪ (B \ BC)(A3 ∪ A4) = (B \ BC) ∪ BC = B.
Daully, we can conclude that AB = A or A∗B = A or B1, B2 6= ∅. In the later case, we
can verify that A \ AC = (A \ AC)∗ and thus (A \ AC)B = A by the same arguments as
above. Consequently, ALB.

Splitting four of the eight non-singleton L-classes, one obtains a congruence.

Proposition 2.5. L© is the set of all (A,B) ∈ TP (X,Y )2 such that A = B or the
following four properties are satisfied:
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(i) Ai+2 6= ∅ ⇐⇒ Bi+2 6= ∅ ⇐⇒ ci ∈ A ∩B for i ∈ {1, 2};
(ii) A1 ∪A2 6= ∅ and B1 ∪B2 6= ∅;
(iii) Ai = ∅ if and only if Bi = ∅ for i ∈ {1, 2};
(iv) if A1, A2 6= ∅ then B \BC = (B \BC)∗.

Proof. Suppose that (A,B) ∈ L©. Then (A,B) ∈ L and we have A = B or all the
properties, except of (iii), are satisfied. So, we have to show (iii). Assume that A 6= B
and there is i ∈ {1, 2} with Ai = ∅ and Bi 6= ∅ or conversely. Without loss of generality,
we can assume that A1 = ∅ and B1 6= ∅. Then A2 6= ∅ by (ii) and we can see that
T3A1 = T3A = T∗3 ∪ C = T4 ∪ C. On the other hand, we have T3 ⊆ T3B = T3B1.
This shows T3A1 6=T3B1 but (T3A1)1 ∪ (T3A1)2 = ∅, i.e. (T3A1,T3B1) /∈ L by
Proposition 2.4, a contradiction.
Conversely, suppose that A = B or that (i), (ii), (iii), and (iv) are valid. Since A = B
implies (A,B) ∈ L©, we have only to consider the latter case. Let U, V ∈ TP (X,Y )1.
First, we admit that U is not the identity element. Then we calculate

U(A1 ∪A2), U(B1 ∪B2) =

 U if A1, B1 6= ∅ and A2, B2 = ∅
U∗ if A1, B1 = ∅ and A2, B2 6= ∅

U ∪ U∗ if A1, B1 6= ∅ and A2, B2 6= ∅.
By (ii) and (iii), we have shown U(A1∪A2) = U(B1∪B2). Further, we have U(A3∪A4) =
{ci : i ∈ {1, 2}, Ai+2 6= ∅} = {ci : i ∈ {1, 2}, Bi+2 6= ∅} = U(B3 ∪ B4) by (i).
Consequently, UA = UB, UAV = UBV , and thus (UAV,UBV ) ∈ L. Finally, we have to
check the case U = 1. It is enough to check that (A,B) ∈ L since L is a right- congruence.
In fact, it remains to justify that A1 = ∅ or A2 = ∅ if and only if B1 = ∅ or B2 = ∅. But
this is a straightforward consequence of (iii).

Next, we will examine the Green’s relation H,which is the intersection between the
relations L and R.

Proposition 2.6. H is the set of all (A,B) ∈ TP (X,Y )2 such that A = B or A = B∗

with the following conditions:
(i) A3 ∪A4 6= ∅ ⇔ C ⊆ A;
(ii) either A1 = ∅ or A2 = ∅.

