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Abstract This paper aims to deal with the problems of exponential stability and exponential passivity

analysis for integro-differential neural networks with time-varying delays, based on the mixed model

transformation approach. In this work, we investigate both discrete and distributed time-varying delays

for which the upper bounds are available. By constructing augments Lyapunov-Krasovskii functional and

various inequalities, the new delay-dependent criterion is established and is mathematically expressed

in terms of linear matrix inequalities (LMIs) to guarantee the exponential stability of the considered

system. Furthermore, depended on the proof for the exponential stability of the system, the constructed

delay-dependent method was derived from the exponential passivity for neural networks with mixed time-

varying delays. Also, numerical examples are given to illustrate the effectiveness of the findings.
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1. Introduction

Nowadays, driven by computing advanced technology, a large number of neural net-
works applications have been widely applied in various areas such as signal processing,
pattern recognition, associate memories, control, in references [6, 13, 35, 39] and so forth
[3, 10, 15]. Among these applications, one of the most challenging problems in the net-
work design is how to construct the system with stable equilibrium points.

Several types of stability criteria derived by different methods for neural networks
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have been proposed such as asymptotical stability [46], complete stability [8], absolute
stability [29] and exponential stability [1]. In favour of the faster convergence rate to
the equilibrium point, exponential stability has usually been applied instead of asymp-
totic stability. The property of exponential stability is particularly important when the
exponential convergence rate is used to determine the speed of neural computations [28].

In reality, time-delay systems have been frequently encountered in neural networks.
When time delay occurred in neural network processes, it is a source of instability and
oscillations. Recently, for both delay-independent and delay-dependent systems, various
sufficient conditions have been proposed to verify the asymptotic or exponential stability
of delay neural networks by applying Lyapunov-Krasovskii functional (LKF) and several
model transformation [28, 45, 47, 48, 50], and the references cited therein. In [22, 53],
the authors investigated the exponential stability problem of neural networks with time-
varying delay by using LKF and various approaches.

The passivity theory has been a significant impact on the analysis of the stability of
the dynamical system, complexity, signal processing, chaos control and synchronization,
fuzzy control [33]. Firstly, many systems require being passive to alleviate noise effects.
Secondly, the robustness measure, such as robust stability or robust performance, of
a system often reduces to a subsystem or a modified system called passivity analysis.
Passivity analysis plays an essential role in studying the stability of uncertain or nonlinear
systems, especially for high-order systems. So, in [9] the passivity analysis has been
applied to tackle the control problems for stability robustness in uncertain systems. The
essence of the passivity theory is that the passive properties of a system can keep the
system internal stability. Therefore, many researchers have emphasized the criteria for the
passivity of neural networks with time delay [5, 40, 49, 52, 54]. The exponential passivity
problem for neural networks with time-varying delay by several approaches was addressed
in [24, 44]. The authors studied exponential passivity criteria for neural networks with
discrete and distributed delays, such as [9]. Furthermore, the researchers have widely
investigated the issue of exponential passivity analysis for neural networks with interval
time-varying delays in [9, 24, 37, 44, 49, 57]. However, from our point of view, only a
few authors have been considering and studying the exponential passivity conditions for
integro-differential neural networks with mixed interval time-varying delays.

A forementioned, in this paper, the exponential stability and passivity condition for
delays neural networks are obtained. Based on constructing new LKF, utilization of zero
equation, decomposition techniques. Consequently, delay-dependent exponential passiv-
ity conditions are derived. A unified linear matrix inequality (LMI) approach is developed
to establish sufficient conditions for neural networks to meet the exponential stability and
passivity. Noting that LMI could be easily solved by using the Matlab LMI toolbox, and
no parameter tuning is required. It is worth mentioning that the stability and passivity
criteria of the neural networks with Markovian switching include the passivity criteria
of neural networks without Markovian switching as special cases [33]. Numerical ex-
amples are also provided to illustrate the usefulness and effectiveness of the proposed
delay-dependent exponential passivity conditions.
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2. Problem Formulation and Preliminaries

Consider the following continuous time neural networks with time-varying delays

ξ̇(t) = −Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D
∫ t
t−ρ(t) f(ξ(s))ds, t ∈ R+

ξ(t) = φ(t), t ∈ [−dM , 0],

}
(2.1)

where ξ(t) = [ξ1(t), ξ2(t), ..., ξn(t)]T ∈ Rn is the neural state vector, d(t) and ρ(t) are
the discrete and distributed time-varying delays, respectively. Equation (2.1) satisfies the
following conditions

0 ≤ d(t) ≤ dM , 0 ≤ ḋ(t) ≤ dd, (2.2)

0 ≤ ρ(t) ≤ ρM , (2.3)

where dM , dd and ρM are positive real constants. The diagonal matrix

C = diag{c1, c2, ..., cn},
with ci > 0, i = 1, 2, ..., n, A, B andD are the connection weight matrices between neurons
with appropriate dimensions, φ(t) denotes continuous vector-valued initial function on in-
terval [−dM , 0]. In addition, the neural activation functions f(·) = [f1(·), f2(·), ..., fn(·)]T
∈ Rn are assumed to satisfy the following conditions.

Assumption. The activation function f is continuous and the exist constants F−i and
F+
i such that

F−i ≤ fi(x)− fi(y)

x− y
≤ F+

i , (2.4)

for all x 6= y, and f = [f1, f2, ..., fn]T and for any i ∈ {1, 2, ..., n}, fi(0) = 0. For ease of
presentation, we denote

F−i = diag(F−1 F
+
1 , F

−
2 F

+
2 , ..., F

−
n F

+
n ) and F+

i = diag(
F−

1 +F+
1

2 ,
F−

2 +F+
2

2 , ...,
F−

n +F+
n

2 ).

Definition 2.1. [43] The system defined by (2.1) is said to be exponentially stable, if
there exist the positive constant α and N such that the solution ξ(t, φ) of the system
(2.1) satisfies

||ξ(t, φ)|| ≤ N sup
−dM≤θ≤0

||φ(θ)||e−αt, ∀t ≥ 0. (2.5)

Futhermore, α is called the exponential convergence rate.

which would be used in the proof of exponential stability and passivity, respectively.

Lemma 2.2. (Jensen’s Inequality) [25] For any symmetric positive definite matrix Q,

positive real constant dM , and vector function ξ̇ : [−dM , 0]→ Rn such that the following
integral is well defined, then

−dM
∫ 0

−dM
ξ̇T (s+ t)Qξ̇(s+ t)ds ≤ −

(∫ 0

−dM
ξ̇(s+ t)ds

)T
Q
(∫ 0

−dM
ξ̇(s+ t)ds

)
.

