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1. Introduction

Let H be a real Hilbert Space, C a nonempty closed convex subset of H. Recall that
a self-mapping f of C is a contraction if ‖f(x) − f(y)‖ ≤ α‖x − y‖ for some α ∈ (0, 1)
and a self-mapping T of C is a nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C
and T is an asymptotically nonexpansive [1] if there exists a sequence {kn} ⊆ [1,∞) with
limn→∞ kn = 1 such that ‖Tnx − Tny‖ ≤ kn‖x − y‖ for all n ≥ 1 and x, y ∈ C. A
point x ∈ C is a fixed point of T provided Tx = x. Denote by Fix(T ) the set of fixed
points of T ; that is, Fix(T ) = {x ∈ C : Tx = x}. Let A : H1 → H2 be a mapping
then A∗ : H2 → H1 is an adjoint operator of A if and only if 〈A∗y, x〉 = 〈y,Ax〉 for
x ∈ H1, y ∈ H2.

Recall also that a one-parameter family T = {T (t) : 0 ≤ t < ∞} of self-mappings of
a nonempty closed convex subset C of a Hilbert space H is said to be a (continuous)
Lipschitian semigroup on C (see [2]) if the following conditions are satisfied:
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(i) T (0)x = x, x ∈ C
(ii) T (s+ t)(x) = T (s)T (t), s, t ≥ 0, x ∈ C
(iii) for each x ∈ C, the maps t 7→ T (t)x is continuous on [0,∞)
(iv) there exists a bounded measurable function L : [0,∞)→ [0,∞) such that, for each

t > 0

‖T (t)x− T (t)y‖ ≤ Lt‖x− y‖, x, y ∈ C.
A Lipschitzian semigroup T is called contraction semigroup if Lt < 1, T is called

nonexpansive semigroup if Lt = 1 for all t > 0 and T is an asymptotically nonexpansive
semigroup if lim supt→∞ Lt ≤ 1, respectively. We use Fix(T ) to denote the common fixed
point set of the semigroup; that is Fix(T ) = {x ∈ C : T (t)x = x, t > 0}.

Fixed point iteration processes for nonexpansive mappings and asymptotically non-
expansive mappings in Hilbert spaces and Banach spaces including Mann and Ishikawa
iteration processes have been studied extensively by many authors to solve nonlinear oper-
ator equations as well as variational inequalities(see [3–7]). However, Mann and Ishikawa
iterations processes have only weak convergence even in Hilbert space(see [7, 8]).

The theory of variational inequalities, which was introduce by Stampacchia [9] is a
branch of the mathematical sciences dealing with general equilibrium problems. It has
a wide range of applications in economics, operations research, industry, physical, and
engineering sciences. Many research papers have been written lately, both on the theory
and applications of this field. Important connection with main areas of pure and applied
science have been made, see for example [10–12] and the references cited therein.

The development of variational inequality theory can be viewed as the simultaneous
pursuit of two different lines of research. On the one hand, it reveals the fundamental
facts on the qualitative aspects of the solutions to important classes of problems.

In 2006, Marino and Xu [13], introduced the approximate a fixed point of a nonexpan-
sive mapping for the following general iterative methods:

xn+1 = αnγf(xn) + (I − αnB)Txn, (1.1)

where {αn} ⊆ [0, 1], f is a contraction of H into itself, and B is a strongly positive
bounded linear operator on H. They prove that the sequence {xn} converges strongly to
x∗ ∈ Fix(T ) and the unique solution of the following variational inequality:

〈(B − γf)x∗, x∗ − w〉 ≤ 0,∀w ∈ Fix(T ), (1.2)

which is also the optimality condition of the minimization problem.
Recall also that a multi-valued mapping M : H1 → 2H1 is called monotone if, for all

x, y ∈ H1, u ∈Mx and v ∈My such that

〈x− y, u− v〉 ≥ 0. (1.3)

A monotone mapping M is maximal if the Graph(M) is not property contained in the
graph of any other monotone mapping. It is well known that a monotone mapping M is
maximal if and only if for (x, u) ∈ H1×H1, 〈x−y, u−v〉 ≥ 0 for every (y, v) ∈ Graph(M)
implies that u ∈Mx.

From a monotone mapping M the resolvent mapping JMλ : H1 → H1 associated with
M is defined by

JMλ (x) := (I + λM)−1(x),∀x ∈ H1, (1.4)

for some λ > 0, where I is the identity mapping on H1. Note that for all λ > 0 the
resolvent operator JMλ is single-valued, nonexpansive and firmly nonexpansive mapping.
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In 2012, Byrne et. al., [14] introduce the split variational inclusion problem : find
x∗ ∈ H1 such that{

0 ∈ B1(x∗),
y∗ = Ax∗ ∈ H2 : 0 ∈ B2(y∗).