Proof. Let AHB. Then ALB and ARB. Since ARB then by Proposition 2.2, A = B
or A,B ⊆ C or A = B∗. Suppose that A,B ⊆ C. By Proposition 2.4(i) it follows that
A = B. Suppose now that neither A = B nor A,B ⊆ C, i.e. A = B∗. Let A3 ∪ A4 6= ∅.
Therefore A3 6= ∅ or A4 6= ∅. It follows that c1 ∈ A∩B or c2 ∈ A∩B by Proposition 2.4(i).
Without loss of generality let c1 ∈ A, then c2 ∈ B∗ since A = B∗. By Proposition 2.4(i),
c2 ∈ A. Therefore, C ⊆ A. The converse direction is clear. This shows (i).
Next, we want to show (ii). From Proposition 2.4(ii), it follows that A1 6= ∅ or A2 6= ∅.
Assume that A1 6= ∅ and A2 6= ∅. If BC 6= ∅ then AC 6= ∅ since A = B∗. It follows that
A3∪A4 6= ∅. Then C ⊆ A by (i). Therefore, AC = C = BC. Hence, B \C = B \BC. From
this and from Proposition 2.4(iv), B\C = B\BC = (B\BC)∗ = B∗\BC = B∗\C = A\C.
Therefore, A = B, a contradiction. If BC = ∅ then AC = ∅ since A = B∗. Then
B = B \ BC = (B \ BC)∗ = B∗ = A, a contradiction. That means A1 6= ∅ and A2 6= ∅ is
not possible. Hence, either A1 6= ∅ or A2 6= ∅.
Conversely, let (A,B) ∈ TP (X,Y )2 such that A = B or A = B∗ with conditions (i) and
(ii). We have to show that ALB and ARB. If A = B all is clear. Suppose now that
A 6= B and A = B∗ with conditions (i) and (ii). Then Proposition 2.2 provides ARB.
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It remains to show that ALB. Let i ∈ {1, 2} and Ai+2 6= ∅. Then A3 ∪A4 6= ∅. By (i) we
get C ⊆ A and thus, C ⊆ B (since A = B∗). So C ⊆ A∩B. If Bi+2 6= ∅ then B3∪B4 6= ∅.
It follows that A3 ∪ A4 6= ∅ since A = B∗. Then C ⊆ A by (i) and C ⊆ B since A = B∗.
Therefore ci ∈ A∩B. This shows (i) of Proposition 2.4. By (ii), we conclude A1∪A2 6= ∅.
Then B1 ∪ B2 6= ∅ since A = B∗. This shows (ii) of Proposition 2.4. The condition (iii)
of Proposition 2.4 is clear since A = B∗. Since A1, A2 6= ∅ is not possible, condition (iv)
of Proposition 2.4 is true, trivially.

The relation H© is the intersection of L© and R© and it is described in the next
proposition.

Proposition 2.7. H© is the set of all (A,B) ∈ TP (X,Y )2 such that A = B.

Proof. If A = B then (A,B) ∈ R© ∩ L© = H©. If (A,B) ∈ H© then (A,B) ∈ R©
and (A,B) ∈ L©. From Proposition 2.3, we obtain A = B or A,B ⊆ C or A = B∗

with C ⊆ A. Assume now that A 6= B. Then A,B ⊆ C or A = B∗ with C ⊆ A. The
case A,B ⊆ C is not possible since Proposition 2.5(ii). In the remaining case, we obtain
C ⊆ B = A∗ and A \ C = B∗ \ C = (B \ C)∗ = (B \ BC)∗ = B \ BC = B \ C by
Proposition 2.5(iv), i.e. A = B, a contradiction.

We finish this section with the description of J . Here, we have seven equivalence classes
with more than two elements. One of them is the three element set {C, {c1}, {c2}}. In
fact, if A,B ⊆ C then 1AB = B and 1BA = A.

Proposition 2.8. Let A 6= B ∈ TP (X,Y ) with A,B * C. Then AJB if and only if
A∗ = B or the following four statements are satisfied:
(i) |AC| = |BC| and Ai+2 6= ∅ ⇔ ci ∈ A and Bi+2 6= ∅ ⇔ ci ∈ B for i ∈ {1, 2};
(ii) A1 ∪A2 6= ∅ and B1 ∪B2 6= ∅;
(iii) A1 = ∅ or A2 = ∅ if and only if B1 = ∅ or B2 = ∅;
(iv) if A1, A2 6= ∅ then B \BC = (B \BC)∗.

Proof. Suppose AJB. Then there is Q ∈ TP (X,Y ) such that (A,Q) ∈ L and (Q,B) ∈
R, i.e. B∗ = Q or B = Q by Proposition 2.2. If B = Q then (A,B) ∈ L implies
(i) − (iv), obviously. So, we suppose that B 6= Q, i.e. (A,B∗) ∈ L. Additional, we
suppose that A∗ 6= B, i.e. A 6= B∗. Note that (D1)∗ = (D∗)2, (D2)∗ = (D∗)1, and
(D1)∗ ∪ (D2)∗ = (D1 ∪ D2)∗ for all D ∈ TP (X,Y ) (we will call it ”Fact 1” ). Using
Fact 1 and Proposition 2.4 (ii)− (iv), from (A,B∗) ∈ L, we obtain (ii)− (iv) by simple
calculations. It remains to show (i). From Proposition 2.4 (i), we have AC = (B∗)C, and
thus |AC| = |(B∗)C| = |BC|. Let k ∈ {1, 2} and i ∈ {1, 2} such that i + k = 3. From
Proposition 2.4 (i), we have (B∗)i+2 6= ∅ ⇔ ci ∈ B∗ and Ai+2 6= ∅ ⇔ ci ∈ A. Note that
(B∗)i+2 6= ∅ ⇔ (Bk+2)∗ 6= ∅ ⇔ Bk+2 6= ∅ and ci ∈ (B∗)i+2 ⇔ ci ∈ (Bk+2)∗ ⇔ (ci)

