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1. Introduction

In the last decades, set optimization have received an increasing study due to unify
scalar as well as vector optimization. Many problems arise in different fields can be
modeled as a set optimization problem, for example, game theory, welfare economics,
risk measure, robust optimization, fuzzy optimization, and so on [1, 2]. The set criterion
approach was first introduced by Kuroiwa [3, 4] in 1998. Recently, there were some
concepts about how to compare elements of the power set have been developed (see Jahn
and Ha [5], Karaman et al. [6]).

Well-posedness, initiated by Tikhonov [7] in 1966, requires the uniqueness of the ex-
isting optimal solution and the convergence of every minimizing sequence of approximate
solutions to the unique minimum point. Roughly speaking, an objective function such
that points with values close to the optimal value are actually close to a unique optimal
solution. Later, many other notions of well-posedness for scalar optimization were defined
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and studied, (see [8–10] and the references therein). Since then, there were many exten-
sions of the conceptions of well-posedness to vector optimization appeared (see [11–16]).
For set optimization problems, Zhang et al. [17] introduced a notion of pointwise well-
posedness for set optimization problems with respect to lower set less order relation. They
obtained the equivalent relations between the three kinds of well-posedness. Gutiérrez et
al. [18] improved some results in Zhang et al. [17] in the case where the objective values
are not cone-bounded sets. Long et al. [19] obtained the relations between the three
kinds of pointwise well-posedness for set optimization problems and the well-posedness
of three kinds of scalar optimization problems by using scalarizing function with respect
to upper set less order relation. Crespi et al. [20] gave a sufficient condition of global
well-posedness for set optimization problems with respect to lower set less order relation.
Dhingra and Lalitha [21] gave sufficient conditions for well-setness for set optimization
problem with respect to lower set less relation. Crespi et al. [22] obtained the character-
izations for pointwise well-posedness in terms if upper continuity of minimal solution set
map and the characterizations for global well-posedness in terms of compactness of mini-
mal solution set map and compactness of the solution set with respect to lower(upper) set
less order relation. There have been many studies of well-posedness and related results
(see, e.g., [23–25] and the references therein).

The aim of this paper is to investigate the well-posedness notions in Zhang et al. [17]
and Long et al. [19] for set optimization problems with respect to a partial order relation
which introduced by Karaman et al. [6]. We obtain some relations between the three kinds
of pointwise well-posedness. Moreover, we establish some relations between pointwise
well-posedness of set optimization problems and well-posedness of scalar optimization
problems by using a nonlinear scalarizing function. Some relation between pointwise
well-posedness and global well-posedness are also studied. As an application, we discuss
well-posedness of robust vector optimization problems.

The organization of the paper is as follows. Section 2 presents some necessary notations
and lemmas. We introduce the concept of m1-C-convexity for set-valued mappings and
show some convexity properties for nonlinear scalarizing function. Section 3, we consider
three kinds of pointwise well-posedness for set optimization problems with �m1

C order
and give some relation among them. By virtue of a nonlinear scalarization function, we
obtain, in Section 4, the relations between the three kinds of pointwise well-posedness for
set optimization problems and the well-posedness of three kinds of scalar optimization
problems, respectively. In Section 5, we study some notions of global well-posedness.
Some discussions between the concepts of robust vector optimization and set optimization
are presented in Section 6.

2. Preliminaries

Throughout this paper, unless otherwise stated, X, Y and Z are normed spaces, and
M is a subset of Z. Let C ⊂ Y be a convex, pointed cone with 0Y ∈ C. Let P0(Y ) and
B∗(Y ) denote the family of nonempty subsets of Y and the family of nonempty bounded
subsets of Y , respectively. We now recall some order relations on the family of subsets
of Y . For a set A ⊆ Y , we denote interior of A by int(A). B(x, ε) denotes the open ball
centered at x ∈ Y with radius ε.