(1.5)

The solution set of problem (1.5) is denote by = = {x∗ ∈ H1 : 0 ∈ B1(x∗), y∗ = Ax∗ ∈
H2 : 0 ∈ B2(y∗)}.

In 2015 Wen and Chen [15] introduce a modified general iterative method for a split
variational inclusion and nonexpansive semigroups, which is defined sequence {xn} the
following way:

xn+1 = αnγf(xn) + (I − αnB)
1

tn

∫ tn

0

T (s)JB1

λ [xn + εA∗(JB2

λ − I)Axn]ds, (1.6)

where γ ∈ [0, 1] and {αn} ⊆ [0, 1], then they prove the strong convergence of {xn} to
q ∈ Fix(T ) ∩ =.

Next, we studies some examples for relationship between a nonexpansive semigroup
and an asymptotically nonexpansive semigroup for motivation of this work.

Example 1.1. Let H1 = H2 = R and let T := {T (s) : 0 ≤ s < ∞}, where T (s)x =
1

1+2sx,∀x ∈ R. We see that for any x, y ∈ R

‖T (s)x− T (s)y‖ = ‖( 1

1 + 2s
)x− (

1

1 + 2s
)y‖ = (

1

1 + 2s
)‖x− y‖,

then we have T is nonexpansive semigroup. If Ls = 1 we have lim sups→∞ Ls = 1 then
T is asymptotically nonexpansive semigroup.

Example 1.2. Let H1 = H2 = R and let T := {T (s) : 0 ≤ s < ∞}, where T (s)x =
2+2s
1+2sx,∀x ∈ R. We see that for any x, y ∈ R

‖T (s)x− T (s)y‖ = ‖(2 + 2s

1 + 2s
)x− (

2 + 2s

1 + 2s
)y‖ = (

2 + 2s

1 + 2s
)‖x− y‖,

put Ls = ( 2+2s
1+2s ) we have lim sups→∞ Ls = lim sups→∞( 2+2s

1+2s ) = 1 then T is asymptot-

ically nonexpansive semigroup. If we let s = 1 we have 2+2s
1+2s = 4

3 6< 1, then T is not
necessary nonexpansive semigroup.

From above example we see that a mapping T is a nonexpansive semigroup then T
is asymptotically nonexpansive semigroup. But T is an asymptotically nonexpansive
semigroup is not necessary nonexpansive semigroup.

The motivation of this work we study the iterative scheme of Wen and Chen [15] for
T is an asymptotically nonexpansive semigroup then we peove the strong convergence
theorem of {xn} generated by (1.6).
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2. Preliminaries

In this section, we collect and give some useful lemmas that will be used for our main
result in the next section.

Lemma 2.1. Let H be a real Hilbert space, then the following holds:
(i) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, (x+ y)〉,∀x, y ∈ H;
(ii) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, t ∈ [0, 1],∀x, y ∈ H.

Lemma 2.2 ([8]). Let C be a nonempty bounded closed convex subset of real Hilbert space
H and let T := {T (s) : 0 ≤ s < ∞} an asymptotically nonexpansive semigroup on C, If
{xn} is a sequence in C satisfying the properties:

(i) xn ⇀ z; and
(ii) lim supt→∞ lim supn→∞ ‖T (t)xn − xn‖ = 0,

then z ∈ Fix(T ).

Lemma 2.3 ([8]). Let C be a nonempty bounded closed convex subset of real Hilbert space
H and let T := {T (s) : 0 ≤ s < ∞} an asymptotically nonexpansive semigroup on C,
then for any u ≥ 0,

lim sup
u→∞

lim sup
t→∞

sup
x∈C
‖1

t

∫ t

0

T (s)xds− T (u)(
1

t

∫ t

0

T (s)xds)‖ = 0.

Lemma 2.4 ([13]). Let B be a strongly positive linear bounded operator on a Hilbert
space H with a coefficient γ > 0 and 0 < % < ‖B‖−1. Then ‖I − %B‖ ≤ 1− %γ.

Lemma 2.5 ([13]). Let C be a nonempty closed convex subset of a Hilbert space H.
Assume that f : C → C is a contraction with a coefficient ρ ∈ (0, 1) and B is a strongly

positive bounded linear operator with a coefficient γ > 0. Then for 0 < γ < γ
ρ ,

〈x− y, (B − γf)x− (B − γf)y〉 ≥ (γ − γρ)‖x− y‖2,∀x, y ∈ H.
That is B − γf is strongly monotone with coefficient γ − γρ.

Lemma 2.6 ([16]). Let {an}∞n=1 be a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnbn + σn,

where {γn}∞n=1 ⊆ (0, 1) and {bn}∞n=1, {σn}∞n=1 are sequence in R such that
(i) limn→∞ γn = 0 and Σ∞n=1γn =∞;
(ii) lim supn→∞ bn ≤ 0;
(iii) σn ≥ 0 and Σ∞n=1σn <∞.