Lemma 2.3. (Wirtinger-based integral inequality) [36] For any matrix Z > 0, the fol-

lowing inequality holds for all continuously differentiable function ξ̇ : [α, β]→ Rn

−(β − α)

∫ β

α

ξ̇T (s)Zξ̇(s)ds ≤

 ξ(β)
ξ(α)

1
β−α

∫ β
α
ξ(s)ds

T φ
 ξ(β)

ξ(α)
1

β−α
∫ β
α
ξ(s)ds

 ,
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where Φ =

−4Z −2Z 6Z
∗ −4Z 6Z
∗ ∗ −12Z

.

Lemma 2.4. (Peng-Park’s integral inequality) [33, 34] For any matrix

[
Z S
∗ Z

]
≥ 0,

positive constants dM and d(t) satisfying 0 < d(t) < dM , vector function ξ̇ : [−dM , 0]→
Rn such that the concerned integrations are well defined, then

−dM
∫ t

t−dM
ξ̇T (s)Zξ̇(s)ds ≤

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

T Θ

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

 ,
where Θ =

−Z Z − S S
∗ −2Z + S + ST Z − S
∗ ∗ −Z

.

Lemma 2.5. [26] For a positive matrix M , the following inequality holds:

− (α− β)2

2

∫ α

β

∫ α

s

ξT (u)Mξ(u)duds ≤ −
(∫ α

β

∫ α

s

ξ(u)duds
)T
M
(∫ α

β

∫ α

s

ξ(u)duds
)
.

Lemma 2.6. [38] For any constant symmetric positive definite matrix Q ∈ Rn×n, d(t) is
discrete time-varying delays with (2.3), vector function ω : [−dM , 0] → Rn such that the
integrations concerned are well defined, then

−dM
∫ 0

−dM
ωT (s)Qω(s)ds ≤ −

∫ 0

−d(t)
ωT (s)dsQ

∫ 0

−d(t)
ω(s)ds

−
∫ −d(t)
−dM

ωT (s)dsQ

∫ −d(t)
−dM

ω(s)ds.

Lemma 2.7. [38] For any constant matrices Q1, Q2, Q3 ∈ Rn×n, Q1 ≥ 0, Q3 > 0,[
Q1 Q2

∗ Q3

]
≥ 0, d(t) is discrete time-varying delays with (2.3) and vector function ẋ :

[−dM , 0]→ Rn such that the following integration is well defined, then

−dM
∫ t

t−dM

[
ξ(s)

ξ̇(s)

]T [
Q1 Q2

∗ Q3

] [
ξ(s)

ξ̇(s)

]
ds ≤


ξ(t)

ξ(t− d(t))
ξ(t− dM )∫ t
t−d(t) ξ(s)ds∫ t−d(t)
t−dM ξ(s)ds


T

∆


ξ(t)

ξ(t− d(t))
ξ(t− dM )∫ t
t−d(t) ξ(s)ds∫ t−d(t)
t−dM ξ(s)ds

 .

where ∆ =


−Q3 Q3 0 −QT2 0
∗ −Q3 −QT3 Q3 QT2 −QT2
∗ ∗ −Q3 0 QT2
∗ ∗ ∗ −Q1 0
∗ ∗ ∗ ∗ −Q1

.

Lemma 2.8. [38] Let ξ(t) ∈ Rn be a vector-valued function with first-order continuous-
derivative entries. Then, the following integral inequality holds for any constant matrices
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X,Mi ∈ Rn×n, i = 1, 2, . . . , 5 and d(t) is discrete time-varying delays with (2.1),

−
∫ t

t−hM

ξ̇T (s)Xξ̇(s)ds ≤

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

T Ξ

 ξ(t)
ξ(t− d(t))
ξ(t− dM )


+hM

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

T M3 M4 0
∗ M3 +M5 M4

∗ ∗ M5

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

 ,

where Ξ =

M1 +MT
1 −MT

1 +M2 0
∗ M1 +MT

1 −M2 −MT
2 −MT

1 +M2

∗ ∗ −M2 −MT
2

 ,
X M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0.

3. Exponential Stability

In this section, we present our exponential stability analysis for neural networks and
introduce the following notations used throughout this work.

ζ(t) =
[
ξ(t), ξ̇(t), y(t), ξ(t− d(t)), ξ(t− dM ),

∫ t

t−d(t)
ξ(s)ds,

∫ t−d(t)

t−dM
ξ(s)ds,

1

dM

∫ t

t−dM
ξ(s)ds,

∫ t

t−d(t)
y(s)ds,

∫ t−d(t)

t−dM
y(s)ds, f(ξ(t)), f(ξ(t− d(t))),

f(ξ(t− dM )),

∫ t

t−ρM
f(ξ(s))ds,

∫ 0

−dM

∫ t

t+s

ξ(s)dsdλ,

∫ 0

−dM

∫ t

t+s

ξ̇(s)dsdλ
]
,

∑
=
[
Ω(i,j)

]
16×16 , (3.1)

Ω(1,1) = 2αP1 −QT3 C − CTQ3 +QT4 +Q4 + 2αP2 + P3 +R1 +R4 + d2MP4 +M1

+MT
1 +M3 − 4e−2αdMP6 − e−2αdMP7 + d2MR7 − e−2αdMR9 −

d4M
4
P9

−2ε1H1, Ω(1,2) = P1, Ω(1,3) = P2 −QT3 − CTQ15 +Q16 + d2MR8,

Ω(1,4) = −CTQ6 −QT4 +Q7 +QT5 −MT
1 +M2 +M4 + e−2αdMP7 − e−2αdMS

+e−2αdMR9, Ω(1,5) = −CTQ12 +Q13 −QT5 − 2e−2αdMP6 + e−2αdMS,

Ω(1,6) = −CTQ9 +Q10 − e−2αdMR9, Ω(1,8) = 6e−2αdMP6, Ω(1,9) = −QT4 ,
Ω(1,10) = −QT5 , Ω(1,11) = 4αKT +QT3 A+R2 +R5 − ε1H2, Ω(1,12) = QT3 B,

Ω(1,14) = QT3D, Ω(2,1) = PT1 , Ω(2,2) = −Q1 −QT1 , Ω(2,3) = Q1 −QT2 ,
Ω(2,11) = KT , Ω(3,1) = PT2 −Q3 −QT15C +QT16 + d2MR8, Ω(3,2) = QT1 −Q2,
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Ω(3,3) = Q2 +QT2 −Q15 −QT15 + dMP5 + d2MP6 + d2MP7 + d2MR9 + d2MP8 +
d4M
4
P10,

Ω(3,4) = −Q6 −QT6 +QT17, Ω(3,5) = −QT12 −QT17, Ω(3,6) = −Q9, Ω(3,9) = −QT16,
Ω(3,10) = −QT17, Ω(3,11) = QT15A, Ω(3,12) = QT15B, Ω(3,14) = QT15D,

