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Abstract In this paper studies practical exponential stability of discrete-time impulsive system with

delay. By using Lyapunov functions and Razumikhin type technique, some criteria for practical expo-

nential stability of discrete-time impulsive system with delay are achieved. Moreover, some numerical

example is given to show the effectiveness of our theoretical result.
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1. Introduction

A discrete-time system is a more natural way to represent systems such as numeri-
cal analysis and population models [1–4]. In most dynamics systems, the state always
instantly changes at a certain moment. It is natural to assume that such dynamical
systems with abrupt changes spontaneously occur, and this kind of system is called im-
pulsive systems. Systems with impulses provide a natural framework for mathematical
modeling of many real world phenomena in which the state undergo abrupt changes. For
example, many processes and events studied in chemical, physics, population dynamics,
biotechnology, economics, and technology do exhibit impulse effects [5, 6]. In [7], the
authors studied an oscillation theorem for nonlinear hyperbolic systems with impulses.
Moreover, the real processes in our world always involve time-delay systems, see [8–10].
Therefore, impulsive systems with time delay have been investigated extensively over the
past decades [11–18].

The theory of stability have been published in many areas [19, 20]. In case of expo-
nential stability, it is required that all solutions starting near an equilibrium point not
only stay nearby, but tend to the equilibrium point very fast with exponential decay rate.
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Meanwhile, for one of the essential types of stability is practical stability, it only needs
to stabilize a system into a region of phase space, namely the system may oscillate near
the state in which the performance is still acceptable. Theory of practical stability has
been widely considered for continuous-time systems [21–23]. In [24], the authors focused
on the practical stability of nonlinear time-varying cascade systems. On the other hand,
there are few results for discrete-time systems [25–28]. In [27], the authors studied the
practical stability and controllability for a class of nonlinear discrete systems with time
delay. The practical stability of impulsive discrete systems with time delays in some cases,
was discussed in [25]. In [28], the authors used the Razumikhin-type technique to derive
the exponentially practical stability of discrete time singular system with delay and dis-
turbance. Therefore, more attention has been paid to the theory of practical stability of
the impulsive discrete-time system with delay.

This work aims to establish and improve the criteria for practical exponential stability
of the discrete-time impulsive system with delay by using Razumikhin type technique. The
paper is organized as follows: In Section 2 some notations and definitions are introduced.
In Section 3, we present some criteria for practical exponential stability of discrete-time
impulsive system with delay. In Section 4, we give some example to show the effectiveness
of our theoretical result. Section 5 concludes the paper.

2. Preliminaries

Let Rn denote the n dimensional Euclidean space, ‖x‖ is the Euclidean norm of
vector x. Given a positive integer τ , for any function φ : N−τ −→ Rn, we define
‖φ‖ = maxθ∈N−τ {‖φ(θ)‖}, N = {0, 1, 2, . . .} and N−τ = {−τ,−τ − 1, . . . ,−1, 0}.

Consider the following discrete time impulsive system with delay.
x(k + 1) = f(k, xk), k 6= km

x(km) = Jm(x(km − 1)), k = km

x(s) = φ(s), s ∈ Nk0−τ
(2.1)

where x(k) ∈ Rn, xk is defined xk(s) = x(k + s) for any s ∈ N−τ . We assume f :
N ×Nk0−τ → Rn,Jm : Rn → Rn for m ∈ N, and the impulsive moment satisfy 0 ≤ k0 <
k1 < k2 < . . . , km → ∞ for m → ∞. Furthermore, we assume f(k, 0) = 0, Jm(0) = 0,
so the systems (2.1) admit the trivial solution. Let x(k; k0, φ) denote the trajectory of
system (2.1) with initial value φ.

Definition 2.1. The trivial solution of system (2.1) is globally practically exponentially
stable in the pth− moment, if, for any k ≥ k0 there exist constant 0 < λ < 1,M ≥ 0, r > 0
such that

‖x(k; k0, φ)‖p ≤M‖φ‖pe−λ(k−k0) + r.

3. Main Result

In this section, we consider practical exponential stability of discrete-time impulsive
system with delay (2.1) as follow the result.