For A,B ∈ P0(Y ) and λ ∈ R, λA := {λa : a ∈ A}. Here, the symbols A+B, A−B, and
A .−B mean algebraic sum, algebraic difference, and geometric(Minkowski or Pontryagin)
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difference of A and B, respectively. That is, A + B := {a + b : a ∈ A and b ∈ B},
A−B := {a− b : a ∈ A and b ∈ B}, A .−B :=

⋂
b∈B (A− b) = {y ∈ Y : y +B ⊆ A}.

By using the idea of Minkowski difference, Karaman et al. [6] introduced the following
partial order relations on the family of nonempty bounded sets.

Definition 2.1. [6] Let A,B ∈ P0(Y ) be arbitrarily chosen sets. m1-order relation
A �m1

C B is defined by A �m1

C B ⇔ (B .−A) ∩ C 6= ∅.

Definition 2.2. [6] Let A,B ∈ P0(Y ) be arbitrarily chosen sets. Strictly m1-order
relation A ≺m1

C B is defined by A ≺m1

C B ⇔ (B .−A) ∩ int(C) 6= ∅.

Remark 2.3. Note that, if we take A and B as singletons and C is convex, pointed cone
with 0Y ∈ C, then �m1

C is coincide to the vector order relation ≤C on Y , i.e.,

{a} �m1

C {b} ⇔ a ≤C b⇔ b = a+ c for some c ∈ C.

The following results are basic properties for �m1

C which can be found in [6].

Lemma 2.4. Let C ∈ P0(Y ). The following statement hold:

(i) �m1

C is compatible with addition, i.e., A1 �m1

C A2 implies A1 +B �m1

C A2 +B.
(ii) C is cone if and only if�m1

C is compatible with scalar multiplication, i.e.,A1 �m1

C

A2 implies αA1 �m1

C αA2.
(iii) 0Y ∈ C if and only if �m1

C is reflexive, i.e., A �m1

C A.
(iv) If C is a cone, then C is convex if and only if �m1

C is transitive, i.e., A1 �m1

C A2

and A2 �m1

C A3 implies A1 �m1

C A3.
(v) If C is a cone, then C is pointed if and only if �m1

C is antisymmetric on B∗(Y ),
i.e., A1 �m1

C A2 and A2 �m1

C A1 implies A1 = A2.
(vi) If C is convex cone with nonempty interior and A ≺m1

C B and B �m1

C D (or
A �m1

C B and B ≺m1

C D), then A ≺m1

C D.

Definition 2.5. [6] Let S ⊆ B∗(Y ) and A ∈ S. Then, A is said to be

(i) m1-minimal set of S if there is not any B ∈ S with B �m1

C A and A 6= B;
(ii) weakly m1-minimal set of S if there is not any B ∈ S with B ≺m1

C A.

Let F : X → 2Y be a set-valued mapping with nonempty bounded values and K ⊆ X
with K 6= ∅. The set optimization problem is defined as follows:

(SOP ) minF (x) subject to x ∈ K.

Definition 2.6. An element x̄ ∈ K is said to be

(i) m1-minimal solution of (SOP ) if F (x̄) is m1-minimal set of F(K);
(ii) weakly m1-minimal solution of (SOP ) if F (x̄) is weakly m1-minimal set of
F(K).

We denote F(K) =
⋃
x∈K F (x).

Let Effm1(F,K) and WEffm1(F,K) denote the set of m1-minimal solution of (SOP )
and weakly m1-minimal solution of (SOP ), respectively.

Remark 2.7. It is easily seen that x̄ ∈ Effm1(F,K) if and only if F (x) �m1

C F (x̄) for all
x ∈ K\{x̄} and F (x) 6= F (x̄).

