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1. Introduction

In 1922, Banach [1] proved one of famous results in mathematics which is called the
Banach contraction principle. This principle is shown below.

Theorem 1.1 ([1]). Let (X, d) be a complete metric space and T : X → X be a mapping
satisfying the Banach contractive condition, that is,

d(Tx, Ty) ≤ kd(x, y) (1.1)
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for all x, y ∈ X, where k ∈ [0, 1). Then T has a unique fixed point.

Theorem 1.1 has been generalized and applied by many authors in many ways since it
is simplicity and usefulness. Many authors investigated fixed point results for mappings
satisfying other contractive conditions in metric spaces. Two other famous fixed results
in metric spaces are presented by Kannan [2] and Chatterjea [3]. These results are as
follows:

Theorem 1.2 ([2]). Let (X, d) be a complete metric space and T : X → X be a mapping
satisfying the Kannan contractive condition, that is,

d(Tx, Ty) ≤ k[d(x, Tx) + d(y, Ty)] (1.2)

for all x, y ∈ X, where k ∈
[
0, 12
)
. Then T has a unique fixed point.

Theorem 1.3 ([3]). Let (X, d) be a complete metric space and T : X → X be a mapping
satisfying the Chatterjea contractive condition, that is,

d(Tx, Ty) ≤ k[d(x, Ty) + d(y, Tx)] (1.3)

for all x, y ∈ X, where k ∈
[
0, 12
)
. Then T has a unique fixed point.

One of the directions to study the fixed point theory is to prove fixed point results in
new spaces. Several authors introduced some extensions of metric spaces and proved the
fixed points results for mappings satisfying the Banach contractive condition, the Kannan
contractive condition and the Chatterjea contractive condition in such spaces. We now
give the background of some extensions of metric spaces, which are the motivation in this
paper. In 1994, Matthews [4] introduced the concept of a partial metric space, which is an
extension of a metric space. Many authors have studied some geometric structures of par-
tial metric spaces and their topological properties. Motivated by the idea of Matthews’s
partial metric space, Asadi et al. [5] presented a new extension of a partial metric space,
which is called an M -metric space. They studied the topological and geometric structures
of M -metric spaces and established fixed point theorems for mappings satisfying the Ba-
nach contractive condition and the Kannan contractive condition in M -metric spaces as
follows:

Theorem 1.4 ([5]). Let (X,m) be a complete M -metric space and T : X → X be a
mapping. Suppose that there exists k ∈ [0, 1) such that

m(Tx, Ty) ≤ km(x, y) (1.4)

for all x, y ∈ X. Then T has a unique fixed point.

Theorem 1.5 ([5]). Let (X,m) be a complete M -metric space and T : X → X be a
mapping. Suppose that there exists k ∈

[
0, 12
)

such that

m(Tx, Ty) ≤ k[m(x, Tx) +m(y, Ty)] (1.5)

for all x, y ∈ X. Then T has a unique fixed point.

They also posed the following open problem:

Open problem in [5]: Let (X,m) be a completeM -metric space and T : X →
X be a mapping. Suppose that there exists k ∈

[
0, 12
)

such that

m(Tx, Ty) ≤ k[m(x, Ty) +m(y, Tx)] (1.6)

for all x, y ∈ X. Then does T has a unique fixed point?
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There are many ways to solve this problem, for example, Monfared et al. [6] solved
this open problem by considering a number k in more small interval as follows:

Theorem 1.6 ([6]). Let (X,m) be a complete M -metric space and T : X → X be a

mapping. If there exists k ∈ [0,
√
3−1
2 ) such that

m(Tx, Ty) ≤ k[m(x, Ty) +m(y, Tx)] (1.7)

for all x, y ∈ X. Then T has a unique fixed point.

The other two answers of the open problem in [5] was given by Kumrod and Sintu-
navarat [7] as follows:

Theorem 1.7 ([7]). Let (X,m) be a complete M -metric space and T : X → X be a
mapping. Suppose that there exists k ∈ [0, 12 ) such that

m(Tx, Ty) ≤ k[m(x, Ty) +m(y, Tx)] (1.8)

for all x, y ∈ X. If there is x0 ∈ X such that

m(Tnx0, T
nx0) ≤ m(Tn−1x0, T

n−1x0) (1.9)

for all n ∈ N, then T has a unique fixed point.

Theorem 1.8 ([7]). Let (X,m) be a complete M -metric space and T : X → X be a
mapping. Suppose that there exists k ∈ [0, 12 ) such that

m(Tx, Ty) ≤ k[m(x, Ty) +m(y, Tx)] (1.10)

for all x, y ∈ X. If there is x0 ∈ X such that

m(Tn−1x0, T
n−1x0) ≤ m(Tnx0, T

nx0) (1.11)

for all n ∈ N, then T has a unique fixed point.