Theorem 3.1. If there exist positive number a, c1, c2, p, γ, q, β, η;

q > γ > 0,
e− 1

e
< β ≤ 1, η < βa
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and Lyapunov function V (k, x(k))such that following condition hold:

(i) c1‖x‖p ≤ V (k, x(k)) ≤ c2‖x‖p + a, ∀k ≥ k0 − τ, x ∈ Rn,
(ii) If V (k + s, x(k + s)) < qV (k + 1, x(k + 1)) with s ∈ N−τ

then ∆V (k, x(k)) = V (k + 1, x(k + 1))− V (k, x(k)),

≤ −βV (k, x(k)) + η hold,

(iii) V (km, x(km)) ≤ γV (km − 1, x(km − 1)), m ∈ N, x ∈ Rn.

Then, the trivial solution of system (2.1) is globally practically exponentially stable in the
pth− moment.

Proof. Case I. q > γ ≥ 1.
Since q > γ ≥ 1, then there exist 0 < λ < 1, q∗ such that

q > q∗eλ(τ+1) > q∗ > γeλ(τ+1) ≥ eλ(τ+1).

For k ∈ [k0 − τ, k0], from (i), we can see that

V (k, x(k)) ≤ c2‖x‖p + a ≤ c2‖x‖pe−λ(k−k0) + a,

≤ c2‖φ‖pe−λ(k−k0) + a. (3.1)

We claim that

V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a, k ∈ [km−1, km − 1]. (3.2)

Now, we will prove (3.2) by using mathematical induction.
First, we show that (3.2) holds for m = 1, namely

V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a, k ∈ [k0, k1 − 1]. (3.3)

We assume (3.3) were not true, then there exists k ∈ [k0, k1 − 1] such that

V (k, x(k)) > c2‖φ‖pe−λ(k−k0) + a,

and let

k∗ = min
{
k ∈ [k0, k1 − 1]/V (k, x(k)) > c2‖φ‖pe−λ(k−k0) + a

}
.

From (3.1) and definition of k∗, we have

V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a, k ∈ [k0 − τ, k∗ − 1].

Therefore, for any s ∈ N−τ , we have

V (k∗ − 1 + s, x(k∗ − 1 + s)) ≤ c2‖φ‖pe−λ(k
∗−1+s−k0) + a,

= c2‖φ‖pe−λ(s−1)e−λ(k
∗−k0) + a,

≤ c2e
λ(τ+1)‖φ‖pe−λ(k

∗−k0) + aeλ(τ+1),

= eλ(τ+1)
[
c2‖φ‖pe−λ(k

∗−k0) + a
]
,

< qV (k∗, x(k∗)).

Let k = k∗ − 1, then we get

V (k + s, x(k + s)) ≤ qV (k + 1, x(k + 1)).
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By condition (ii), we have

V (k∗, x(k∗)) ≤ (1− β) V (k∗ − 1, x(k∗ − 1)) + η,

≤ (1− β)
[
c2‖φ‖pe−λ(k

∗−1−k0) + a
]

+ η,

≤ (1− β)eλc2‖φ‖pe−λ(k
∗−k0) + a− βa+ η,

since, maximal value of eλ−1
eλ

, 0 < λ < 1 is e−1
e .

So, we choose

e− 1

e
< β ≤ 1, η < βa,

which is contradiction to the definition of k∗.
Hence (3.3) holds.
Now, we assume (3.2) holds for m ∈ N , namely

V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a, k ∈ [km−1, km − 1].