∗ =
ck ∈ Bk+2. Thus, we get cj ∈ A ⇔ Aj+2 6= ∅ and cj ∈ B ⇔ Bj+2 6= ∅ for all j ∈ {1, 2}.
Altogether, we have shown (i).
Conversely, suppose that A∗ = B or (i)− (iv) are satisfied. If A∗ = B then (A,A∗) ∈ R
and (B,B) ∈ L implies AJB.
Suppose now that A∗ 6= B and (i)− (iv) are satisfied. Suppose AC = BC. Then from (i),
we get Bi+2 6= ∅ ⇔ ci ∈ A ∩ B ⇔ Ai+2 6= ∅. This satisfies (i) in Proposition 2.4. It is
easy to see that (ii) − (iv) imply the remaining items in Proposition 2.4. Altogether we
get (A,B) ∈ L. Therefore, (A,B) ∈ J since (A,B) ∈ L and (B,B) ∈ R.
Require now AC 6= BC. This implies |AC| = |BC| = 1. Without loss of generality, let
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c1 ∈ AC \ BC and c2 ∈ BC \ AC. Then (c2)∗ = c1 ∈ (B∗)C. By the condition (i), we
have B3 = ∅ and A4 = ∅ since c1 /∈ B and c2 /∈ A, respectively. Using Fact 1, we obtain
(B∗)4 = ∅, where c2 = c∗1 /∈ (B3)∗ = (B∗)4 and c1 = c∗2 ∈ (B4)∗ = (B∗)3. This shows that
Ai+2 6= ∅ ⇔ (B∗)i+2 6= ∅ ⇔ ci ∈ A∩B∗, for i = 1, 2, i.e. (i) in Proposition 2.4 is valid for
A and B∗. The items (ii)− (iv) can be shown for A and B∗ using Fact 1 again by simple
calculations. Altogether, we get (A,B∗) ∈ L. Therefore, (A,B) ∈ J since (B∗, B) ∈ R.

Notice that representatives of the equivalence classes with more than two elements are
T1, T1∪T2, T1∪T3, T1∪T2∪T3, T1∪T3∪T4, T (X,Y ) and C. Finally, we determine
the largest congruence in J .

Proposition 2.9. J© is the set of all (A,B) ∈ J such that A = B or AC = A or the
following both statements are true
(i) C ⊆ A,B, whenever A = B∗ 6= B or either A1 = ∅ or B1 = ∅;
(ii) AC = BC.

Proof. Let (A,B) ∈ J© with A 6= B and AC 6= A. Assume that AC 6= BC. Then BC 6= B
and without loss of generality, we can assume that c1 ∈ B \A. Let

A : = 1A(T1 ∪T4) = A ∪ {c2} and

B : = 1B(T1 ∪T4) = B ∪ {c2}.
Because of A,B * C and BC = C 6= {c2} = AC, we conclude |AC| 6= |BC| and A 6= B.

Thus, (A,B) /∈ J , a contradiction. So, we have still to show (i) using AC = BC.
Assume that C * A,B and either A1 = ∅ or B1 = ∅. Without loss of generality, we can
assume that c1 /∈ A, A1 = ∅, and B1 6= ∅. Then c1 /∈ B (since AC = BC ) and B2 = ∅ and
A2 6= ∅ (by Proposition 2.8 (ii), (iii)). We put

Â : = (T4 \ {c2})A(T1 ∪ {c2}) = (T3 \ {c1}) ∪ {c2} and

B̂ : = (T4 \ {c2})B(T1 ∪ {c2}) = T4.