Not only the existence and uniqueness of a fixed point but also the Ulam-Hyers stability,
the well-posedness, and the limit shadowing property of the fixed point problem are
popular research topics in the fixed point theory. For instance, the study on the Ulam-
Hyers stability for the fixed point problem can see in [8–11]. The research on the well-
posedness and the limit shadowing property of the fixed point problem can see in [12–14]
and references therein.

Very recently, Pansuwan et al. [15] first introduced various types of the Ulam-Hyers
stability, the well-posedness and the limit shadowing property in M -metric spaces. They
also investigated the Ulam-Hyers stability, the well-posedness and the limit shadowing
property of the fixed point problem for mappings satisfying the Banach contractive con-
dition and the Kannan contractive condition in M -metric spaces.

To the best of our knowledge, there is no discussion so far concerning the Ulam-
Hyers stability, the well-posedness and the limit shadowing property of the fixed point
problem for mappings satisfying the Chatterjea contractive condition in M -metric spaces.
Inspired by the above view, the aim of this paper is to introduce the new types of the
Ulam-Hyers stability, the well-posedness and the limit shadowing property in M -metric
spaces for investigation of the fixed point problem for mappings satisfying the Chatterjea
contractive condition in M -metric spaces. Furthermore, some illustrative examples for
showing the usage of our main results are given.
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2. Preliminaries

In this section, we give some basic definitions and their properties which are needed in
this paper.

Definition 2.1 ([4]). Let X be a nonempty set. A mapping p : X×X → [0,∞) is called
a partial metric if p satisfies the following conditions for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y) if and only if x = y;
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Also, the pair (X, p) is called a partial metric space.

Each partial metric p on a nonempty set X generates a T0 topology τp on X which has
a base as the family {Bp(x, ε) : x ∈ X, ε > 0} of open p-balls, where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0.

Definition 2.2 ([4]). Let (X, p) be a partial metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if

p(x, x) = lim
n→∞

p(x, xn).

(2) A sequence {xn} in X is called a Cauchy sequence if

lim
n,m→∞

p(xn, xm)

exists and is finite.
(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn} in X converges to a point x ∈ X such that

lim
n,m→∞

p(xn, xm) = p(x, x).

It is obvious that a metric is evidently a partial metric, but the converse does not hold
in general. The following examples show that, in general, a partial metric space need not
necessarily be a metric space.

Example 2.3 ([4]). Let X = [0,∞) and p : X ×X → [0,∞) be defined by

p(x, y) = max{x, y}
for all x, y ∈ X. Then p is a p-metric, but it is not metric.

Example 2.4 ([4]). Let X ={[a, b] : a, b ∈ R, a ≤ b} and p : X ×X → [0,∞) be defined
by

p([a, b], [c, d]) = max{b, d} −min{a, c}
for all [a, b], [c, d] ∈ X. Then p is a p-metric, but it is not a metric.

Next, we recall some notations, definitions, lemmas and examples of M -metric spaces
which are needed in main results. For a nonempty set X and a given mapping m :
X ×X → [0,∞), the following notation are used in the sequel:

(1) mx,y := min{m(x, x),m(y, y)} for all x, y ∈ X;
(2) Mx,y := max{m(x, x),m(y, y)} for all x, y ∈ X.
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Definition 2.5 ([5]). Let X be a nonempty set. A mapping m : X × X → [0,∞) is
called an m-metric if m satisfies the following conditions for all x, y, z ∈ X:

(m1) m(x, x) = m(y, y) = m(x, y)⇔ x = y;
(m2) mx,y ≤ m(x, y);
(m3) m(x, y) = m(y, x);
(m4) (m(x, y)−mx,y) ≤ (m(x, z)−mx,z) + (m(z, y)−mz,y).

Also, the pair (X,m) is called an M -metric space.

Lemma 2.6 ([5]). Every partial metric space is an M -metric space, but the converse
does not hold in general.

Example 2.7 ([5]). Let X = [0,∞) and a function m : X ×X → [0,∞) be defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then m is an m-metric, but it is not a partial metric.

Example 2.8 ([5]). Let X = {1, 2, 3} and a function m : X ×X → [0,∞) defined by

m(x, y) =



1, x = y = 1,
9, x = y = 2,
5, x = y = 3,
10, x, y ∈ {1, 2}, x 6= y,
7, x, y ∈ {1, 3}, x 6= y,
8, x, y ∈ {2, 3}, x 6= y.