Ω(4,1) = −QT6 C −Q4 +QT7 +Q5 −M1 +MT
2 +MT

4 + e−2αdMPT7 − e−2αdMST

+e−2αdMRT9 , Ω(4,3) = −QT6 −Q16 +Q17,

Ω(4,4) = Q8 +QT8 −Q7 −QT7 + e−2αdMR1 − dde−2αdMR1 +M1 +MT
1 −M2 −MT

2

+M3 +M5 − 2e−2αdMP7 + e−2αdM (S + ST )− e−2αdM (R9 +RT9 )− 2H2ε1

Ω(4,5) = Q14 −Q13 −QT8 −MT
1 +M2 +M4 + e−2αdMP7 − e−2αdMS + e−2αdMR9,

Ω(4,6) = Q11 −Q10 + e−2αdMRT8 , Ω(4,7) = −e−2αdMRT8 , Ω(4,9) = −QT7 ,
Ω(4,10) = −QT8 , Ω(4,11) = QT6 A Ω(4,12) = QT6 B + e−2αdMR2 − dde−2αdMR2 +H2ε2,

Ω(4,14) = QT6D, Ω(5,1) = QT13 −QT12C −Q5 − 2e−2αdMP6 + e−2αdMST ,

Ω(5,3) = −Q12 −Q17, Ω(5,4) = QT14 −QT13 −Q8 −M1 −MT
2 +MT

4 + e−2αdMPT7

−e−2αdMS − e−2αdMRT9 , Ω(5,5) = −Q14 −QT14 − e−2αdMP3 − e−2αdMR4

−M2 −MT
2 +M5 − 4e−2αdMR4 −M2 −MT

2 +M5 − 4e−2αdMP6

−e−2αdMP7 − e−2αdMR9,Ω(5,6) = −Q11, Ω(5,7) = e−2αdMR8,

Ω(5,8) = 6e−2αdMP6, Ω(5,9) = −QT13, Ω(5,10) = −QT14, Ω(5,11) = QT12A,

Ω(5,12) = QT12B, Ω(5,13) = −e−2αdMR5, Ω(5,14) = QT12D,

Ω(6,1) = QT10 −QT9 C − e−2αdMR9, Ω(6,3) = −QT9 ,
Ω(6,4) = QT11 −QT10 + e−2αdMR8, Ω(6,5) = −QT11,
Ω(6,6) = −e−2αdMP4 − e−2αdMR7, Ω(6,9) = −QT10, Ω(6,10) = −QT11,

Ω(6,11) = QT9 A, Ω(6,12) = QT9 B, Ω(6,14) = QT9D, Ω(7,4) = −e−2αdMR8,

Ω(7,5) = e−2αdMRT8 , Ω(7,7) = −e−2αdMP5 − e−2αdMR7, Ω(8,1) = 6e−2αdMP6,

Ω(8,5) = 6e−2αdMP6, Ω(8,8) = −12e−2αdMP6, Ω(9,1) = −Q4, Ω(9,4) = −Q7,

Ω(9,5) = −Q13, Ω(9,6) = −Q10, Ω(9,9) = −e−2αdMP8, Ω(9,10) = −e−2αdMP8,

Ω(10,1) = −Q5, Ω(10,3) = −Q17, Ω(10,4) = −Q8, Ω(10,5) = −Q14,

Ω(10,6) = −Q11, Ω(10,9) = −e−2αdMP8, Ω(10,10) = −e−2αdMP8,

Ω(11,1) = 4αK +ATQ3 +RT2 +RT5 − ε2HT
1 , Ω(11,2) = K, Ω(11,3) = ATQ15,

Ω(11,4) = ATQ6, Ω(11,5) = ATQ12, Ω(11,6) = ATQ9,

Ω(11,11) = R3 +R6 + ρMP11 + 2ε1, Ω(12,1) = BTQ3, Ω(12,3) = BTQ15,

Ω(12,4) = BTQ6 + e−2αdMRT2 − dde−2αdMRT2 + εT2H2, Ω(12,5) = BTQ12,

Ω(12,6) = BTQ9, Ω(12,12) = e−2αdMR3 − dde−2αdMR3 − 2H1,

Ω(13,13) = −e−2αdMR6, Ω(14,1) = DTQ3, Ω(14,3) = DTQ15, Ω(14,4) = DTQ6,

Ω(14,5) = DTQ12, Ω(14,6) = DTQ9, Ω(14,14) = −e−2αρMP11, Ω(15,15) = −P9,

Ω(16,16) = −P10,
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and other are equal zero.

Theorem 3.1. For given positive real constants dM , ρM , dd, K and N , the system (2.1)
is exponentially stable with a decay rate α if there exist positive definite symmetric ma-
trices Pi, Rj, R9, any appropriate dimensional matrices S,R7, R8, Qi, R7 ≥ 0 where
i = 1, 2, . . . , 11, j = 1, 2, . . . , 6, satisfying the following[

P7 S
∗ P7

]
≥ 0, (3.2)[

R7 R8

∗ R7

]
≥ 0, (3.3)P4 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (3.4)

∑
< 0. (3.5)

Proof. First, we show the exponential stability of the system (2.1). To this end, we
consider the nominal system (2.1) satisfying

ξ̇(t) = −Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D

∫ t

t−ρ(t)
f(ξ(s))ds. (3.6)

From model transformation method, we rewrite the system (3.6) in the following system

ξ̇(t) = y(t), (3.7)

0 = −y(t)− Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D

∫ t

t−ρ(t)
f(ξ(s))ds. (3.8)

For positive real numbers ki and wi, where i = 1, 2, . . . , 10, considering the Lyapunov-
Krasovskii functional candidate for equation (2.1) constructs a Lyapunov-Krasovskii func-
tional candidate for the system (3.6)-(3.8) of the form

V (t) =
9∑
i=1

Vi(t), (3.9)

where

V1(t) = ξT (t)P1ξ(t) + 2

N∑
i=1

ki

∫ ξi(t)

0

f(s)ds,

V2(t) = ζT (t)EP2ζ(t) + 2

N∑
i=1

ki

∫ ξi(t)

0

f(s)ds,

V3(t) =

∫ t

t−dM
e2α(s−t)ξT (s)P3ξ(s)ds

+

∫ t

t−d(t)
e2α(s−t)

[
ξ(s)

f(ξ(s))

]T [
R1 R2

∗ R3

] [
ξ(s)

f(ξ(s))

]
ds

+

∫ t

t−dM
e2α(s−t)

[
ξ(s)

f(ξ(s))

]T [
R4 R5

∗ R6

] [
ξ(s)

f(ξ(s))