Note that Â, B̂ * C but Â, B̂ ⊆ T3 ∪ T4. Since (T3 \ {c1}) ∪ {c2} is different to T4 as

well as to (T4)∗ = T3, we conclude that (Â, B̂) /∈ J , a contradiction. Next, assume that
A = B∗ 6= B and C * A,B. Since BC = AC = (B∗)C, we obtain AC = BC = ∅, i.e.
A,B ⊆ T1 ∪T2 by Proposition 2.8 (i). If A1, A2 6= ∅ then let us consider the sets

Ã : = 1A(T1 ∪T4) = A ∪ {c2} and

B̃ : = 1B(T1 ∪T4) = B ∪ {c2}.

Since Ã, B̃ * C, Ã 6= B̃, Ã 6= (B̃)∗ = A∪{c1}, and Ã\C = A 6= B = A∗ = (Ã\C)∗ (where

Ã1, Ã2 6= ∅), we can conclude that (Ã, B̃) /∈ J (by Proposition 2.8 (iv)), a contradiction.
Finally, we suppose that A1 = ∅ or A2 = ∅. Without loss of generality, we assume
that A1 = ∅ and thus B2 = ∅ (since A = B∗). Here, we have A2 6= ∅ and B1 6= ∅ by
Proposition 2.8 (ii). Let us consider the sets

Ǎ : = T1A(T1 ∪ {c1}) = T4 ∪ {c2} and

B̌ : = T1B(T1 ∪ {c1} = T3.

It is easy to verify (by Proposition 2.8) that (T4 ∪ {c1},T3) /∈ J , i.e. (Ǎ, B̌) /∈ J , a
contradiction.
Conversely, let (A,B) ∈ J with A = B or A = AC or such that (i) and (ii) are satisfied. If
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A = B then (A,B) ∈ J , obviously. Further let U, V ∈ TP (X,Y )1. If A = AC, i.e. A,B ⊆
C, then UAV,UBV ⊆ C, i.e. (UAV,UBV ) ∈ J . Suppose now that AC 6= A 6= B but (i)
and (ii) are satisfied. Admit that A = B∗. Then C ⊆ A,B by (i). If either V1 6= ∅ and
V2 = ∅ or V = 1 then UAV = UA = UB∗ = U(BT2) = (UB)T2 = (UB)∗ = (UBV )∗.
If V1 = ∅ and V2 6= ∅ then UAV = UAT2 = UBT2T2 = (UBT2)T2 = (UBV )∗. In both
cases, we get (UAV,UBV ) ∈ J . If V1 6= ∅ and V2 6= ∅ then UAV = U(A ∪ B) = UBV .
If V1, V2 = ∅ then V ⊆ T3 ∪T4 and UAV = UC = UBV .
Finally, we admit that A 6= B∗ . Further, we suppose that U 6= 1. First, we consider
the case that Ai = ∅ and Aj 6= ∅ for i, j ∈ {1, 2} with i + j = 3. Then, either Bi = ∅
and Bj 6= ∅ or Bj = ∅ and Bi 6= ∅ by Proposition 2.8 (iii). Suppose that Bj = ∅ and
Bi 6= ∅. Since C ⊆ A,B (by (i)), we conclude that either UA = U ∪C and UB = U∗ ∪C
or UA = U∗ ∪ C and UB = U ∪ C, i.e. UA = (UB)∗. We have already shown that
(1(UB)∗V,1(UB)V ) ∈ J , i.e. (UAV,UBV ) ∈ J . Suppose that Bi = ∅ and Bj 6= ∅, then
UA = UB since AC = BC (by (ii)), i.e. UAV = UBV . By Proposition 2.8 (ii), (iii),
we have still to consider the case that A1 6= ∅, A2 6= ∅, B1 6= ∅, and B2 6= ∅. Then
AC ∪U ∪U∗ ⊆ UA. On the other hand, we have UA = U ∪U∗ ∪U(A3 ∪A4). Because of
Proposition 2.8 (i), we can conclude that AC = U(A3 ∪A4) and thus UA = AC ∪U ∪U∗.
Dually, we can show that UB = BC ∪ U ∪ U∗. Since AC = BC, we obtain UA = UB, i.e.
UAV = UBV . Let U = 1. Here, we have to verify that (AV,BV ) ∈ J . If (A,B) ∈ L,
all is done since L is a right-congruence. Assume that (A,B) /∈ L. It is routine to check
that (i)− (iv) in Proposition 2.4 are consequences of AC = BC and the items (i)− (iv) in
Proposition 2.8. Since (A,B) ∈ J \ L and A,B * C, Proposition 2.8 provides A = B∗, a
contradiction. This finishes the proof.