Suppose that G : M → 2Y is a set-valued map.
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Definition 2.8. [26, 27] The set-valued map G is said to be

(i) upper semicontinuous (u.s.c) at µ̄ ∈M if for any open set V ⊆ Y with G(µ̄) ⊆
V , there exists a neighborhood N(µ̄) of µ̄ such that G(µ ∈ N(µ̄) ∩M) ⊆ V ;

(ii) lower semicontinuous (l.s.c) at µ̄ ∈M if for any open set V ⊆ Y with G(µ̄) ∩
V 6= ∅, there exists a neighborhood N(µ̄) of µ̄ such that G(µ) ∩ V 6= ∅ for all
µ ∈ N(µ̄) ∩M ;

(iii) closed at µ̄ if graph G := {(µ, y) : y ∈ G(µ)} is closed set, i.e., for any sequence
(µn, yn) ∈ graph G := {(µ, y) : y ∈ G(µ)} with (µn, yn) → (µ̄, ȳ), then (µ̄, ȳ) ∈
graph G.

(iv) compact at µ̄ if for any sequence (µn, yn) ∈ graph G := {(µ, y) : y ∈ G(µ)}
with µn → µ̄, then there exists a subsequence {ynk

} of {yn} and ȳ ∈ G(µ̄) such
that ynk

→ ȳ.

The following proposition is an important tool.

Proposition 2.9. [26, 28]

(i) G is l.s.c at µ̄ if and only if any sequence {µ̄n} ⊆ M with µ̄n → µ̄ and any
ȳ ∈ G(µ̄), there exists ȳn ∈ G(µ̄n) such that ȳn → ȳ.

(ii) If G has compact values at µ̄, then G is u.s.c at µ̄ if and only if for any
sequence {µ̄n} ⊆M with µ̄n → µ̄ and any ȳn ∈ G(µ̄n), there exist ȳ ∈ G(µ̄) and
a subsequence {ȳnk

} of {ȳn} such that ȳnk
→ ȳ.

Let e ∈ intC. A scalarizing function Im1
e (·, ·) : P0(Y )× P0(Y )→ R is defined to reduce

a set optimization problem with respect to �m1

C as follows.

Im1
e (A,B) := inf{t ∈ R : A �m1

C te+B} for all A,B ∈ P0(Y ).

Lemma 2.10. [6] Let A,B ∈ P0(Y ) and r ∈ R. The following statement hold.

(i) If A is bounded, then Im1
e (A,A) = 0.

(ii) If B is bounded, then Im1
e (A,B) > −∞.

(iii) Im1
e (A,B) > −∞ if and only if B .−A = ∅.

(iv) Im1
e (A,B) < r if and only if A ≺m1

C re+B.
(v) If B .− A is compact, then Im1

e (A,B) = r if and only if A �m1

cl(C) re + B and

A �m1

C (r − ε)e+B for all ε > 0.

Lemma 2.11. Let A,B ∈ P0(Y ). For each r ≥ 0, Im1
e ((A+ re), B) = Im1

e (A,B) + r.

Proof. We first consider the set {t ∈ R : A �m1

C te + B}. For any r > 0, it follows from
Lemma 2.4 (i) that

s ∈ {t ∈ R : A �m1

C te+B} ⇐⇒ s+ r ∈ {t ∈ R : A+ re �m1

C te+B},
and consequently

{t ∈ R : A �m1

C te+B}+ r = {t ∈ R : A+ re �m1

C te+B}.
This implies that Im1

e (A,B) + r = Im1
e ((A+ re), B).

Lemma 2.12. For any B ∈ P0(Y ), if B is convex set, then Im1
e (·, B) is convex function.

Proof. Let A1, A2 ∈ P0(Y ). Obviously, in the case where Im1
e (A1, B) = +∞ or

Im1
e (A2, B) = +∞. Assume that Im1

e (A1, B) < +∞ and Im1
e (A2, B) < +∞.

Let α ∈ [0, 1]. For any t > 0, we have

A1 �m1

C (Im1
e (A1, B) + t) e+B and A2 �m1

C (Im1
e (A2, B) + t) e+B.
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Thanks to Lemma 2.4 (ii),

αA1 �m1

C α (Im1
e (A1, B) + t) e+ αB

and

(1− α)A2 �m1

C (1− α) (Im1
e (A2, B) + t) e+ (1− α)B.