]
ds,
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V4(t) = dM

∫ 0

−dM

∫ t

t+s

e2α(θ−t)ξT (θ)P4ξ(θ)dθds

+

∫ 0

−dM

∫ t

t+s

e2α(θ−t)yT (θ)P5y(θ)dθds,

V5(t) = dM

∫ 0

−dM

∫ t

t+s

e2α(θ−t)yT (θ)P6y(θ)dθds

+dM

∫ 0

−dM

∫ t

t+s

e2α(θ−t)yT (θ)P7y(θ)dθds,

V6(t) = dM

∫ 0

−dM

∫ t

t+s

e2α(θ−t)
[
ξ(θ)
y(θ)

]T [
R7 R8

∗ R9

] [
ξ(θ)
y(θ)

]
dθds,

V7(t) = dM

∫ 0

−dM

∫ t

t+s

e2α(θ−t)yT (θ)P8y(θ)dθds,

V8(t) =
(dM )2

2

∫ 0

−dM

∫ 0

λ

∫ t

t+s

e2α(θ+s−t)ξT (θ)P9ξ(θ)dθdsdλ

+
(dM )2

2

∫ 0

−dM

∫ 0

λ

∫ t

t+s

e2α(θ+s−t)yT (θ)P10y(θ)dθdsdλ,

V9(t) = ρM

∫ 0

−ρM

∫ t

t+s

e2α(θ−t)f(ξ(θ))TP11f(ξ(θ))dθds,

where E =


I 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
The time derivative of V (t) along the trajectory of system (3.6)-(3.8) is given by

V̇ (t) =

9∑
i=1

V̇i(t). (3.10)

Then the time derivative of V1(t) is calculated as follows:

V̇1(t) ≤ 2ξT (t)P1ξ̇(t) + 2fT (ξ(t))Kξ̇(t) + 4αfT (ξ(t))Kξ(t) + 2αξT (t)P1ξ(t)− 2αV1(t).

Taking the deravative of V2(t) along any trajectory of solution of system (2.1), we have

V̇2(t) = 2ξT (t)P2ξ̇(t) + 2ξ̇T (t)Q1

[
−ξ̇(t) + y(t)

]
+ 4αfT (ξ(t))Kξ(t) + 2αξT (t)P2ξ(t)

−2αV2(t)

(3.11)
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= 2ζT (t)PT2


ξ̇(t)

0
0
0

+ 2ξ̇T (t)Q1

[
−ξ̇(t) + y(t)

]
+ 2yT (t)Q2

[
−ξ̇(t) + y(t)

]
+4αfT (ξ(θ))Cξ(t) + 2αξT (t)P2ξ(t)− 2αV2(t)

= 2


ξ(t)

ξ(t− d(t))∫ t
t−d(t) ξ(s)ds

ξ(t− dM )
y(t)


T 

P2 QT3 QT4 QT5
0 QT6 QT7 QT8
0 QT9 QT10 QT11
0 QT12 QT13 QT14
0 QT15 QT16 QT17



ξ̇(t)

0
0
0

+ 2ξ̇T (t)Q1

[
−ξ̇(t) + y(t)

]

+2yT (t)Q2

[
−ξ̇(t) + y(t)

]
+ 4αfT (ξ(θ))Cξ(t) + 2αξT (t)P2ξ(t)− 2αV1(t)

= 2ξT (t)P2y(t) + 2ξ̇T (t)Q1

[
−ξ̇(t) + y(t)

]
+ 2yT (t)Q2

[
−ξ̇(t) + y(t)

]
+2

[
ξT (t)QT3 + ξT (t− d(t))QT6 +

∫ t

t−d(t)
ξT (s)dsQT9 + ξT (t− dM )QT12

+yT (t)QT15
] [
−y(t)− Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D

∫ t

t−ρ(t)
f(ξ(s))ds

]

+2

[
ξT (t)QT4 + ξT (t− d(t))QT7 +

∫ t

t−d(t)
ξT (s)dsQT10 + ξT (t− dM )QT13 + yT (t)QT16

]

×

[
ξ(t)− ξ(t− d(t))−

∫ t

t−d(t)
y(s)ds

]
+ 2

[
ξT (t)QT5 + ξT (t− d(t))QT8

+

∫ T

t−d(t)
ξT (s)dsQT11 + ξT (t− dM )QT14 + yT (t)QT17

]
[ξ(t− d(t))− ξ(t− dM )

−
∫ t−d(t)

t−dM
y(s)ds

]
+ 4αfT (ξ(θ))Kξ(t) + 2αξT (t)P2ξ(t)− 2αV2(t).

Since the scalars e−2αdM ≤ e−2αd(t) ≤ 1. V3(t) and ḋ(t) ≤ dd, we have

V̇3(t) = ξT (t)P3ξ(t)− e−2αdM ξT (t− dM )P3ξ(t− dM )

+

[
ξ(t)

f(ξ(t))

]T [
R1 R2

RT2 R3

] [
ξ(t)

f(ξ(t))

]
−e−2αdM

[
ξ(t− dM )

f(ξ(t− dM ))

]T [
R4 R5

RT5 R6

] [
ξ(t− dM )

f(ξ(t− dM ))

]
− 2αV3(t)

≤ ξT (t)P3ξ(t)− e−2αdM ξT (t− dM )P3ξ(t− dM )

+

[
ξ(t)

f(ξ(t))

]T [
R1 R2

RT2 R3

] [
ξ(t)

f(ξ(t))

]
− dd

[
ξ(t)

f(ξ(t))

]T [
R1 R2

RT2 R3

] [
ξ(t)

f(ξ(t))

]
−e−2αdM

[
ξ(t− d(t))

f(ξ(t− d(t)))

]T [
R1 R2

RT2 R3

] [
ξ(t− d(t))

f(ξ(t− d(t)))

]
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+

[
ξ(t)

f(ξ(t))

]T [
R4 R5

RT5 R6

] [
ξ(t)

f(ξ(t))

]
−e−2αdM

[
ξ(t− dM )

f(ξ(t− dM ))

]T [
R4 R5

RT5 R6

] [
ξ(t− dM )

f(ξ(t− dM ))

]
− 2αV3(t).

Using Lemma 2.6 and Lemma 2.8, V4(t) is calculated as

V̇4(t) = d2Mξ
T (t)P4ξ(t)− dMe−2αdM

∫ t

t−dM
ξT (s)P4ξ(s)ds

+dMy
T (t)P5y(t)− e−2αdM

∫ t

t−dM
ξ̇T (s)P5ξ̇(s)ds− 2αV4(t)

≤ d2Mξ
T (t)P4ξ(t) + dMy

T (t)P5y(t)− e−2αdM
∫ t

t−d(t)
ξT (s)dsP4

∫ t

t−d(t)
ξ(s)ds

−e−2αdM
∫ t−d(t)

t−dM
ξT (s)dsP5

∫ t−d(t)

t−dM
x(s)ds+

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

T

×

M1 +M1T −M1T +M2 0
∗ M1 +MT

1 −M2 −MT
2 −MT

1 +M2

∗ ∗ −M2 −MT
2

 ξ(t)
ξ(t− d(t))
ξ(t− dM )


+hM

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

T M3 M4 0
∗ M3 +M5 M4

∗ ∗ M5

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

− 2αV4(t).