3. The Ideals Structure

This section is devoted to the ideal structure of the semigroup TP (X,Y ). First, we
characterize the left ideals. In order to do it we need some more or less technical notations.
We denote the mapping from P4T := {

⋃
i∈M

Ti : M ⊆ {1, 2, 3, 4}} to P(TP (X,Y )) :=

{K : K ⊆ TP (X,Y )} (where
⋃
i∈∅

Ti := ∅) assigning any A ∈ P4T to TP (X,Y )A by χ.

Notice that TP (X,Y )∅ := ∅. We observe that χ(T1) = χ(T2) = TP (X,Y ), χ(T1 ∪T2) =
{A∪A∗ : A ∈ TP (X,Y )}, χ(T3∪T4∪R) = {C∪A : A ∈ χ(R)} forR ∈ {∅,T1,T2,T1∪T2}
and χ(Ti+2 ∪R) = {{ci} ∪A : A ∈ χ(R)} for i = 1, 2 and R ∈ {∅,T1,T2,T1 ∪T2}. We
consider the following both subsets Q1 and Q2 of P4T :
Q1 := {∅,T1,T2,T4,T1 ∪T2, T1 ∪T4,T2 ∪T4,T1 ∪T2 ∪T4} and
Q2 := {∅,T1,T2,T3,T1 ∪T2, T1 ∪T3,T2 ∪T3,T1 ∪T2 ∪T3}.
It is easy to verify that {T3∪J : J ∈ Q1}∪{T4∪J : J ∈ Q2}∪{∅,T1,T2,T1∪T2} = P4T .
Moreover for any non-empty set M ⊆ {1, 2, 3, 4}, let P (

⋃
i∈M

Ti) := (P (M) :=) {A ⊆⋃
i∈M

Ti : Ai 6= ∅ for all i ∈ M}. In particular, we put P0 := P (T1 ∪ T2) (= P ({1, 2})).

Now we define still three sets
Q̂i := {{{ci} ∪A : A ∈ χ(J)} ∪K : K ⊆ P (Ti+2 ∪ J), J ∈ Qi} for i = 1, 2 and

Q̂3 := {χ(T1 ∪ T2) ∪ K : K ⊆ P0}. Note that Q̂1 ∪ Q̂2 ∪ Q̂3 ⊆ P(TP (X,Y )). We will

show that
⋃
K is a left ideal for any set K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 and conversely. So, we obtain

an explicit description of the left ideals of TP (X,Y ).



1710 Thai J. Math. Vol. 18 (2020) /A. Anantayasethi and J. Koppitz

Proposition 3.1. Let ∅ 6= I ⊆ Tp(X,Y ). Then I is a non-trivial left ideal of TP (X,Y )

if and only if there is a set K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 such that I =
⋃

K.

Proof. Suppose that I is a non-trivial left ideal. Let A ∈ I with A3 6= ∅. Then there
is J ∈ Q1 such that A ∈ P (T3 ∪ J). We have TP (X,Y )A = TP (X,Y )(T3 ∪ J) =
{BT3 ∪ BJ : B ∈ TP (X,Y )} = {{c1} ∪ B : B ∈ χ(J)} since TP (X,Y )J = χ(J),
i.e. {{c1} ∪ B : B ∈ χ(J)} ⊆ I. Let KJ := I ∩ P (T3 ∪ J). Then {{c1} ∪ B :

B ∈ χ(J)} ∪ KJ ∈ Q̂1. Let A ∈ I with A4 6= ∅. Then there is L ∈ Q2 with
A ∈ P (T4 ∪L) such that {{c2}∪B : B ∈ χ(L)}∪KL ⊆ I with KL := I ∩P (T4 ∪L) and