Then limn→∞ an = 0.

Lemma 2.7 ([17, 18]). Let S : H → H be averaged and T : H → H be nonexpansive
have:

(i) W = (1− α)S + αT is averaged, where α ∈ (0, 1).
(ii) The composite of finitely many averaged mapping is averaged.

Theorem 2.8 ([19]). Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be
a bounded linear operator. Let f : H1 → H1 be a contraction mapping with constant
ρ ∈ (0, 1) and T : H1 → H1 be a nonexpansive mapping such that Ω = Fix(T ) ∩ = 6= ∅.
For a given x0 ∈ H1 arbitrary, let the iterative sequences {un} and {xn} be generated by{

un = JB1

λ [xn + εA∗(JB2

λ − I)Axn],
xn+1 = αnf(xn) + (1− αn)Txn,

(2.1)
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where λ > 0 and ε ∈ (0, 1/L), L is the spectral radius of the operator A∗A, and A∗ is the
adjoint of A; {αn} is a sequence in (0, 1) such that limn→∞ αn = 0,Σ∞n=1αn = ∞, and
Σ∞n=1|αn − αn−1| < ∞. Then the sequens {un} and {xn} both convergence strongly to
z ∈ Ω, where z = PΩ(z).

Lemma 2.9 ([19]). The split variational inclusion problem (2.1) is equivalent to finding

x∗ ∈ H1 such that y∗ = Ax∗ ∈ H2 : x∗ = JB1

λ and y∗ = JB2

λ (y∗) for some λ > 0.

3. Main Results

In the first Theorem in this section we prove the unique fixed point by Banach con-
traction principle of Φ. The second Theorem we prove the strong convergence of modified
general iterative method for a split variational inclusion and asymptotically nonexpansive
semigroups to q ∈ Ω which is the unique solution of the following variational inequality:

〈(B − γf)q, q − w〉 ≤ 0,∀w ∈ Ω.

Theorem 3.1. Let H1 and H2 be two Hilbert space, let A : H1 → H2 be a bounded linear
operator and B be a strongly positive bounded linear operator on H1 with constant γ > 0.
Let B1 : H1 → 2H1 be maximal monotone mapping and T := {T (s) : 0 ≤ s < ∞} be a
one-operator asymptotically nonexpansive semigroup on H1 such the Ω = Fix(T )∩= 6= ∅.
Assume that f : H1 → H1 is a contraction mapping with constant ρ ∈ (0, 1). For any
α ∈ (0, 1), define the mapping Φ on H1 by

Φ(x) = αγf(x) + (I − αB)
1

t

∫ t

0

T (s)JB1

λ [x+ εA∗(JB2

λ − I)Ax]ds,

where t > 0, γ ∈ (0, γρ ), and ε ∈ (0, 1
L ), L is spectral radius of the operator A∗A, and A∗

is the adjoint of A and 1 < 1
t

∫ t
0
Lsds < a < 1−αγρ

1−αγ . Then the mapping Φ is a contraction

and has a unique fixed point.

Proof. Since JB1

λ and JB2

λ are firmly nonexpansive, they are averaged. For ε ∈ (0, 1
L ), the

mapping I + εA∗(JB2

λ − I)A is averaged; see e.g.[20]. It follows from Lemma 2.7 (ii) that

the mapping JB1

λ (I + εA∗(JB2

λ − I)A) is averaged and hence nonexpansive. By Lemma
2.4, for any x, y ∈ H1, we have

‖Φ(x)− Φ(y)‖ = ‖αγf(x) + (I − αB)
1

t

∫ t

0

T (s)JB1

λ [x+ εA∗(JB2

λ − I)Ax]ds

−αγf(y) + (I − αB)
1

t

∫ t

0

T (s)JB1

λ [y + εA∗(JB2

λ − I)Ay]ds‖

≤ αγ‖f(x)− f(y)‖

+(1− αγ)‖1

t

∫ t

0

T (s)JB1

λ [x+ εA∗(JB2

λ − I)Ax]ds

−1

t

∫ t

0

T (s)JB1

λ [y + εA∗(JB2

λ − I)Ay]ds‖
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≤ αγρ‖x− y‖+ (1− αγ)(
1

t

∫ t

0

Lsds)‖JB1

λ [x+ εA∗(JB2

λ − I)Ax]

− JB1

λ [y + εA∗(JB2

λ − I)Ay]‖

≤ αγρ‖x− y‖+ (1− αγ)(
1

t

∫ t

0

Lsds)‖x− y‖

= αγρ‖x− y‖+ (1− αγ)a‖x− y‖
≤ [a− α(γa− γρ)]‖x− y‖.