Using Lemma 2.3 (Wirtinger-base integral inequality) and Lemma 2.4 (Peng-Park’s inte-
gral inequality), an upper bound of V5(t) can be obtained as

V̇5(t) ≤ d2My
T (t)P6y(t) + d2My

T (t)P7y(t)

+ e−2αdM

 ξ(β)
ξ(α)

1
β−α

∫ β
α
ξ(s)ds

T −4P6 −2P6 6P6

−2PT6 −4P6 6Q4

6PT6 6PT6 −12P6

 ξ(β)
ξ(α)

1
β−α

∫ β
α
ξ(s)ds


+e−2αdM

 ξ(t)
ξ(t− d(t))
ξ(t− dM )

T  −P7 P7 − S S
PT7 − ST −2P7 + S + ST P7 − S

ST PT7 − ST −P7

 ξ(t)
ξ(t− d(t))
ξ(t− dM )


− 2αV5(t).

It is from Lemma 2.7 that we have

V̇6(t) = d2M

[
ξ(t)
y(t)

]T [
R7 R8

RT8 R9

] [
ξ(t)
y(t)

]
− dM

∫ t

t−dM
e2α(s−t)

[
ξ(s)
y(s)

]T [
R7 R8

RT8 R9

] [
ξ(s)
y(s)

]
ds

−2αV6(t)
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≤ d2M

[
ξ(t)
y(t)

]T [
R7 R8

RT8 R9

] [
ξ(t)
y(t)

]
+ e−2αdM

×


ξ(t)

ξ(t− d(t))
ξ(t− dM )∫ t
t−d(t) ξ(s)ds∫ t−d(t)
t−dM ξ(s)ds


T 
−R9 R9 0 −RT9 0
RT9 −R9 −RT9 R9 RT8 −RT8
0 RT9 −R9 0 RT8
−R9 R8 0 −R7 0

0 −R8 R8 0 −R7




ξ(t)
ξ(t− d(t))
ξ(t− dM )∫ t
t−d(t) ξ(s)ds∫ t−d(t)
t−dM ξ(s)ds


− 2αV6(t).

Using Lemma 2.2 (Jensen’s Inequality) that we have

V̇7(t) ≤ d2My
T (t)P8y(t)− e−2αdM

[∫ t

t−d(t)
yT (s)ds+

∫ t−d(t)

t−dM
yT (s)ds

]
P8

×

[∫ t

t−d(t)
y(s)ds+

∫ t−d(t)

t−dM
y(s)ds

]
− 2αV7(t).

By Lemma 2.5, we can obtain V̇8(t) as follows

V̇8(t) ≤ d4M
4
ξT (t)Q6ξ(t)−

∫ t

t−dM

∫ t

u

ξT (λ)dλduQ6

∫ t

t−hM

∫ t

u

ξ(λ)dλdu

+
d4M
2
yT (t)Q7y(t)− 2

∫ t

t−dM

∫ t

u

ξ̇T (λ)dλduQ7

∫ t

t−hM

∫ t

u

ξ̇(λ)dλdu− 2αV8(t).

By Lemma 2.2 (Jensen’s Inequality) and calculating V̇9(t), we have

V̇9(t) = ρMf
T (ξ(t))P11f(ξ(t))− ρM

∫ t

t−ρM
e2α(s−t)fT (ξ(s))P11f(ξ(s))ds− 2αV9(t)

≤ ρMf
T (ξ(t))P11f(ξ(t))− e−2αρM

∫ t

t−ρM
fT (ξ(s))dsP11

∫ t

t−ρM
f(ξ(s))ds− 2αV9(t).

From (2.4), we obtain for any positive real constants ε1 and ε2,[
ξ(t)

f(ξ(t))

]T [−2H1ε1 H1ε2
εT2H

T
1 −2H1

] [
ξ(t)

f(ξ(t))

]
≥ 0, (3.12)[

ξ(t− d(t))
f(ξ(t− d(t)))

]T [−2H2ε1 H2ε2
εT2H

T
2 −2H2

] [
ξ(t− d(t))

f(ξ(t− d(t)))

]
≥ 0. (3.13)

According to (3.10)-(3.13), it is straightforward to see that

V̇ (t) + 2αV (t) ≤ ζT (t)
∑

ζ(t), (3.14)

where

ζ(t) =
[
ξ(t), ξ̇(t), y(t), ξ(t−d(t)), ξ(t−dM ),

∫ t
t−d(t) ξ(s)ds,

∫ t−d(t)
t−dM ξ(s)ds, 1

dM

∫ t
t−dM ξ(s)ds,∫ t

t−d(t) y(s)ds,
∫ t−d(t)
t−dM y(s)ds, f(ξ(t)), f(ξ(t− d(t))), f(ξ(t− dM )),

∫ t
t−ρM f(ξ(s))ds,∫ 0

−dM

∫ t
t+s

ξ(s)dsdλ,
∫ 0

−dM

∫ t
t+s

ξ̇(s)dsdλ
]
.

and
∑

is define in (3.1). It is true that if conditions (3.5)-(3.14) hold, then

V̇ (t) + 2αV (t) ≤ 0, ∀t ∈ R+.
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Hence, we get

V̇ (t) ≤ −2αV (t) ≤ −2αλmin(P1)||ξ(t)||2, ∀t ∈ R+.

If we choose λ2 = 2αλmin(P1), then

V̇ (t) ≤ −λ22||ξ(t)||2, ∀t ∈ R+. (3.15)

Integrating both sides of (3.15) from 0 to t, we get

V (t) ≤ V (0)e−2αt, ∀t ∈ R+, (3.16)

where V (0) =

9∑
i=1

Vi(0).

Therefore, we conclude

λ1(P1)||ξ(t)||2 ≤ V (0)e−2αt

≤ N sup
−dM≤θ≤0

||φ(θ)||2e−2αt, (3.17)

where

N = λmax(P1 + 2ε3K + EP2) + dMλmax(R1 + 1 + ε1R
T
2 R2 + ε1R3)

+d2Mλmax(P5 + P7) + d3Mλmax(P4 + P6 +R7 + 1 +RT8 R8 +R9 + P8)

+d5Mλmax(P9 + P10) + ρ2Mλmax(ε1P11),

ε3 = diag{F+
1 , F

+
2 , ..., F

+
n }.