{{c2}∪B : B ∈ χ(L)}∪KL ∈ Q̂2. This shows that there are sets K1 ⊆ Q̂1 and K2 ⊆ Q̂2

such that
⋃
K1 is the set of all B ∈ I with B3 6= ∅ and

⋃
K2 is the set of all B ∈ I with

B4 6= ∅.
Let now A ∈ I with A3 = A4 = ∅. Assume that A ⊆ T1. Then we have TP (X,Y ) ⊇
TP (X,Y )I ⊇ TP (X,Y )A = TP (X,Y )T1 = TP (X,Y ), i.e. I = TP (X,Y ), a contradic-
tion. Assume that A ⊆ T2. Then we have TP (X,Y )AA = TP (X,Y )T1 = TP (X,Y )
and thus TP (X,Y ) = TP (X,Y )AA ⊆ TP (X,Y )A ⊆ I ⊆ TP (X,Y ), i.e. I = TP (X,Y ), a
contradiction. Hence, A1 6= ∅ and A2 6= ∅, i.e. A ∈ P0. Now we have I ⊇ TP (X,Y )I ⊇
TP (X,Y )A = TP (X,Y )(T1 ∪ T2) = {B ∪ B∗ : B ∈ TP (X,Y )} = χ(T1 ∪ T2), i.e.

χ(T1 ∪ T2) ⊆ I. Let K := P0 ∩ I. Then K̃ := χ(T1 ∪ T2) ∪ K ∈ Q̂3 is the set of all

B ∈ I with B3 = B4 = ∅. Altogether, we have I =
⋃

K with K := K1 ∪K2 ∪ {K̃} ⊆
Q̂1 ∪ Q̂2 ∪ Q̂3.

Conversely, let I =
⋃
K for a set K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 and let A ∈ I. Suppose that

A ∈
⋃
Q̂1. Then there are sets J ∈ Q1 and L ∈ P (T3 ∪ J) such that A ∈ {{c1} ∪ B :

B ∈ χ(J)} ∪L ∈ K. In particular, we have {{c1} ∪B : B ∈ χ(J)} ⊆ I and A = {c1} ∪B
for some B ∈ χ(J) or A ∈ L. In the latter case, we obtain TP (X,Y )A = {BT3 ∪ BJ :
B ∈ TP (X,Y )} = {{c1} ∪ B : B ∈ χ(J)} ⊆ I. Consider now the case A = {c1} ∪ B for

some B ∈ χ(J). Since TP (X,Y )J = χ(J), there is D̃ ∈ TP (X,Y ) such that B = D̃J .

So, we can calculate TP (X,Y )A = {D{c1} ∪DB : D ∈ TP (X,Y )} = {{c1} ∪DD̃J : D ∈
TP (X,Y )} ⊆ {{c1} ∪DJ : D ∈ TP (X,Y )} = {{c1} ∪D : D ∈ χ(J)} ⊆ I. If A ∈

⋃
Q̂2

then we can argue similarly that TP (X,Y )A ⊆ I. Finally, if A ∈
⋃
Q̂3 then there is a set

L0 ⊆ P0 such that A ∈ χ(T1 ∪ T2) ∪ L0 ∈ K, i.e. χ(T1 ∪ T2) ∪ L0 ⊆ I. In particular,
there is B ∈ TP (X,Y ) with A = B ∪B∗ or A ∈ L0 ⊆ P0. In the latter case, we conclude
TP (X,Y )A = TP (X,Y )(T1 ∪ T2) = χ(T1 ∪ T2) ⊆ I. Now let A = B ∪ B∗ for some
B ∈ TP (X,Y ). Here, we have TP (X,Y )A = {DA : D ∈ TP (X,Y )} = {DB ∪DB∗ : D ∈
TP (X,Y )} = {DB ∪DBT2 : D ∈ TP (X,Y )} ⊆ {D ∪DT2 : D ∈ TP (X,Y )} = {D ∪D∗ :
D ∈ TP (X,Y )} = χ(T1 ∪T2) ⊆ I. Altogether, we have shown that TP (X,Y )I ⊆ I, i.e.
I is a left ideal.

Next, we characterize the right ideals. For a set A ∈ TP (X,Y ), we define

QA := {B ∪D : B ∈ {A,A∗, A ∪A∗}, D ∈ P(C)} ∪ {{c1}, {c2},C}
and for K ⊆ TP (X,Y ), let

QK :=
⋃
A∈K

QA,
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where P(C) is the power set of C, i.e. P(C) = {∅, {c1}, {c2},C}. Let A ∈ TP (X,Y ).
It is easy to verify that ATP (X,Y ) = {AB : B ∈ TP (X,Y )} = {A (

⋃
i∈M

Ti) : ∅ 6= M ⊆

{1, 2, 3, 4}} = QA. So, we can conclude that KTP (X,Y ) = QK for any set K ⊆ TP (X,Y ).
This fact provides the following characterization of the right ideals:

Proposition 3.2. Let ∅ 6= I ⊆ TP (X,Y ). Then I is a right ideal of TP (X,Y ) if and
only if there is a set K ⊆ TP (X,Y ) such that I = QK .