Next, we will show that

V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a, k ∈ [km, km+1 − 1]. (3.4)

First, we will prove limiting condition holds, when impulsive instant, namely

V (k, x(k)) ≤ c2
q∗
‖φ‖pe−λ(k−k0) +

a

q∗
, k ∈ [km−1, km − 1]. (3.5)

We assume (3.5) were not true, there exists a

k∗ = min
{
k ∈ [km−1, km − 1]/V (k, x(k)) >

c2
q∗
‖φ‖pe−λ(k−k0) +

a

q∗

}
,

and we know that

V (k, x(k)) ≤ c2
q∗ ‖φ‖

pe−λ(k−k0) + a
q∗ , k ∈ [km−1, k

∗ − 1],

then, we have

V (k∗ − 1 + s, x(k∗ − 1 + s)) ≤ c2‖φ‖pe−λ(k
∗−1+s−k0) + a,

≤ eλ(τ+1)
[
c2‖φ‖pe−λ(k

∗−k0) + a
]
,

< q∗eλ(τ+1)
[
c2‖φ‖pe−λ(k

∗−k0) + a
]
,

< qV (k∗, x(k∗)).

So, we get

V (k + s, x(k + s)) ≤ qV (k + 1, x(k + 1)),

and from (ii), we have

V (k∗, x(k∗)) ≤ (1− β) V (k∗ − 1, x(k∗ − 1)) + η,
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which is contradiction, so (3.5) holds.
From (iii), we can see that

V (km, x(km)) ≤ γV (km − 1, x(km − 1)),

≤ γ

[
c2
q∗
‖φ‖pe−λ(km−1−k0) +

a

q∗

]
,

=
γeλc2
q∗
‖φ‖pe−λ(km−k0) +

γa

q∗
,

<
q∗c2
q∗
‖φ‖pe−λ(km−k0) +

γa

q∗
,

≤ c2‖φ‖pe−λ(km−k0) + a. (3.6)

Finally, we prove that (3.2) holds, assume (3.2) were not true, there exists a

k∗ = min
{
k ∈ [km, km+1 − 1]/V (k, x(k)) > c2‖φ‖pe−λ(k−k0) + a

}
.

For k ∈ [km, k
∗ − 1], we have

V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a,

and from (3.6), we know that k∗ ∈ [km, km+1 − 1].
So, we have

V (k∗ − 1 + s, x(k∗ − 1 + s)) ≤ c2‖φ‖pe−λ(k
∗−1+s−k0) + a,

≤ eλ(τ+1)
[
c2‖φ‖pe−λ(k

∗−k0) + a
]
,

< q∗eλ(τ+1)
[
c2‖φ‖pe−λ(k

∗−k0) + a
]
,

< qV (k∗, x(k∗)).

Then

V (k + s, x(k + s)) ≤ qV (k + 1, x(k + 1)),

and from (ii), we have

V (k∗, x(k∗)) ≤ (1− β) V (k∗ − 1, x(k∗ − 1)) + η,

which is contradiction, so (3.2) holds.
So, for all k ≥ k0 − 1, we have

V (k, x) ≤ c2‖φ‖pe−λ(k−k0) + a,

and from (i), we know that

c1‖x‖p ≤ V (k, x(k)) ≤ c2‖φ‖pe−λ(k−k0) + a.

Therefore, we have

‖x‖p ≤ c2
c1
‖φ‖pe−λ(k−k0) +

a

c1
.

Case II. q > 1 > γ > 0.
Since q > 1 > γ > 0, then there exists 0 < λ < 1, q∗ such that

q > q∗eλ(τ+1) > q∗ > eλ(τ+1) ≥ γeλ(τ+1).
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By a similar argument as case I, we have

‖x‖p ≤ c2
c1
‖φ‖pe−λ(k−k0) +

a

c1
.

Therefore, from case I and case II the trivial solution of system (2.1) is globally practically
exponentially stable in the pth− moment.

Remark 3.2. From the methods of proof of Theorem 3.1, it is clear that these methods
can be applied to discrete-time impulsive system with time-varying delay τ(k) with 0 ≤
τ(k) ≤ τ, τ > 0.

4. Numerical Example

To illustrate the effectiveness of the result obtained in previous sections, we consider
the discrete-time impulsive system with delay.