Then m is an m-metric, but it is not a partial metric.

Definition 2.9 ([5]). Let (X,m) be an M -metric space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if

lim
n→∞

(m(xn, x)−mxn,x) = 0.

(2) A sequence {xn} in an M -metric space (X,m) is called an m-Cauchy sequence
if

lim
n,m→∞

(m(xn, xm)−mxn,xm), lim
n,m→∞

(Mxn,xm −mxn,xm)

exist and are finite;
(3) An M -metric space (X,m) is said to be M -complete if every m-Cauchy se-

quence {xn} in X converges to a point x ∈ X such that

lim
n→∞

(m(xn, x)−mxn,x) = 0, lim
n→∞

(Mxn,x −mxn,x) = 0.

3. Main Results

First, we introduce the following definitions which are some generalizations and mod-
ifications of ideas in [15].

Definition 3.1. Let (X,m) be an M -metric space and T : X → X be a given mapping.
The fixed point problem of T is said to be Ulam-Hyers stable type (C) if there exists
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c1, c2 > 0 such that, for any ε > 0 and w∗ ∈ X which is an ε-solution of the fixed point
problem

x = Tx, (3.1)

that is, w∗ satisfies the inequality

m(w∗, Tw∗) ≤ ε, (3.2)

there exists a solution x∗ ∈ X of the equation (3.1) such that

m(x∗, w∗)− c2m(x∗, x∗) ≤ c1ε. (3.3)

Remark 3.2. It is clear that every Ulam-Hyers stability type (K) of the fixed point
problem in [15] is necessarily the Ulam-Hyers stability type (C), but the converse is not
always true.

Definition 3.3. Let (X,m) be an M -metric space and T : X → X be a given mapping.
The fixed point problem of T is said to be well-posed type (C) if T has a unique fixed
point x∗ and there exists c > 0 such that for any sequence {xn} in X,

lim
n→∞

m(xn, Txn) = 0 =⇒ lim sup
n→∞

m(xn, x
∗) ≤ cm(x∗, x∗). (3.4)

Definition 3.4. Let (X,m) be an M -metric space and T : X → X be a given mapping.
The fixed point problem of T has the limit shadowing property type (C) in X if there
exists c > 0 such that for any sequence {xn} in X with lim

n→∞
m(xn, Txn) = 0, there exists

z ∈ X such that

lim sup
n→∞

m(Tnz, xn) ≤ cm(z, z). (3.5)

Now, we give the main results in this paper.

Theorem 3.5. Let (X,m) be a complete M -metric space and T : X → X be a mapping.
Suppose that there exists k ∈ [0, 12 ) such that

m(Tx, Ty) ≤ k[m(x, Ty) +m(y, Tx)] (3.6)

for all x, y ∈ X. If there exists x0 ∈ X such that either

m(Tnx0, T
nx0) ≤ m(Tn−1x0, T

n−1x0) for all n ∈ N (3.7)

or

m(Tn−1x0, T
n−1x0) ≤ m(Tnx0, T

nx0) for all n ∈ N. (3.8)

Then the following assertions hold:

(1) the fixed point problem of T is Ulam-Hyers stable type (C);
(2) the fixed point problem of T is well-posed type (C);
(3) the fixed point problem of T has the limit shadowing property type (C) in X.

Proof. In [7], the authors shown that T has a unique fixed point. Let x∗ be a unique
fixed point of T .

First, we will show that the fixed point problem of T is Ulam-Hyers stable type (C).
Let ε > 0 and w∗ ∈ X be a solution of the inequality (3.2), that is,

m(w∗, Tw∗) ≤ ε.
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By using (m4), we have

m(x∗, w∗) ≤ [m(x∗, Tw∗)−mx∗,Tw∗ ] + [m(Tw∗, w∗)−mTw∗,w∗ ] +mx∗,w∗

= [m(Tx∗, Tw∗)−mx∗,Tw∗ ] + [m(Tw∗, w∗)−mTw∗,w∗ ] +mx∗,w∗

≤ m(Tx∗, Tw∗)− kmx∗,Tw∗ +m(Tw∗, w∗) +m(x∗, x∗)

≤ k[m(x∗, Tw∗) +m(Tx∗, w∗)]− kmx∗,Tw∗ +m(Tw∗, w∗) +m(x∗, x∗)

= k[m(x∗, Tw∗)−mx∗,Tw∗ ] + km(x∗, w∗) +m(Tw∗, w∗) +m(x∗, x∗)

≤ k[m(x∗, w∗)−mx∗,w∗ +m(w∗, Tw∗)−mw∗,Tw∗ ] + km(x∗, w∗)

+m(Tw∗, w∗) +m(x∗, x∗)

≤ 2km(x∗, w∗) + (1 + k)ε+m(x∗, x∗),

that is,

m(x∗, w∗)− 1

1− 2k
m(x∗, x∗) ≤ 1 + k

1− 2k
ε.