Also Lemma 2.4 (i) and convexity of B imply that

αA1 + (1− α)A2

�m1

C α (Im1
e (A1, B) + t) e+ αB + (1− α) (Im1

e (A2, B) + t) e+ (1− α)B

= α [αIm1
e (A1, B) + (1− α)Im1

e (A2, B) + t] e+B.

This means that Im1
e (αA1 +(1−α)A2, B) ≤ αIm1

e (A1, B)+(1−α)Im1
e (A2, B). The proof

is complete.

Proposition 2.13. [6] Let A1, A2, B ∈ P0(Y ). Then,

(i) If A1 �m1

C A2, then Im1
e (A1, B) ≤ Im1

e (A2, B).
(ii) If A1 �m1

C A2, then Im1
e (B,A1) ≥ Im1

e (B,A2).
(iii) If B is compact and A1 ≺m1

C A2, then Im1
e (A1, B) < Im1

e (A2, B).
(iv) If A1, A2, B are compact and A1 ≺m1

C A2, then Im1
e (A1, B) > Im1

e (A2, B).

Proposition 2.14. [6] Let A,B ∈ P0(Y ) and Im1
e (A,B) be finite. Then, the following

statements hold:

(i) If B .−A is compact and C is closed, A �m1

C B if and only if Im1
e (A,B) ≤ 0.

(ii) A ≺m1

C B if and only if Im1
e (A,B) < 0.

Definition 2.15. Let K be a convex subset of X. A set-valued map G : K → 2Y is said
to be

(i) m1-C- convex on K if, for any x1, x2 ∈ K and t ∈ [0, 1],

G(tx1 + (1− t)x2) �m1

C tG(x1) + (1− t)G(x2).

(ii) strictly m1-C- convex on K if, for any x1, x2 ∈ K with x1 6= x2 and t ∈ (0, 1),

G(tx1 + (1− t)x2) ≺m1

C tG(x1) + (1− t)G(x2).

Remark 2.16. In the case where F is a single-valued mapping, (strict) m1-C-convexity
of F and the classic (strict) C-convexity of vector-valued map f : K → Y are coincide.

Lemma 2.17. Assume that K is convex and F is strictly m1-C-convex on K with
nonempty compact convex values, then WEffm1

(F,K) = Effm1
(F,K).

Proof. It is clear that Effm1(F,K) ⊆ WEffm1(F,K). It suffices to show that
WEffm1(F,K) ⊆ Effm1(F,K). Let x̄ ∈WEffm1(F,K). We show that x̄ ∈ Effm1(F,K), if
not there exists an x̃ ∈ K\{x̄} such that

F (x̃) �m1

C F (x̄) and F (x̃) 6= F (x̄). (2.1)

By strict m1-C-convexity of F , one has for any t ∈ (0, 1)

F (tx̄+ (1− t)x̃) ≺m1

C tF (x̄) + (1− t)F (x̃). (2.2)

It follow from (2.1), (2.2), Lemma 2.4 (i), (vi) and convexity of F (x̄) that

F (tx̄+ (1− t)x̃) ≺m1

C tF (x̄) + (1− t)F (x̃)

�m1

C tF (x̄) + (1− t)F (x̄) = F (x̄)
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This means that F (tx̄+(1−t)x̃) ∈WEffm1(F,K), which contradicts with x̄ ∈WEffm1(F,K).
Hence, x̄ ∈ Effm1(F,K).

Example 2.18. Let C = R2
+ and F : [0, 2]→ 2R

2

be defined as follows.

F (x) = [0, x2]× [0, x].

It is clear that F is m1-C-convex on convex set [0, 2] with convex values. Lemma 2.17
implies WEffm1

(F, [0, 2]) = Effm1
(F, [0, 2]). Indeed, we calculate that WEffm1

(F, [0, 2]) =

{0} = Effm1
(F, [0, 2]). However, if we define G : {1, 2, 3} → 2R

2

as follows.

G(x) =


[0, 1]× [1, 2] if x = 1

[1, 2]× [0, 1] if x = 2

[2, 3]× [0, 1] if x = 3.