From γ ∈ (0, γρ ) and 1 < 1
tn

∫ tn
0
Lsds < a < 1−αγρ

1−αγ , we have [a − α(γa − γρ)] < 1. It

follows that Φ is a contraction mapping. By the Banach contraction principle, Φ(x) has
a unique fixed point xα, that is

xα = αγf(xα) + (I − αB)
1

t

∫ t

0

T (s)JB1

λ [xα + εA∗(JB2

λ − I)Axα]ds.

Next Theorem we study the general iterative scheme (1.6) for the split variational
inclusion of asymptotically nonexpansive semigroups and prove the strong convergence
of iterative to q ∈ Ω which is the unique solution of the following variational inequality:
〈(B − γf)q, q − w〉 ≤ 0,∀w ∈ Ω.

Theorem 3.2. Let H1 and H2 be two Hilbert space, let A : H1 → H2 be a bounded
linear operator and B be a strongly positive bounded linear operator on H1 with constant
γ > 0. Let B1 : H1 → 2H1 , B2 : H2 → 2H2 be maximal monotone mapping and
T := {T (s) : 0 ≤ s < ∞} be a one-operator asymptotically nonexpansive semigroup on
H1 such the Ω = Fix(T ) ∩ = 6= ∅. Assume that f : H1 → H1 is a contraction mapping

with constant ρ ∈ (0, 1), γ ∈ (0, γρ ), and ε ∈ (0, 1
L ), L is spectral radius of the operator

A∗A, and A∗ is the adjoint of A. For a given x1 ∈ H1, and suppose that the sequence

{αn} ⊆ (0, 1), {tn} ⊆ (0,∞) and 1 < 1
tn

∫ tn
0
Lsds < an <

1−αnγρ
1−αnγ

satisfy:

(i) limn→∞ αn = 0,Σ∞n=1αn =∞, and Σ∞n=1|αn − αn−1| <∞;

(ii) limn→∞ tn =∞ and limn→∞
|tn−tn−1|
αntn

= 0.

Then the sequence {xn} generated by (1.6) converge strongly to q ∈ Ω, which is the unique
solution of the following variational inequality:

〈(B − γf)q, q − w〉 ≤ 0,∀w ∈ Ω.

Proof. Let p ∈ Ω, we have p = JB1

λ p, JB2

λ (Ap) = Ap and T (s)p = p. From (1.6), let

un = JB1

λ [xn + εA∗(JB2

λ − I)Axn], and Lemma 2.9, we have

‖un − p‖2 = ‖JB1

λ [xn + εA∗(JB2

λ − I)Axn]− JB1

λ p‖2

≤ ‖xn + εA∗(JB2

λ − I)Axn − p‖2

≤ ‖xn − p‖2

+2ε〈xn − p,A∗(JB2

λ − I)Axn〉+ ε2‖A∗(JB2

λ − I)Axn‖2. (3.1)
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By the definition of A and A∗, we obtain

ε2‖A∗(JB2

λ − I)Axn‖2 = ε2〈A∗(JB2

λ − I)Axn, A
∗(JB2

λ − I)Axn〉
= ε2〈(JB2

λ − I)Axn, AA
∗(JB2

λ − I)Axn〉
≤ Lε2〈(JB2

λ − I)Axn, (J
B2

λ − I)Axn〉
= Lε2‖(JB2

λ − I)Axn‖2. (3.2)

And we have

2ε〈xn − p,A∗(JB2

λ − I)Axn〉 = 2ε〈A(xn − p), (JB2

λ − I)Axn〉
= 2ε〈A(xn − p) + (JB2

λ − I)Axn

−(JB2

λ − I)Axn, (J
B2

λ − I)Axn〉
= 2ε〈A(xn − p) + (JB2

λ − I)Axn, (J
B2

λ − I)Axn〉
−〈(JB2

λ − I)Axn, (J
B2

λ − I)Axn〉
= 2ε[〈JB2

λ Axn −Ap, (JB2

λ − I)Axn〉 − ‖(JB2

λ − I)Axn‖2]

≤ 2ε[
1

2
‖(JB2

λ − I)Axn‖ − ‖(JB2

λ − I)Axn‖2]

= −ε‖(JB2

λ − I)Axn‖2. (3.3)

From (3.1), (3.2), (3.3) and ε ∈ (0, 1
L ), it follows that

‖un − p‖2 ≤ ‖xn − p‖2 + ε(Lε− 1)‖(JB2

λ − I)Axn‖2 ≤ ‖xn − p‖2. (3.4)

Next, we set wn = 1
tn

∫ tn
0
T (s)unds for n ≥ 0, since 1 < 1

tn

∫ tn
0
Lsds < an <

1−αnγρ
1−αnγ

and

from (3.4), we have

‖wn − p‖ = ‖ 1

tn

∫ tn

0

T (s)unds− T (s)p‖

≤ 1

tn

∫ tn

0

‖T (s)un − T (s)p‖ds

≤ 1

tn

∫ tn

0

Lsds‖un − p‖

≤ 1

tn

∫ tn

0

Lsds‖xn − p‖

≤ a‖xn − p‖, (3.5)

where a = supn≥1{an}. It follows from (1.6), (3.5) and Lemma 2.4, that

‖xn+1 − p‖ = ‖αnγf(xn)