Then the fixed point problem of T is Ulam-Hyers stable type (C), that is, the condition
(3.3) holds with c1 := 1+k

1−2k and c2 := 1
1−2k .

Next, we claim that the fixed point problem of T is well-posed type (C). Assume that
{xn} is a sequence in X such that lim

n→∞
m(xn, Txn) = 0. By (m4), we have

m(x∗, xn)

≤ [m(x∗, Txn)−mx∗,Txn ] + [m(Txn, xn)−mTxn,xn ] +mx∗,xn

= [m(Tx∗, Txn)−mx∗,Txn ] + [m(Txn, xn)−mTxn,xn ] +mx∗,xn

≤ m(Tx∗, Txn)− kmx∗,Txn +m(Txn, xn) +m(x∗, x∗)

≤ k[m(x∗, Txn) +m(Tx∗, xn)]− kmx∗,Txn +m(Txn, xn) +m(x∗, x∗)

≤ k[m(x∗, Txn)−mx∗,Txn ] + km(x∗, xn) +m(Txn, xn) +m(x∗, x∗)

≤ k[m(x∗, xn)−mx∗,xn +m(xn, Txn)−mxn,Txn ] + km(x∗, xn)

+m(Txn, xn) +m(x∗, x∗)

≤ 2km(x∗, xn) + (1 + k)m(Txn, xn) +m(x∗, x∗),

that is,

m(x∗, xn) ≤ 1 + k

1− 2k
m(Txn, xn) +

1

1− 2k
m(x∗, x∗)

for all n ∈ N. Letting n→∞ in the above inequality, we obtain

lim sup
n→∞

m(xn, x
∗) ≤ 1

1− 2k
m(x∗, x∗). (3.9)

Consequently, the fixed point problem of T is well-posed type (C), that is, the condition
(3.4) holds with c = 1

1−2k .

To prove T has the limit shadowing property type (C), let {xn} be a sequence in X
such that lim

n→∞
m(xn, Txn) = 0. Since x∗ is a fixed point of T , from (3.9), it follows that

lim sup
n→∞

m(xn, T
nx∗) = lim sup

n→∞
m(xn, x

∗) ≤ 1

1− 2k
m(x∗, x∗).

Therefore, the fixed point problem of T has the limit shadowing property type (C), that
is, the condition (3.5) holds with c = 1

1−2k . This completes the proof.
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Now, we give examples to illustrate Theorem 3.5.

Example 3.6. Let X = [0,∞) and a function m : X ×X → [0,∞) be defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then (X,m) is a complete M -metric space. Define a mapping T : X → X
by

Tx =

{
0, 0 ≤ x < 3,
x

1+x , x ≥ 3.

From [7], we obtain T is a Chatterjea contractive mapping. It is easy to see that x∗ = 0
is a unique solution of the fixed point problem of T .

First, we show that the condition (3.3) holds with c1 ≥ 1 and c2 > 0, that is, the fixed
point problem of T is Ulam-Hyers stable type (C). Assume that ε > 0 and w∗ ∈ X is an
ε-solution of the fixed point problem of T . Then we consider the following two cases:

Case 1. If w∗ ∈ [0, 3), then we have(
m(w∗, Tw∗) ≤ ε =⇒ w∗

2
≤ ε
)

=⇒
(
m(x∗, w∗)− c2m(x∗, x∗) = m(0, w∗) =

w∗

2
≤ ε ≤ c1ε

)
.

Case 2. If w∗ ∈ [3,∞), then we get(
m(w∗, Tw∗) ≤ ε =⇒ w∗

2
+

w∗

2(1 + w∗)
≤ ε
)

=⇒
(
m(x∗, w∗)− c2m(x∗, x∗) = m(0, w∗) =

w∗

2
≤ ε ≤ c1ε

)
.

From Case 1 and Case 2, we conclude that the fixed point problem of T is Ulam-Hyers
stable type (C).

Next, we prove that the fixed point problem of T is well-posed type (C). Assume that
{xn} is a sequence in X such that

lim
n→∞

m(xn, Txn) = 0.

For each n ∈ N, we have

m(xn, x
∗) = m(xn, 0) =

xn
2
≤ 1

2
(xn + Txn) = m(xn, Txn).