It is easily seen that G(x) ⊀m1

C G(y) for all x ∈ {1, 2, 3}. Thus WEffm1(G, {1, 2, 3}) =
{1, 2, 3}. We have 3 /∈ Effm1

(G, {1, 2, 3}) since F (2) /∈ F (3) and F (2) �m1

C F (3). Hence
Effm1

(G,K) = {1, 2}. We remark that G is not strictly m1-C-convex and K is not convex
set.

Proposition 2.19. If F is m1-C-convex on a convex set K ⊆ X and B is convex, then
Im1
e (F (·), B) is convex for all B ∈ P0(Y ).

Proof. Let x1, x2 ∈ K and 0 ≤ t ≤ 1. Since F is m1-C-convex, one has

F (tx1 + (1− t)x2) �m1

C tF (x1) + (1− t)F (x2).

It follows from monotonicity and convexity of Im1
e (·, B) that

Im1
e (F (tx1 + (1− t)x2), B) ≤ Im1

e ((tF (x1) + (1− t)F (x2)) , B)

≤ tIm1
e (F (x1), B) + (1− t)Im1

e (F (x2), B).

3. Pointwise Well-Posedness

In this section, we consider three notions of pointwise well-posedness for a set opti-
mization with �m1

C order. We first recall the notion of pointwise well-posedness for set
optimization problems which was adapted from the definition in [18, 29].

Definition 3.1. Let e ∈ intC and x̄ ∈ Effm1(F,K).

(i) A sequence {xn} ⊆ K is said to be an e-minimizing sequence for Problem
(SOP ) at x̄ if there exists {εn} ⊆ R+\{0} with εn → 0 such that

F (xn) �m1

C F (x̄) + εne.

(ii) A sequence {xn} ⊆ K is said to be a minimizing sequence for Problem (SOP )
at x̄ if there exists {cn} ⊆ C\{0} with cn → 0 such that

F (xn) �m1

C F (x̄) + cn.

Definition 3.2. Problem (SOP ) is said to be

(i) well-posed at x̄ ∈ Effm1(F,K) if for any minimizing sequence for problem
(SOP ) at x̄ converges to x̄;

(ii) e-well-posed at x̄ ∈ Effm1
(F,K) if for any e-minimizing sequence for problem

(SOP ) at x̄ converges to x̄;
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(iii) generalized well-posed at x̄ ∈ Effm1(F,K) if for any minimizing sequence for
problem (SOP ) at x̄ there exists a subsequence {xnk

} ⊆ {xn} that converges to
an element of Effm1

(F,K);
(iv) generalized e-well-posed at x̄ ∈ Effm1

(F,K) if for any e-minimizing sequence
for problem (SOP ) at x̄ there exists a subsequence {xnk

} ⊆ {xn} that converges
to an element of Effm1(F,K).

Remark 3.3. Problem (SOP ) is well-posed if and only if it is generalized well-posed and
Effm1

(F,K) is a singleton.

The following lemma give the equivalent between two kinds of minimizing sequences.

Lemma 3.4. Let e ∈ intC, x̄ ∈ Effm1
(F,K) and {xn} ⊆ K. The following statements

are equivalent:

(i) {xn} is an e-minimizing sequence for problem (SOP ) at x̄.
(ii) {xn} is an minimizing sequence for problem (SOP ) at x̄.

Proof. Obviously, (i) implies (ii). Conversely, we assume that {xn} is an minimizing
sequence for problem (SOP ) at x̄. Then there exists a sequence {cn} ⊆ C\{0} with
cn → 0 such that

F (xn) �m1

C F (x̄) + cn for all n.

By Durea [9, Lamma 2.2] there exists a sequence {αn} ⊆ R\{0} with αn → 0 such that
αe ∈ cn + C, this means that cn �m1

C αne and so F (x̄) + cn �m1

C F (x̄) + αne. It follows
from Lemma 2.4 (i) that

F (xn) �m1

C F (x̄) + αne for all n.

Hence, the proof is complete.

Remark 3.5. (generalized) well-posedness and (generalized) e-well-posedness are coin-
cide.