From (3.1), we obtain

||ξ(t, φ)|| ≤

√
N

λmin(P1)
sup

−dM≤θ≤0
||φ(θ)||e−αt, ∀t ∈ R+.

Now we can conclude that (2.1) is exponentially stable with the exponential convergenc
rate α.

4. Exponential Passivity

In this section, we analyze the exponential passivity for neural networks with time-
varying delays, interested in continuous neural networks, by the following

ξ̇(t) = −Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D
∫ t
t−ρ(t) f(ξ(s))ds

+u(t), t ∈ R+

ξ(t) = φ(t), t ∈ [−dM , 0],
z(t) = f(ξ(t)) + f(ξ(t− d(t))) + u(t), t ∈ R+

 (4.1)

where u(t) = [u1(t), u2(t), ..., un(t)]T ∈ Rn is an external input vector to neurons,
z(t) = [z1(t), z2(t), ..., zn(t)]T ∈ Rn is the output vector of neuron networks.

Definition 4.1. [57] The neural networks are said to be exponential passive from input
u(t) to output z(t), if there exist an exponential Lyapunov function (or, called the expo-
nential storage function) V defined on Rn, and a constant α > 0 such that for all u(t),
all initial conditions ξ(0), all t ≥ t0, the following inequality holds:

V̇ (t) + αV (t) ≤ 2zT (t)u(t), t ≥ t0, (4.2)
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where V̇ (t) denotes the total derivative of V (t) along the state trajectories ξ(t), t ≥ t0,
of (4.1).

By (3.5), we give the additional notations exponential passivity for (4.1),

Π =
[
Ωi,j

]
17×17

. (4.3)

We obtain that Ω(1,1) − Ω(16,16), are the same as in Theorem 3.1 except

Ω(1,17) = QT3 , Ω(3,17) = QT15, Ω(4,17) = QT6 ,

Ω(5,17) = QT12, Ω(6,17) = QT9 , Ω(17,1) = Q3,

Ω(17,3) = Q15, Ω(17,4) = Q6, Ω(17,5) = Q12,

Ω(17,6) = Q9,

Ω(11,17) = Ω(17,11) = Ω(12,17) = Ω(17,12) = −I,
Ω(17,17) = −2I,

Ω(1,17) = Ω(2,17) = · · · = Ω(17,16) = 0,

ψ(t) =
[
ξ(t), ξ̇, y(t), ξ(t− d(t)), ξ(t− dM ),

∫ t
t−d(t) ξ(s)ds,

∫ t−d(t)
t−dM ξ(s)ds, 1

dM

∫ t
t−d(t) ξ(s)ds,∫ t

t−d(t) y(s)ds,
∫ t−d(t)
t−dM y(s)ds, f(ξ(t)), f(ξ(t−d(t))),

∫ t
t−ρM f(ξ(s))ds,

∫ 0

−dM

∫ t
t+s

ξ(s)dsdλ,∫ 0

−dM

∫ t
t+s

ξ̇(s)dsdλ, u(t)
]
.

Then, we construct a new theorem as follow,

Theorem 4.2. For given positive real constants dM , ρM , dd, K and N , the system (4.1)
is exponential passivity with a decay rate α if there exist positive definite symmetric ma-
trices Pi, Rj, R9, any appropriate dimensional matrices S,R7, R8, Qi, R7 ≥ 0 where
i = 1, 2, . . . , 11, j = 1, 2, . . . , 6, satisfying the following[

P7 S
∗ P7

]
≥ 0, (4.4)[

R7 R8

∗ R7

]
≥ 0, (4.5)P4 M1 M2

∗ M3 M4

∗ ∗ M5

 ≥ 0, (4.6)

Π < 0. (4.7)

Proof. Under the condition of the theorem, we focus on the exponential passivity of the
neural networks (4.1) as the following

ξ̇(t) = −Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D

∫ t

t−ρ(t)
f(ξ(s))ds+ u(t). (4.8)

By model transformation method, we have

ξ̇(t) = y(t), (4.9)

0 = −y(t)− Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D

∫ t

t−ρ(t)
f(ξ(s))ds

+u(t). (4.10)
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Similary, Lyapunov function of neural networks is activated by replacing V̇2(t) into (3.10).

V̇2(t) = 2ξT (t)P2y(t) + 2ξ̇T (t)Q1

[
−ξ̇(t) + y(t)

]
+ 2yT (t)Q2

[
−ξ̇(t) + y(t)

]
+2

[
ξT (t)QT3 + ξT (t− d(t))QT6 +

∫ t

t−d(t)
ξT (s)dsQT9 + ξT (t− dM )QT12

+

[
−y(t)− Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t))) +D

∫ t

t−ρ(t)
f(ξ(s))ds+ u(t)

]

+2

[
ξT (t)QT4 + ξT (t− d(t))QT7 +

∫ t

t−d(t)
ξT (s)dsQT10 + ξT (t− dM )QT13

+yT (t)QT16
] [
ξ(t)− ξ(t− d(t))−

∫ t

t−d(t)
y(s)ds

]
+ 2

[
ξT (t)QT5

+ξT (t− d(t))QT8 +

∫ T

t−d(t)
ξT (s)dsQT11 + ξT (t− dM )QT14 + yT (t)QT17

]
[
ξ(t− d(t))− ξ(t− dM )−

∫ t−d(t)

t−dM
y(s)ds

]
+ 4αfT (ξ(θ))Cξ(t)

+2αξT (t)P2ξ(t)− 2αV2(t).

Now, the exponential passivity analysis is presented. By (3.5), (3.12) and (3.13), it can
be seen that

V̇ (t)− 2ZT (t)u(t)

≤ 2ξT (t)P1ξ̇(t) + 2fT (ξ(t))Kξ̇(t) + 4αfT (ξ(t))Kξ(t) + 2αξT (t)P1ξ(t)

+2ξT (t)P2y(t) + 2ξ̇T (t)Q1

[
−ξ̇(t) + y(t)

]
+ 2yT (t)Q2

[
−ξ̇(t) + y(t)

]
+2

[
ξT (t)QT3 + ξT (t− d(t))QT6 +

∫ t

t−d(t)
ξT (s)dsQT9 + ξT (t− dM )QT12

+yT (t)QT15
]

[−y(t)− Cξ(t) +Af(ξ(t)) +Bf(ξ(t− d(t)))

+D

∫ t

t−ρ(t)
f(ξ(s))ds+ u(t)

]
+ 2

[
ξT (t)QT4 + ξT (t− d(t))QT7

+

∫ t

t−d(t)
ξT (s)dsQT10 + ξT (t− dM )QT13 + yT (t)QT16

]