Since lim
n→∞

m(xn, Txn) = 0, it follows that

lim sup
n→∞

m(xn, x
∗) = 0 = cm(x∗, x∗)

for all c > 0 and so the fixed point problem of T is well-posed type (C).
Finally, we show that the fixed point problem of T has the limit shadowing property

type (C) in X. Let {xn} be a sequence in X such that lim
n→∞

m(xn, Txn) = 0. Then there

exists z ∈ [0, 3) such that

m(Tnz, xn) = m(0, xn) =
xn
2
≤ 1

2
(xn + Txn) = m(xn, Txn)

for all n ∈ N. Since lim
n→∞

m(xn, Txn) = 0, we have

lim
n→∞

m(Tnz, xn) = 0 ≤ cm(z, z)
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for all c > 0. This implies that the fixed point problem of T has the limit shadowing
property type (C) in X.

Example 3.7. Let X = [0,∞) and m : X ×X → [0,∞) be a function defined by

m(x, y) =
x+ y

2

for all x, y ∈ X. Then (X,m) is a complete M -metric space. Define a mapping T : X → X
by

Tx =

{
x2, 0 ≤ x < 1

2 ,
1
4 , x ≥ 1

2 .

It follows from [7] that T is a Chatterjea contractive mapping. It is clear that x∗ = 0 is
a unique solution of the fixed point problem of T .

First, we show that the condition (3.3) holds with c1 ≥ 1 and c2 > 0, that is, the fixed
point problem of T is Ulam-Hyers stable type (C). Assume that ε > 0 and w∗ ∈ X is an
ε-solution of the fixed point problem of T . We consider the following two cases:

Case 1. If w∗ ∈
[
0, 12
)
, then we have(

m(w∗, Tw∗) ≤ ε =⇒ 1

2

(
w∗ + (w∗)2

)
≤ ε
)

=⇒
(
m(x∗, w∗)− c2m(x∗, x∗) =

w∗

2
≤ 1

2

(
w∗ + (w∗)2

)
≤ c1ε

)
.

Case 2. If w∗ ∈ [3,∞), then we have(
m(w∗, Tw∗) ≤ ε =⇒ 1

2

(
w∗ +

1

4

)
≤ ε
)

=⇒
(
m(x∗, w∗)− c2m(x∗, x∗) =

w∗

2
<

1

2

(
w∗ +

1

4

)
≤ c1ε

)
.

By the above two cases, we conclude that the fixed point problem of T is Ulam-Hyers
stable type (C).

Next, we will show that the fixed point problem of T is well-posed type (C). We
assume that {xn} is a sequence in X such that lim

n→∞
m(xn, Txn) = 0. For each n ∈ N, we

have

m(xn, x
∗) = m(xn, 0) =

xn
2
≤ 1

2
(xn + Txn) = m(xn, Txn).

Since lim
n→∞

m(xn, Txn) = 0, it follows that

lim sup
n→∞

m(xn, x
∗) = 0 = cm(x∗, x∗)

for all c > 0 and so the fixed point problem of T is well-posed type (C).
Finally, we show that the fixed point problem of T has the limit shadowing property

type (C) in X. Let {xn} be a sequence in X such that lim
n→∞

m(xn, Txn) = 0. Then there

exists z = 0 ∈ X such that

m(Tnz, xn) = m(0, xn) =
xn
2
<

1

2
(xn + Txn) = m(xn, Txn)

for all n ∈ N. Since lim
n→∞

m(xn, Txn) = 0, we have

lim sup
n→∞

m(Tnz, xn) = 0 = cm(z, z)
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for all c > 0, which show that the fixed point problem of T has the limit shadowing
property type (C) in X.

In the same way, we immediately obtain the following result:

Theorem 3.8. Let (X,m) be a complete M -metric space and T : X → X be a mapping.

Suppose that there exists k ∈
[
0,
√
3−1
2

)
such that

m(Tx, Ty) ≤ k[m(x, Ty) +m(y, Tx)] (3.10)

for all x, y ∈ X. Then the following assertions hold:

(1) the fixed point problem of T is Ulam-Hyers stable type (C);
(2) the fixed point problem of T is well-posed type (C);
(3) the fixed point problem of T has the limit shadowing property type (C) in X.

Remark 3.9. It follows from Examples 3.6 and 3.7 that T satisfies the Chatterjea con-

tractive condition with k = 1
4 ,

1
3 ∈

[
0,
√
3−1
2

)
, respectively and so the examples also

support Theorem 3.8.
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