We now recall three kinds of pointwise well-posedness for set optimization problems in
Long et al. [19].

Definition 3.6. Problem (SOP ) is said to be

(i) L-well-posed at x̄ ∈ Effm1
(F,K) if for every minimizing sequence at x̄ has a

subsequence that converges to an element of Effm1(F,K);
(ii) DH-well-posed at x̄ ∈ Effm1(F,K) if

inf
α>0

diamL(x̄, c, α) = 0, for each c ∈ C,

where L(x̄, c, α) := {x ∈ K : F (x) �m1

C F (x̄) + αc};
(iii) B-well-posed at x̄ ∈ Effm1(F,K) if the set-valued mapping Qx̄ : C → 2K ,

defined as

Qx̄(c) := {x ∈ K : F (x) �m1

C F (x̄) + c}, for each c ∈ C,

is upper semicontinuous at c = 0.

Definition 3.6 (i), (ii) and (iii) generalize Definition of well-posedness in Loridan [14],
Dentcheva and Helbig [12] and Bednarczuck [11] from the vector-valued case to set-valued
case with respect to order �m1

C , respectively.
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Remark 3.7. It is clear that if x̄ ∈ Effm1(F,K), then x̄ ∈ Qx̄(0) ⊆ Effm1(F,K).

Example 3.8. Let X = R, Y = R2, C = R+
2 , K = [0, 1], and F : K → 2R

2

be defined as

F (x) = B ((1− x, x), 1) .

It is clear that Effm1
(F,K) = [0, 1] and Qx(0) = x. Hence, Effm1

(F,K) = [0, 1] ⊃ Qx̄(0)
for all x̄ ∈ Effm1

(F,K).

We first have the following result which gives a characterization for pointwise DH-
well-posed.

Proposition 3.9. Let e ∈ intC and x̄ ∈ Effm1(F,K). Problem (SOP ) is DH-well-posed
at x̄ if and only if lim

α→0
diamL(x̄, e, α) = 0.

Proof. The necessity is obvious. Conversely, we suppose that lim
α→0

diamL(x̄, e, α) = 0. Let

c ∈ C. Then there exists λ > 0 such that λe − c ∈ C, i.e. λe ∈ c + C. This means that
c �m1

C λe. By Lamma 2.4 (i), one has

F (x) �m1

C F (x̄) + αc �m1

C F (x̄) + αλe,

which implies that L(x̄, c, α) ⊆ L(x̄, e, λα). By our hypothesis, lim
λα→0

L(x̄, e, λα) implies

infα>0 diamL(x̄, c, α) = 0. Hence we have desired.

Remark 3.10. From the prove in Proposition 3.9, it is easy to verify that the problem
(SOP ) is DH-well-posed at x̄ if and only if it is e-well-posed at x̄

We now give some characterizations among pointwise B-well-posed, pointwise L-well-
posed, and DH-well-posed for set optimization problems.

Proposition 3.11. Let x̄ ∈ Effm1
(F,K).

(i) If problem (SOP ) is DH-well-posed at x̄, then it is L-well-posed at x̄.
(ii) If Problem (SOP ) is L-well-posed at x̄ and Effm1

(F,K) is singleton, then it is
DH-well-posed at x̄.

Proof. (i) Suppose that problem (SOP ) is DH-well-posed at x̄. Let {xn} be any mini-
mizing sequence at x̄. Let e ∈ intC. It follows from Lemma 3.4 that {xn} is e-minimizing
sequence at x̄. Then there exists {εn} ⊆ R\{0} with εn → 0 such that

F (xn) �m1

C F (x̄) + εne.

This means that xn ∈ L(x̄, e, εn) for all n, which implies that

‖xn − x̄‖ ≤ diamL(x̄, e, εn)→ 0 as n→ +∞.

Thus, Problem (SOP ) is L-well-posed at x̄.
(ii) Suppose that the problem (SOP ) is L-well-posed at x̄ and Effm1

(F,K) is a sin-
gleton. We will show that (SOP ) is DH-well-posed at x̄. If not, there exists c ∈ C and
some δ > 0 such that

diamL(x̄, c, α) > δ for every α > 0.