Example 4.1. Consider the following system:
x(k + 1) = −bx(k) + d

1+x2(k)x(k − τ) + µ, k 6= km

x(km) = γx(km − 1), k = km

x(s) = φ(s), s ∈ N−τ
(4.1)

where b, d are arbitrary constants and γ, µ are positive constants. If there are exist positive
numbers a, c1, c2, p, γ, q, β, η such that

η = µ+ (1− |b| − |d|)a,

β ≤ 1− |b|
1− |d|q

,

and

a >
µ

β − (1− |b| − |d|)
,

then the system (4.1) is globally practically exponentially stable in the pth− moment.

Proof. we choose the Lyapunov function

V (k, x(k)) = |x(k)|+ a,

then we have

(i) c1‖x(k)‖ ≤ V (k, x(k)) = |x(k)|+ a ≤ c2‖x(k)‖+ a, ∀k ≥ k0 − τ.
(ii) Assume V (k + s, x(k + s)) < qV (k + 1, x(k + 1)),
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with s ∈ N−τ , then we have

V (k+1, x(k+1)) = |x(k + 1)|+ a,

= | − bx(k) +
d

1 + x2(k)
x(k − τ) + µ|+ a,

≤ |b||x(k)|+ |d||x(k − τ)|+ µ+ a,

= |b||x(k)|+|b|a−|b|a+|d||x(k− τ)|+|d|a−|d|a+µ+ a,

= |b|V (k, x(k))+|d|V (k− τ, x(k− τ))+µ+(1−|b|−|d|)a,
≤ |b|V (k, x(k))+|d|qV (k + 1, x(k + 1))+µ+(1−|b|−|d|)a,

≤ |b|
1− |d|q

V (k, x(k)) + µ+ (1− |b| − |d|)a.

Thus, we have

∆V (k, x(k)) = V (k + 1, x(k + 1))− V (k, x(k)),

≤ |b|
1− |d|q

V (k, x(k)) + µ+ (1− |b| − |d|)a− V (k, x(k)),

= (
|b|

1− |d|q
− 1)V (k, x(k)) + µ+ (1− |b| − |d|)a,

= −(1− |b|
1− |d|q

)V (k, x(k)) + µ+ (1− |b| − |d|)a,

= −(1− |b|
1− |d|q

)V (k, x(k)) + η,

η = µ+ (1− |b| − |d|)a.

From assumptions, we get

∆V (k, x(k)) ≤ −βV (k, x(k)) + η.

(iii) We have

V (km, x(km)) = |x(km)|+ a,

= |γx(km − 1)|+ a,

= γ
[
|x(km − 1)|+ a

γ

]
,

≤ γ
[
|x(km − 1)|+ a

]
,

= γV (km − 1, x(km − 1)).

Therefore, from Theorem 3.1, we conclude that the system (4.1) is globally practically
exponentially stable in the pth− moment. For simulation propose, we let |b| = 0.04, |d| =
0.43, τ = 1, k0 = 0, µ = 0.45, λ = 0.05, q = 1.4 > γ = 1.1 > 0. We can choose
Lyapunov function

V (k, x(k)) = |x(k)|+ 1.25,
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and there exist c1 = 1 = c2, a = 1.25, p = 1, β = 0.9 which satisfies Theorem 3.1 as
follows:

(i) ‖x(k)‖ ≤ V (k, x) ≤ ‖x(k)‖+ 1.25,

(ii) If V (k − s, x(k − s)) < (1.4)V (k + 1, x(k + 1)), s ∈ N−1,
then ∆V (k, x(k)) = V (k + 1, x(k + 1))− V (k, x(k)),

≤ (−0.9)V (k, x(k)) + 1.76,

(iii) V (km, x(km)) ≤ (1.1)V (km − 1, x(km − 1)),

and the trajectory of solution (4.1) with impulsive moments km = 4k + 3, m ∈ N and
initial values x(−1) = 1.8, x(0) = 1.6 is shown in FIGURE 1.

0 10 20 30 40 50 60 70

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

k

x

        − impulse at time k

Figure 1. Numerical simulation of example with km = 4k + 3.

5. Conclusion

This paper establishes practical exponential stability results of discrete-time impulsive
system with delay. For systems with delay, by using the Lyapunov stability theory and
the Razumikhin type technique. Finally, a numerical example is presented to illustrate
the effectiveness of the proposed results.
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