Proof. Suppose that I is a right ideal. Then we have I ⊇ ITP (X,Y ) = QI . Since
A = A ∪ ∅ ∈ QA ⊆ QI for all A ∈ I, we have the equality I = QI .
Conversely, we suppose that I = QK for some set K ⊆ TP (X,Y ). Let A ∈ I. Then there

is Ã ∈ K such that A ∈ QÃ. So, there is a non-empty set M ⊆ {1, 2, 3, 4} with A =

Ã (
⋃

i∈M
Ti). Let B ∈ TP (X,Y ) and let MB := {i ∈ {1, 2, 3, 4} : Bi 6= ∅}, i.e. B ∈ P (MB).

Then, AB = Ã(
⋃
i∈M

Ti)(
⋃

i∈MB

Ti). It is easy to verify that Ã(
⋃
i∈M

Ti)(
⋃

i∈MB

Ti) = Ã(
⋃
i∈R

Ti)

with R = ({3, 4} ∩MB) ∪M+ ∪M−, where

M+ :=

{
M if 1 ∈MB

∅ otherwise

and

M− :=

{
{i+ 1 : i ∈ (M ∩ {1, 3})} ∪ {i− 1 : i ∈ (M ∩ {2, 4})} if 2 ∈MB

∅ otherwise.

This provides AB = Ã(
⋃
i∈R

Ti) ∈ QÃ ⊆ QK = I. So, we have shown that ITP (X,Y ) ⊆ I,

i.e. I is a right ideal.

In particular, the proof of Proposition 3.2 shows that I = QI , whenever I is a right
ideal. It is interesting to note that Proposition 3.2 justifies that a left ideal I is also a right
ideal if it is ”closed” under QI . In order to proof this, we need two technical lemmas:

Lemma 3.3. Let L ∈ Q̂3. Then there is a set K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 such that
⋃

K = QL.

Proof. There is K ⊆ P0 such that L = χ(T1∪T2)∪K. First, we observe that A∗, A∪A∗ ∈
P0 for any A ∈ K. Thus, K∗ := {A∗ : A ∈ K} ⊆ P0 and K∪∗ := {A∪A∗ : A ∈ K} ⊆ P0.
Moreover, we observe that (A ∪ A∗) = (A ∪ A∗)∗ = (A ∪ A∗) ∪ (A ∪ A∗)∗ for any A ∈
TP (X,Y ). This implies {A∗ : A ∈ χ(T1∪T2)} = {A∪A∗ : A ∈ χ(T1∪T2)} = χ(T1∪T2).
Using these facts, we obtain
Mi := {{ci} ∪A : A ∈ L} = {{ci} ∪A : A ∈ χ(T1 ∪T2)} ∪ {{ci} ∪A : A ∈ K} ∈ Qi,
M∗i := {{ci} ∪ A∗ : A ∈ L} = {{ci} ∪ A : A ∈ χ(T1 ∪T2)} ∪ {{ci} ∪ A : A ∈ K∗} ∈ Q̂i,
and
M∪∗i := {{ci}∪A∪A∗ : A ∈ L} = {{ci}∪A : A ∈ χ(T1∪T2)}∪{{ci}∪A : A ∈ K∪∗} ∈ Q̂i
for i = 1, 2. Further we have
MC := {C ∪A : A ∈ L} = {C ∪A : A ∈ χ(T1 ∪T2)} ∪ {C ∪A : A ∈ K} ∈ Q1,

M∗C := {C ∪A∗ : A ∈ L} = {C ∪A : A ∈ χ(T1 ∪T2)} ∪ {C ∪A : A ∈ K∗} ∈ Q̂1, and

M∪∗C := {C ∪ A ∪ A∗ : A ∈ L} = {C ∪ A : A ∈ χ(T1 ∪T2)} ∪ {C ∪ A : A ∈ K∪∗} ∈ Q̂1.
On the other hand, we observe that

M := {A,A∗, A ∪ A∗ : A ∈ L} = χ(T1 ∪ T2) ∪ K ∪ K∗ ∪ K∪∗ ∈ Q̂3. Clearly,
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QL = M ∪ M1 ∪ M2 ∪ MC ∪ M∗1 ∪ M∗2 ∪ M∗C ∪ M∪∗1 ∪ M∪∗2 ∪ M∪∗C . So, the set
{M,M1,M2,MC,M

∗
1 ,M

∗
2 ,M

∗
C ,M

∪∗
1 ,M∪∗2 ,M∪∗C } is the required set K.