Let αn = 1
n+1 . Then there exists xn ∈ L(x̄, c, αn) such that

‖xn − x̄‖ >
δ

2
for every n. (3.1)
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By definition of L(x̄, e, αn) and Lemma 3.4, one has {xn} is minimizing sequence at x̄.
Since the problem (SOP ) is L-well-posed at x̄, there exists a subsequence {xnk

} of {xn}
such that xnk

→ x̄ as k → +∞, which contradicts with (3.1). Here, we complete the
proof.

The previous proposition generalizes results in [16, Proposition 3.3] and [9, Proposition
3.1 (i)] from vector-valued case to set-valued criteria.

Proposition 3.12. Let x̄ ∈ Effm1
(F,K).

(i) If problem (SOP ) is L-well-posed at x̄ and Effm1(F,K) = Qx̄(0), then it is
B-well-posed at x̄.

(ii) If problem (SOP ) is B-well-posed at x̄, Effm1
(F,K) = Qx̄(0) and Effm1

(F,K)
is compact set, then it is L-well-posed at x̄.

Proof. (i) We show that a set-valued mapping Qx̄(·) defined in Definition 3.6 (iii) is upper
semicontinuous at 0. If not, there exists a open set V such that Qx̄(·) ⊂ V and for each
{cn} ⊆ C with cn → 0, there exists xn ∈ Qx̄(cn) such that

xn /∈ V for all n. (3.2)

Since xn ∈ Qx̄(0), one has

F (xn) �m1

C F (x̄) + cn.

That is, {xn} is a minimizing sequence at x̄. Thanks to L-well-posedness of the problem
(SOP ) at x̄, there exists a subsequence {xnk

} of {xn} such that

xnk
→ x̃ ∈ Effm1

(F,K) as k → +∞.

It follows from our hypothesis that

xnk
→ x̃ ∈ Effm1(F,K) = Qx̄(0) ⊂ V,

which leads to a contradiction with (3.2). Therefore, problem (SOP ) is B-well-posed at
x̄.

(ii) It follows from Proposition 2.9 (ii).

4. Scalarization Results

In this section, we establish some relations between pointwise well-posedness of set
optimization problems and well-posedness of scalar optimization problems.

Consider the scalar optimization problem (OP ) as follows:

(OP ) min f(x) subject to x ∈ S,

where f : S ⊆ X → R. Denote by infS f the infimum of f over S and by arg min(f, S) the
solution set of problem (OP ). Also, let α-arg min(f, S) = {x ∈ S : f(x) ≤ infS F + α},
where α is a positive scalar.

Definition 4.1. [8, 9] The scalar optimization problem (OP ) is said to be

(i) Tikhonov well-posed if arg min(f, S) is a singleton and every minimizing se-
quence, i.e. xn ⊆ S, f(xn)→ infSf converges to arg min(f, S);

(ii) generalized well-posed if arg min(f, S) 6= ∅ and for every minimizing sequence
in S there exists a subsequence that converges to an element of arg min(f, S).
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Remark 4.2. It is easily seen that the scalar optimization problem (OP ) is Tikhonov
well-posed if and only if it is generalized well-posed and arg min(f, S) is a singleton set.

The following results characterizes the well-posedness for scalar optimization problems.

Theorem 4.3. [9, 10] If arg min(f, S) 6= ∅, then problem (OP ) is Tikhonov well-posed
if and only if infα>0 diam(α− arg min(f, S)) = 0.

Theorem 4.4. [10] If problem (OP ) is Tikhonov well-posed, then arg min(f, S) is a
singleton and (OP ) infα>0 diam(α− arg min(f, S)) = 0.

Theorem 4.5. [8, 9] The problem (OP ) is generalized well-posed if and only if the set-
valued maps D : R+ → 2S defined by D(α) = α− arg min(f, S) is upper semicontinuous
at 0 and arg min(f, S) is compact.