×

[
ξ(t)− ξ(t− d(t))−

∫ t

t−d(t)
y(s)ds

]
+ 2

[
ξT (t)QT5 + ξT (t− d(t))QT8

+

∫ T

t−d(t)
ξT (s)dsQT11 + ξT (t− dM )QT14 + yT (t)QT17

]
[
ξ(t− d(t))− ξ(t− dM )−

∫ t−d(t)

t−dM
y(s)ds

]
+ 4αf(ξ(θ))TCξ(t)
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+2αξT (t)P2ξ(t) + ξT (t)P3ξ(t)

−e−2αdM ξT (t− dM )P3ξ(t− dM ) +

[
ξ(t)

f(ξ(t))

]T [
R1 R2

RT2 R3

] [
ξ(t)

f(ξ(t))

]
−e−2αdM (1− dd)

[
ξ(t− d(t))

f(ξ(t− d(t)))

]T [
R1 R2

RT2 R3

] [
ξ(t− d(t))

f(ξ(t− d(t)))

]
+

[
ξ(t)

f(ξ(t))

]T [
R4 R5

RT5 R6

] [
ξ(t)

f(ξ(t))

]
− e−2αdM

[
ξ(t− dM )

f(ξ(t− dM ))

]T
×
[
R4 R5

RT5 R6

] [
ξ(t− dM )

f(ξ(t− dM ))

]
+ d2Mξ

T (t)P4ξ(t) + dMy
T (t)P5y(t)

−e−2αdM
∫ t

t−d(t)
ξT (s)dsP4

∫ t

t−d(t)
ξ(s)ds+ d2My

T (t)P8y(t)

−e−2αdM
∫ t−d(t)

t−dM
ξT (s)dsP5

∫ t−d(t)

t−dM
x(s)ds+

d4M
4
ξT (t)Q6ξ(t)

+ρMf
T (ξ(t))P11f(ξ(t)) + ρ2Mf

T (ξ(t))P11f(ξ(t))

−e−2αdM
[∫ t

t−d(t)
yT (s)ds+

∫ t−d(t)

t−dM
yT (s)ds

]
P8

×

[∫ t

t−d(t)
y(s)ds+

∫ t−d(t)

t−dM
y(s)ds

]
+ e−2αdM

×


ξ(t)

ξ(t− d(t))
ξ(t− dM )∫ t
t−d(t) ξ(s)ds∫ t−d(t)
t−dM ξ(s)ds


T 
−R9 R9 0 −RT9 0
RT9 −R9 −RT9 R9 RT8 −RT8
0 RT9 −R9 0 RT8
−R9 R8 0 −R7 0

0 −R8 R8 0 −R7




ξ(t)
ξ(t− d(t))
ξ(t− dM )∫ t
t−d(t) ξ(s)ds∫ t−d(t)
t−dM ξ(s)ds


−
∫ t

t−dM

∫ t

u

ξT (λ)dλduQ6

∫ t

t−dM

∫ t

u

ξ(λ)dλdu+
d4M
2
yT (t)Q7y(t)

−2

∫ t

t−dM

∫ t

u

ξ̇T (λ)dλduQ7

∫ t

t−dM

∫ t

u

ξ̇(λ)dλduduQ6

∫ t

t−dM

∫ t

u

ξ(λ)dλdu

+ρ2Mf
T (ξ(t))P11f(ξ(t))− e−2αρM

∫ t

t−ρM
fT (ξ(s))P11f(ξ(s))ds− 2αV9(t)

−e−2αρM
∫ t

t−ρM
fT (ξ(s))dsP11

∫ t

t−ρM
f(ξ(s))ds− 2ZT (t)u(t). (4.11)

By (4.11), we conclude that

V̇ (t)− 2ZT (t)u(t) ≤ ψT (t)Πψ(t).

From the Schur complement in aspect of LMI (3.5), we have the fact of Π < 0. Noticing
that |ξ(t)| ≤ |ψ(t)|, so

V̇ (t)− 2ZT (t)u(t) ≤ λmaxΠ|ξ(t)|2.
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On the other hand, it is easy to detect that

V (t) ≤
(
‖P‖+ 2‖K‖+ ‖E‖‖P‖)|ξ(t)|2 + (‖P‖+ ‖R‖

) ∫ t

t−dM
|ξ(s)|2ds

+‖R‖
∫ t

t−d(t)
|ξ(s)|2ds+ 2dM‖P‖

∫ t

t+s

|ξ(θ)|2dθ + (3dM‖P‖+ ‖P‖+ dM‖R‖)

×
∫ t

t+s

y(θ)|2dθ + d2M‖P‖
∫ 0

λ

∫ t

t+s

|y(θ)|2dθds+ ρM‖P‖
∫ t

t+s

|ξ(θ)|2dθ.

Let α be sufficiently small such that

α(3‖P‖+ ‖E‖‖P‖+ 5dM‖P‖+ d2M‖P‖+ ρM‖P‖)− λmax (Π) < 0,

α(2‖R‖+ dM‖R‖)− λmin(R) ≤ 0,

α(2‖K‖)− λmin(R) ≤ 0. (4.12)

Hence,

V̇ + αV (t)− 2ZT (t)u(t) ≤ 0. (4.13)

By definition, the delayed neural networks are exponentail passive. The proof of the
theorem is complete.

5. Numerical Examples

In this section, four numerical examples are given to illustrate the effectiveness of the
method developed in this work.

Example 5.1. Consider the delayed neural networks system (2.1) with parameters

C =

[
2 0
0 3.5

]
, A =

[
−1 0.5
0.5 −1

]
, B =

[
−0.5 0.5
0.5 0.5

]
,

ε−1 = ε−2 = 0, ε+1 = ε+2 = 1.

First, we assumed that the upper bound dm is fixed as 1. The exponential convergence
rates with various dd are obtained from Theorem 3.1, [20] and [43] as shown in Table 1.
dd can be an arbitrary value, even dd is very largej or d(t) is not differentiable. These
are called unknown dd. Theorem 3.1 in this paper can also provides significantly better
results than those in other literature.

Table 1. Allowable exponential convergence rate α for various dd and
dm = 1 of Example 5.1.

Method dd = 0.8 dd = 0.9 Unknown dd
Wu (2008) [43] 0.8643 0.8344 0.8169
Ji (2014) [20] 0.8696 0.8354 0.8169
Ji (2015) [21] 0.8784 0.8484 0.8217
He (2016) [18] 0.8841 0.8570 0.8260
Theorem 3.1 4.1450 4.1450 4.1420

Second, if the exponential convergence rate of α is fixed as 0.8, the upper bounds of
dM for various dd’s from Theorem 3.1, [19], [43], and [53] are listed in Table 2. On the
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other hand, when dM is zero, the upper bound delay was investigated in [31] and [23]
under the different rate of convergence α. The results of the delay bound are listed in
Table 3. From Table 4, it is implied that when d(t) is time-varying, Theorem 3.1 gives
less conservative results than the ones in [12, 23, 27].