+(I − αnB)
1

tn

∫ tn

0

T (s)JB1

λ [xn + εA∗(JB2

λ − I)Axn]ds− p‖

= ‖αn(γf(xn)−Bp)

+(I − αnB)
1

tn

∫ tn

0

(T (s)JB1

λ [xn + εA∗(JB2

λ − I)Axn]− T (s)p)ds‖



1668 Thai J. Math. Vol. 18 (2020) /I. Inchan

≤ αn‖γf(xn)−Bp‖+ (1− αnγ)
1

tn

∫ tn

0

‖T (s)un − T (s)p‖ds

≤ αn(‖γf(xn)− γf(p)‖+ ‖γf(p)−Bp‖) + (1− αnγ)a‖xn − p‖
≤ αnγρ‖xn − p‖+ αn‖γf(p)−Bp‖+ (1− αnγ)a‖xn − p‖
= [1− αn(γa− γp)]‖xn − p‖+ αn‖γf(p)−Bp‖.

Since 1 < a ≤ 1−αnγρ
1−αnγ

and γ ∈ (0, γρ ), we have γa − γρ > 0. By a simple induction, we

have

‖xn − p‖ ≤ max{‖x0 − p‖,
1

γa− γρ
‖γf(p)−Bp‖}.

Therefor, {xn} is bounded, and so are {un} and {wn}. Next, we show that limn→∞ ‖xn+1−
xn‖ = 0. From (1.6), we have

‖xn+1 − xn‖ = ‖αnγf(xn) + (I − αnB)wn − αnγf(xn−1) + (I − αn−1B)wn−1‖
= ‖αnγ[f(xn)− f(x−1)] + (αn − αn−1)γf(xn−1)

+(I − αnB)(wn − wn−1)− (αn − αn−1)Bwn−1‖
≤ αnγ‖f(xn)− f(x−1)‖+ |αn − αn−1|‖γf(xn−1)‖

+(1− αnγ)‖wn − wn−1‖+ |αn − αn−1|‖Bwn−1‖
≤ αnγρ‖xn − x−1‖+ (1− αnγ)‖wn − wn−1‖

+|αn − αn−1|[γ‖f(xn−1)‖+ ‖Bwn−1‖]. (3.6)

Since 1
tn

∫ tn
0
T (s)pds = 1

tn−1

∫ tn−1

0
T (s)pds, we consider

‖wn − wn−1‖ = ‖ 1

tn

∫ tn

0

T (s)unds−
1

tn−1

∫ tn−1

0

T (s)un−1ds‖

= ‖ 1

tn

∫ tn

0

T (s)unds−
1

tn

∫ tn

0

T (s)un−1ds+
1

tn

∫ tn

0

T (s)un−1ds

+
1

tn

∫ tn−1

0

T (s)un−1ds

− 1

tn

∫ tn−1

0

T (s)un−1ds−
1

tn

∫ tn−1

0

T (s)pds

+
1

tn

∫ tn−1

0

T (s)pds

− 1

tn−1

∫ tn−1

0

T (s)pds+
1

tn−1

∫ tn−1

0

T (s)pds

− 1

tn−1

∫ tn−1

0

T (s)un−1ds‖
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= ‖( 1

tn

∫ tn

0

T (s)unds−
1

tn

∫ tn

0

T (s)un−1ds)

+(
1

tn

∫ tn−1

0

T (s)un−1ds−
1

tn

∫ tn−1

0

T (s)pds

− 1

tn−1

∫ tn−1

0

T (s)un−1ds+
1

tn−1

∫ tn−1

0

T (s)pds)

+(
1

tn

∫ tn−1

0

T (s)un−1ds+
1

tn

∫ 0

tn−1

T (s)un−1ds)

−(
1

tn

∫ tn−1

0

T (s)pds+
1

tn

∫ 0

tn−1

T (s)pds)‖

= ‖ 1

tn

∫ tn

0

[T (s)un − T (s)un−1]ds

+(
1

tn
− 1

tn−1
)

∫ tn−1

0

[T (s)un−1 − T (s)p]ds

+
1

tn

∫ tn

tn−1

T (s)un−1ds−
1

tn

∫ tn

tn−1

T (s)pds‖

= ‖ 1

tn

∫ tn

0

[T (s)un − T (s)un−1]ds

+(
1

tn
− 1

tn−1
)

∫ tn−1

0

[T (s)un−1 − T (s)p]ds

+
1

tn

∫ tn

tn−1

[T (s)un−1 − T (s)p]ds‖

≤ 1

tn

∫ tn

0

‖T (s)un − T (s)un−1‖ds

+| 1

tn
− 1

tn−1
|
∫ tn−1

0

‖T (s)un−1 − T (s)p‖ds

+
1

tn

∫ tn

tn−1

‖T (s)un−1 − T (s)p‖ds‖

≤ 1

tn

∫ tn

0

Lsds‖un − un−1‖+
|tn−1 − tn|

tn

1

tn−1

∫ tn−1

0

Lsds‖un−1 − p‖

+
1

tn

∫ tn

tn−1

Lsds‖un−1 − p‖.