Similary, one can prove the next lemma.

Lemma 3.4. Let L ∈ Q̂1 ∪ Q̂2. Then there is a set K ⊆ Q̂1 ∪ Q̂2 such that
⋃

K = QL.

Proof. Without loss of generality, let L ∈ Q̂1. Then we put: K1 := {{A ∪ B : A ∈ L} :
B ∈ P(C)} and K2 := {{A∗ ∪B : A ∈ L}, {A∗ ∪ A ∪B : A ∈ L} : B ∈ P(C)}. It is easy

to verify that K1 ⊆ Q̂1 and K2 ⊆ Q̂2. Moreover, we observe that
⋃

(K1 ∪K2) = QL.

Using these both lemmas, Proposition 3.1 and Proposition 3.2 provide a description of
the ideals:

Corollary 3.5. Let ∅ 6= I ⊆ TP (X,Y ). Then I is an ideal of TP (X,Y ) if and only if

there is a set K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 such that I = Q⋃
K.

Proof. Let I be an ideal. Then I is a left ideal and by Proposition 3.1 there is a set

K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 such that I =
⋃
K. This implies QI = Q⋃

K, where I = QI since I is
a right ideal.

Suppose now that I = Q⋃
K for some set K ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3. Then I is a right ideal

by Proposition 3.2 . By Lemma 3.3 and Lemma 3.4, we conclude that there is a set

M ⊆ Q̂1 ∪ Q̂2 ∪ Q̂3 such that Q⋃
K =

⋃
M. This equality justifies that I = Q⋃

K is a
left idea, too, by Proposition 3.1.

Finally, we will indicate the principal ideals among the ideals. Recall, that for A ∈
TP (X,Y ), the set TP (X,Y )1ATP (X,Y )1 forms an ideal, which is called principal ideal,
i.e. a principial ideal is an ideal generating by one element of the semigroup TP (X,Y ).
Note that TP (X,Y ) has right-identity elements (e.g. T1) and no left-dentity element.
Therefore, the principal ideals are of the form TP (X,Y )1ATP (X,Y ), for A ∈ TP (X,Y ).

Proposition 3.6. A set I ⊆ TP (X,Y ) is a principal ideal of TP (X,Y ) if and only if
I = TP (X,Y ) or there are a non-empty set J ∈ P4T \ {T1,T2} and a set A ∈ P (J) such
that I = Qχ(J)∪{A} .

Proof. Suppose that I = TP (X,Y ). It is easy to verify that TP (X,Y )1T1TP (X,Y ) =
TP (X,Y ). Thus, I is a principal ideal. Let ∅ 6= J ∈ P4T \ {T1,T2} and let A ∈ P (J)
such that I = Qχ(J)∪{A}. Then there is a non-empty set M ⊆ {1, 2, 3, 4} with M 6=
{1}, {2} such that J =

⋃
i∈M

Ti. Because of TP (X,Y )A = TP (X,Y )J , we can conclude

that TP (X,Y )1ATP (X,Y ) = (TP (X,Y )J ∪ {A})TP (X,Y ) = (χ(J) ∪ {A})TP (X,Y ) =
Qχ(J)∪{A}.
Conversely, let A ∈ TP (X,Y ). Then there is a non-empty set J ∈ P4T such that
A ∈ P (J). Then either J ∈ {T1,T2} or J ∈ P4T \ {T1,T2}. In the later case,
we have TP (X,Y )1ATP (X,Y ) = Qχ(J)∪{A} as already shown. If J = T1 then A ⊆
T1. Thus, TP (X,Y )1ATP (X,Y ) = TP (X,Y )1T1TP (X,Y ) = TP (X,Y )TP (X,Y ) =
TP (X,Y ). If J = T2 then A ⊆ T2 and we can conclude TP (X,Y )1ATP (X,Y ) =
TP (X,Y )1T2TP (X,Y ) ⊇ TP (X,Y )1T2T2 = TP (X,Y )1T1 = TP (X,Y ). This provides
TP (X,Y )1ATP (X,Y ) = TP (X,Y ). Hence, all the principal ideals from TP (X,Y ) are of
a form given in the assertion of the proposition.
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