Table 2. Allowable upper bound of dM for various dd and α = 1 of
Example 5.1.

Method dd = 0.5 dd = 0.8 Unknown dd
Xu (2005) [53] - - -
He (2006) [19] 1.2606 0.9442 0.8310
Wu (2008) [43] 1.2787 1.0819 1.0366
Theorem 3.1 4.3842 4.3841 4.3752

Table 3. Allowable upper bound of dM for various α of Example 5.1.

Method α = 0.5 α = 1 α = 1.5
Park (2007) [32] 2.5900 0.9700 0.3500
Gau (2007) [12] 2.8200 1.1800 0.5400
Mou (2008) [31] 2.9000 1.3200 0.7200

Kwon (2009) [23] 2.9400 1.3500 0.7002
Theorem 3.1 6.6021 3.6051 2.5198

Table 4. Allowable upper bound of dM for various dd and α = 0.25 in
Example 5.1.

Method dd = 0 dd = 0.8 Unknown dd
Gau (2007) [12] 5.9000 2.8000 1.0400

Kwon (2008) [27] 6.0000 2.9000 1.4000
Kwon (2009) [23] 6.0000 3.5000 2.5300

Theorem 3.1 11.9997 11.9991 11.9214

Example 5.2. Consider exponential stability for neural networks system (2.1) with pa-
rameters

C =

[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1

1 1

]
,

ε−1 = ε−2 = 0, ε+1 = 0.4, ε+2 = 0.8

We choose dd = 0.8, dd = 0.9 and unknown dd. Table 5 provides the comparisons
of allowed upper bound time delay dM . It is clear that, for this example, the delayed
stability condition in this paper has not less conservatism than those in [17, 41, 56].

In [11, 17, 18, 51, 55], the authors also studied this example with different dd and fixed
α. As presented in Table 6, our developed method even provides satisfying results.
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Table 5. The upper bound delay dM for α = 0 of Example 5.2.

Method dd = 0.8 dd = 0.9 Unnkown dd
He (2007) [17] 2.2552 1.4769 1.3606

Zhang (2009) [56] 2.8335 1.9342 1.7532
Wang (2012) [41] 3.0385 2.0250 1.8573

Theorem 3.1 2802.3 2794.6 2677.3

Table 6. Allowable upper bound dm for various dd and α = 0 of Exam-
ple 5.2.

Method dd = 0.8 dd = 0.9
He (2007) [17] 2.3534 1.6050

Zeng (2011)(m=3) [51] 3.2160 2.1995
Ge (2014)(m=2) [11] 2.8980 1.9562

Zhang (2013) [55] 3.1409 1.6375
He (2016) [18] 3.7756 2.2201
Theorem 3.1 5540.4 5480.3

Example 5.3. We focus on exponential passivity for neural networks system (4.1) with
the following parameters

C =

[
2 0
0 3.5

]
, A =

[
−1 0.5
0.5 −1

]
, B =

[
−0.5 0.5
0.5 0.5

]
,

ε−1 = ε−2 = −0.1, ε+1 = ε+2 = 0.5,

for d(t) = 0.2 +
cos2(t)

2
, ρ(t) = 0.2 +

| sin(t)|
2

.

In this example, we interest in the exponential passivity for neural networks with
discrete time-varying delay. Table 7 provides the calculated allowable upper bound dM
by using linear matrix inequalities (4.3).

Table 7. Calculated delay upper bound dM for fixed ρM = 0.7 and
different dd and α of Example 5.3.

dd α = 0.1 α = 0.5 α = 0.7 α = 0.9
0 3.0111 1.2311 0.3210 0.1130

0.1 2.0110 1.1020 0.3110 0.1031
0.3 1.3011 1.0322 0.2120 0.1020
0.5 1.0120 1.0002 0.1302 0.1020

The maximum convergence rate α, that guarantees the exponentially passive of this
paper with various values of dd and ρM for fixed dM = 0.7, are obtained and represented
in Table 8.
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Table 8. Calculated convergence’s rate α for fixed dM = 0.7 and differ-
ent dd and ρM of Example 5.3.

dd ρM = 0.7 ρM = 1 ρM = 1.25
0.2 4.0101 3.5020 1.0102
0.7 3.1001 1.0202 0.0120
0.85 1.1010 0.4002 0.0103

Example 5.4. Consider exponential passivity for neural networks system (4.1) with
parameters

C =

[
2 0
0 2

]
, A =

[
1 1
−1 −1

]
, B =

[
0.88 1

1 1

]
,

ε−1 = ε−2 = −0.1, ε+1 = ε+2 = 0.5.

Now, our purpose is to find the allowable maximum time delay dM under different dd
and α of the passive system (4.1). Table 9 gives the results on the maximum dM allowed
via dd and α.

Table 9. Calculated delay upper bound dM for different dd and α of
Example 5.4.

dd α = 0 α = 0.5 α = 1 α = 1.5 α = 2
0 2857.0 6.1603 3.3811 2.3665 1.8293
2 2619.6 6.1601 3.3810 2.3665 1.8293
4 2618.2 6.1599 3.3810 2.3664 1.8293
6 2614.3 6.1593 3.3809 2.3664 1.8293

Now, let us compare the passivity condition in Theorem 4.1 to [44] and [57] by using
ε−1 = ε−2 = 0, ε+1 = 0.4, ε+2 = 0.8. The corresponding upper bounds of dM for various
dd derived by Theorem 4.1 are listed in Table 10, it is clear that the proposed passivity
criterion has considerably less conservative than that in [44, 57].

Table 10. Calculated delay upper bound dM for α = 0 and different dd
of Example 5.4.

Method dd = 0.8 dd = 0.85 dd = 0.9 dd = 0.95
Zhu (2013) [57] 1.0638 0.8532 0.7856 0.7608
Wu (2012) [44] 2.1346 1.7173 1.5592 1.5043
Theorem 4.1 1871.8 1871.7 1871.6 1871.6

6. Conclusions

In this paper, exponential stability and exponential passivity analysis problems of
integro-differential neural network systems with time-varying delays are solved by using
Lyapunov means and LMI term. By constructing the augmented Lyapunov-Krasovskii
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functional and utilizing the model transformation approach, sufficient conditions for ex-
ponential stability of the system are achieved as expressed in Theorem 3.1 and provide
less conservative than those for exponential stability in the existing literature. Moreover,
based on the results of exponential stability, we conducted the proof of integro - differen-
tial of the exponential passivity in Theorem 4.1 with discrete and distributed time-varying
delays. Moreover, we evaluate the developed method through the four numerical exam-
ples conducted in previous works. The numerical results verify the improvement and
effectiveness of the proposed exponential passivity criteria.
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