Now, we taking lims→∞ Ls = 1, it follows that 1
tn

∫ tn
0
Lsds→ 1

tn

∫ tn
0
ds, and hence

‖wn − wn−1‖ ≤ ‖un − un−1‖+
2|tn−1 − tn|

tn
‖un−1 − p‖. (3.7)

From ε ∈ (0, 1
L ) and mapping JB1

λ [I+εA∗(JB2

λ −I)A] is averaged and hence nonexpansive,
then we have
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‖un − un−1‖ = ‖JB1

λ [I + εA∗(JB2

λ − I)A]xn − JB1

λ [I + εA∗(JB2

λ − I)A]xn−1‖
≤ ‖xn − xn−1‖. (3.8)

From (3.6), (3.7) and (3.8), we have

‖xn+1 − xn‖ ≤ αnγρ‖xn − x−1‖

+(1− αnγ)[‖xn − xn−1‖+
2|tn−1 − tn|

tn
‖un−1 − p‖]

+|αn − αn−1|[γ‖f(xn−1)‖+ ‖Bwn−1‖]

≤ [1− αn(γ − γρ)]‖xn − xn−1‖+ (|αn − αn−1|+
2|tn−1 − tn|

tn
)M,

(3.9)

where m = max{supn∈N[γ‖f(xn−1)‖ + ‖Bwn−1‖], supn∈N‖un−1 − p‖}. It follows from
condition (i)− (ii) and Lemma 2.6, hence

lim
n→∞

‖xn+1 − xn‖ = 0. (3.10)

Consider,

‖xn − wn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − wn‖
= ‖xn − xn+1‖+ ‖αnγf(xn) + (I − αnB)wn − wn‖
≤ ‖xn − xn+1‖+ αn‖γf(xn) +Bwn‖.

From condition (i) and (3.10), we have

lim
n→∞

‖xn − wn‖ = 0,

and that

lim
n→∞

‖xn −
1

tn

∫ tn

0

T (s)unds‖ = 0. (3.11)

For any u ≥ 0, we have

‖xn − T (u)xn‖ ≤ ‖xn −
1

tn

∫ tn

0

T (s)unds‖+ ‖ 1

tn

∫ tn

0

T (s)unds‖

−T (u)
1

tn

∫ tn

0

T (s)unds+ ‖T (u)
1

tn

∫ tn

0

T (s)unds− T (u)xn‖

≤ ‖xn −
1

tn

∫ tn

0

T (s)unds‖

+‖ 1

tn

∫ tn

0

T (s)unds− T (u)
1

tn

∫ tn

0

T (s)unds‖

+Lu‖
1

tn

∫ tn

0

T (s)unds− xn‖.

From (3.11), Lemma 2.2 and lim supu→∞ Lu ≤ 1, we have

lim
n→∞

‖xn − T (u)xn‖ = 0. (3.12)
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By the definition of xn, (3.3), (3.4) and Lemma 2.1, we have

‖xn+1 − p‖2 ≤ ‖αnγf(xn) + (1− αnB)wn − p‖2

= ‖(wn − p) + αn(γf(xn)−Bwn)‖2

≤ ‖wn − p‖2 + 2αn〈γf(xn)−Bwn, xn+1 − p〉
≤ ‖un − p‖2 + 2αn〈γf(xn)−Bwn, xn+1 − p〉
≤ [‖xn − p‖2 + ε(Lε− 1)‖(JB2

λ − I)Axn‖2]

+2αn〈γf(xn)−Bwn, xn+1 − p〉
≤ ‖xn − p‖2 − ε(1− Lε)‖(JB2

λ − I)Axn‖2 + 2αnM
2
2 , (3.13)

where M2 = max{supn∈N ‖γf(xn)−Bwn‖, supn∈N ‖xn+1 − p‖} and ε ∈ (0, 1
L ), it implies

that

ε(1− Lε)‖(JB2

λ − I)Axn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2αnM
2
2

≤ ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖) + 2αnM
2
2 .

From (3.10), we obtain

lim
n→∞

‖(JB2

λ − I)Axn‖ = 0. (3.14)

From (3.1), (3.3) and ε ∈ (0, 1
L ), that

‖un − p‖2 = ‖JB1

λ [xn + εA∗(JB2

λ − I)Axn]− JB1

λ p‖2

≤ 〈un − p, xn + εA∗(JB2

λ − I)Axn − p〉

=
1

2
{‖un − p‖2 + ‖xn + εA∗(JB2

λ − I)Axn − p‖2

−‖un − p− [xn + εA∗(JB2

λ − I)Axn − p]‖2}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 + ε(Lε− 1)‖(JB2

λ − I)Axn‖2

−‖un − xn − εA∗(JB2

λ − I)Axn‖2}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 − [‖un − xn‖2 + ε2‖A∗(JB2

λ − I)Axn‖2

−2ε〈un − xn, A∗(JB2

λ − I)Axn〉]}

≤ 1

2
{‖un − p‖2 + ‖xn − p‖2 − ‖un − xn‖2

+2ε‖A(un − xn)‖‖(JB2

λ − I)Axn‖},

which implies that

‖un − p‖2 ≤ ‖xn − p‖2 − ‖un − xn‖2 + 2ε‖A(un − xn)‖‖(JB2

λ − I)Axn‖. (3.15)

It follows from (3.13) and (3.15) that

‖xn+1 − p‖2 ≤ ‖un − p‖2 + 2αnM
2
2

≤ ‖xn − p‖2 − ‖un − xn‖2 + 2ε‖A(un − xn)‖‖(JB2

λ − I)Axn‖
+2αnM

2
2 ,
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that is

‖un − xn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + 2ε‖A(un − xn)‖‖(JB2

λ − I)Axn‖
+2αnM

2
2

≤ ‖xn − xn+1‖(‖xn − p‖+ ‖xn+1 − p‖)
+2ε‖A(un − xn)‖‖(JB2

λ − I)Axn‖+ 2αnM
2
2 .

From (3.10), (3.15) and condition (i), it follows that

lim
n→∞

‖un − xn‖ = 0. (3.16)

Since {xn} and {un} are bounded, there exists weak limit w of {xn}. Without loss
of generality, we may assume that subsequence {xnj

} of {xn} which is xnj
⇀ w. From

(3.16), we have subsequence {unj
} of {un}, which is unj

⇀ w. Moreover, unj
= JB1

λ [xnj
+

εA∗(JB2

λ − I)Axnj
] with

(xnj − unj ) + εA∗(JB2

λ − I)Axnj

λ
∈ B1unj

.

By taking limit j → ∞, and (3.14), (3.16) and the fact that the graph of a maximal
monotone operator is weakly-strongly closed, we obtain 0 ∈ B1(w). Furthermore, since
{xn} and {un} have the same asymptotical behavior, Axnj ⇀ Aw. From (3.14) and the

fact that the resolvent JB2

λ is nonexpansive, we obtain Aw ∈ B2(Aw). It follows from
Lemma 2.9 that w ∈ =.

Next, we show that lim supn→∞〈γf(q)−Bq, xn− q〉 ≤ 0, where q = PΩ(I −B + γf)q.
From the sequence xnj

⇀ w and

lim sup
n→∞

〈γf(q)−Bq, xn − q〉 = lim
j→∞
〈γf(q)−Bq, xnj

− q〉.

Assume that w 6= T (u)w. From (3.11) and Opial’s property, we have

lim inf
j→∞

‖xnj − w‖ < lim inf
j→∞

‖xnj − T (u)w‖

≤ lim inf
j→∞

(‖xnj
− T (u)xnj

‖+ ‖T (u)xnj
− T (u)w‖)

≤ lim inf
j→∞

(‖xnj
− T (u)xnj

‖+ Lu‖xnj
− w‖)

≤ lim inf
j→∞

Lu‖xnj − w‖.

If we letting u→∞, we have lim supu→∞ Lu ≤ 1, it follows that

lim inf
j→∞

‖xnj
− w‖ < lim inf

j→∞
‖xnj

− w‖.

This is a contradiction. Then w ∈ Fix(T ). Consequently, w ∈ Ω. It follows from (??)
that

lim sup
n→∞

〈γf(q)−Bq, xn − q〉 = 〈γf(q)−Bq,w − q〉 ≤ 0. (3.17)

On the other hand, we shall show that the uniqueness of a solution of the variational
inequality

〈(B − γf)x, x− w〉 ≤ 0,∀w ∈ Ω. (3.18)

Suppose that q, q̂ ∈ Ω are solution to (3.18), then

〈(B − γf)q, q − q̂〉 ≤ 0, (3.19)



Split Variational Inclusion and Fixed Point Problem ... 1673

and

〈(B − γf)q̂, q̂ − q〉 ≤ 0. (3.20)

From (3.19) and (3.20), we have

〈(B − γf)q − (B − γf)q̂, q − q̂〉 ≤ 0.

By Lemma 2.5, the strong monotone of B − γf , we obtain q = q̂. Finally, we show that
{xn} converges strongly to q as n→∞. From (1.6), (3.4) and Lemma 2.1, we have

‖xn+1 − q‖2 = 〈αnγf(xn) + (I − αnB)wn − q, xn+1 − q〉
= αn〈γf(xn)−Bq, xn+1 − q〉+ 〈(I − αnB)(wn − q), xn+1 − q〉
≤ αn〈γf(xn − f(q), xn+1 − q〉+ αn〈γf(q)−Bq, xn+1 − q〉

+(1− αnγ)‖wn − q‖‖xn+1 − q‖
≤ αnγρ‖xn − q‖‖xn+1 − q‖+ αn〈γf(q)−Bq, xn+1 − q〉

+(1− αnγ)‖wn − q‖‖xn+1 − q‖
= [1− αn(γ − γρ)]‖xn − q‖‖xn+1 − q‖

+αn〈γf(q)−Bq, xn+1 − q〉

≤ 1− αn(γ − γρ)

2
(‖xn − q‖2 + ‖xn+1 − q‖2)

+αn〈γf(q)−Bq, xn+1 − q〉

≤ 1− αn(γ − γρ)

2
‖xn − q‖2 +

1

2
‖xn+1 − q‖2

+αn〈γf(q)−Bq, xn+1 − q〉,

it follows that

‖xn+1 − q‖2 ≤
1− αn(γ − γρ)

2
‖xn − q‖2 + αn〈γf(q)−Bq, xn+1 − q〉.

From 0 < γ < γ
ρ , condition (i) and (3.17), from Lemma 2.6, we obtain that limn→∞ ‖xn−

q‖ = 0 and then {xn} converges strongly to q, which is the unique solution of the following
variational inequality 〈(B − γf)q, q − w〉 ≤ 0 for all w ∈ Ω. This completes the proof.

Theorem 3.3 ([15]). Let H1 and H2 be two Hilbert space, let A : H1 → H2 be a bounded
linear operator and B be a strongly positive bounded linear operator on H1 with constant
γ > 0. Let B1 : H1 → 2H1 , B2 : H2 → 2H2 be maximal monotone mapping and
T := {T (s) : 0 ≤ s < ∞} be a one-operator nonexpansive semigroup on H1 such the
Ω = Fix(T ) ∩ = 6= ∅. Assume that f : H1 → H1 is a contraction mapping with constant

ρ ∈ (0, 1), γ ∈ (0, γρ ), and ε ∈ (0, 1
L ), L is spectral radius of the operator A∗A, and

A∗ is the adjoint of A. For a given x1 ∈ H1, and suppose that the sequence {αn} ⊆
(0, 1), {tn} ⊆ (0,∞) satisfy:

(i) limn→∞ αn = 0,Σ∞n=1αn =∞, and Σ∞n=1|αn − αn−1| <∞;

(ii) limn→∞ tn =∞ and limn→∞
|tn−tn−1|
αntn

= 0.

Then the sequence {xn} generated by (1.6) converge strongly to q ∈ Ω, which is the unique
solution of the following variational inequality:

〈(B − γf)q, q − w〉 ≤ 0,∀w ∈ Ω.
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Proof. From examples 1.1 and 1.2, we see that a nonexpansive semigroups is an asymp-
totically nonexpansive semigroups then from Theorem 3.2 can be prove this theorem.

Theorem 3.4. Let H1 and H2 be two Hilbert space, let A : H1 → H2 be a bounded
linear operator. Let B1 : H1 → 2H1 , B2 : H2 → 2H2 be maximal monotone mapping
and T := {T (s) : 0 ≤ s < ∞} be a one-operator nonexpansive semigroup on H1 such
the Ω = Fix(T ) ∩ F 6= ∅. Assume that f : H1 → H1 is a contraction mapping with

constant ρ ∈ (0, 1), γ ∈ (0, γρ ), and ε ∈ (0, 1
L ), L is spectral radius of the operator

A∗A, and A∗ is the adjoint of A. For a given x1 ∈ H1, and suppose that the sequence
{αn} ⊆ (0, 1), {tn} ⊆ (0,∞), define {xn} in the following manner:

xn+1 = αnγf(xn) + (1− αn)
1

tn

∫ tn

0

T (s)JB1

λ [xn + εA∗(JB2

λ − I)Axn]ds, (3.21)

and satisfies the following conditions:
(i) limn→∞ αn = 0,Σ∞n=1αn =∞, and Σ∞n=1|αn − αn−1| <∞;

(ii) limn→∞ tn =∞ and limn→∞
|tn−tn−1|
αntn

= 0.

Then the sequence {xn} generated by (3.21) converge strongly to q = PΩ(q), which is the
unique solution of the following variational inequality:

〈(I − f)q, q − w〉 ≤ 0,∀w ∈ Ω.

Proof. Putting γ = 1 and B = I, iterative scheme (1.6) reduces to (3.21). The desired
conclusion follows immediately from Theorem 3.2. This complete the proof.
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