Consider a scalar optimization problem with respect to the scalarizing function Im1
e as

follows:

(OPI) min Im1
e (F (x), F (x̄)) subject to x ∈ K,

Theorem 4.6. [6, Corollary 8 and Corollary 9] Let F : X → 2Y be a compact valued on
X and C be closed. Then,

(i) x̄ ∈ X is a solution of (SOP ) implies

x̄ ∈ arg min (Im1
e (F (·), F (x̄)), X) .

(ii) {x̄} = arg min (Im1
e (F (·), F (x̄)), X) implies x̄ ∈ X is a solution of (SOP ).

We now establish a relationships between pointwise well-posedness of the set optimiza-
tion problem and well-posedness of a scalar optimization problem.

Theorem 4.7. Let x̄ ∈ Effm1(F,K) and e ∈ intC. Assume that F (x̄) is compact.
Problem (SOP ) is DH-well-posed at x̄ if and only if Problem (OPI) is Tikhonov well-
posed.

Proof. We first show that, for every α > 0,

α− arg min(K, Im1
e (F (x), F (x̄))) = L(x̄, e, α). (4.1)

Let x ∈ α− arg min(K, Im1
e (F (x), F (x̄))). Then, for every x ∈ K

0 ≤ Im1
e (F (x), F (x̄)) ≤ inf

y∈K
Im1
e (F (y), F (x̄)) + α = α.

By Lemma 2.10 (iv) and (v),

F (x) �m1

C αe+ F (x̄).

Then x ∈ L(x̄, e, α), and so α− arg min(K, Im1
e (F (x), F (x̄))) ⊆ L(x̄, e, α).

Conversely, let x ∈ L(x̄, e, α). Then F (x) �m1

C αe+F (x̄). By Lemma 2.13 (i), Lemma
2.11 and Lemma 2.10 (i), one has

Im1
e (F (x), F (x̄)) ≤ Im1

e (F (x̄), F (x̄) + αe) ≤ Im1
e (F (x̄), F (x̄)) + α = α,

and so

Im1
e (F (x), F (x̄)) ≤ α ≤ inf

K
Im1
e (F (x), F (x̄)) + α.

This means that x ∈ α− arg min(K, Im1
e (F (x), F (x̄))). Hence, (4.1) holds.
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Suppose that problem (SOP ) is DH-well-posed at x̄. It follows from Proposition 3.9
that lim

α→0
diamL(x̄, e, α) = 0. This fact together with (4.1) yields

lim
α→0

diam (α− arg min(K, Im1
e (F (x), F (x̄)))) = 0.

Since x̄ ∈ Effm1
(F,K), one has arg min(K, Im1

e (F (x), F (x̄)) 6= ∅. By Theorem 4.3, prob-
lem (OPI) is Tikhonov well-posed.

On the other hand, assume that the problem (OPI) is Tikhonov well-posed. Then,
by Theorem 4.4, lim

α→0
diam (α− arg min(K, Im1

e (F (x), F (x̄)))) = 0. Thanks to (4.1) and

Proposition 3.9, we get problem (SOP ) is DH-well-posed at x̄.

Lemma 4.8. Let e ∈ intC. Problem (SOP ) is B-well-posed at x̄ if and only if the
set-valued map Q+

x̄ (α) : R+ → 2K defined as

Q+
x̄ (α) := {x ∈ K : F (x) �m1

C F (x̄) + αe}, for each α ∈ R+ (4.2)

is upper semicontinuous at α = 0.

Proof. Suppose that the problem (SOP ) is B-well-posed at x̄ ∈ Effm1(F,K). Let V be
an open set such that Q+

x̄ (0) ⊂ V . So, Qx̄(0) ⊂ V and there exists δ > 0 such that

Qx̄(c) ⊂ V, ∀c ∈ B(0, δ) ∩ C.

There exists β > 0 such that ρe ∈ B(0, δ) for all ρ ∈ [0, β). Putting α ∈ [0, β) and
x ∈ Q+

x̄ (α), we have

F (x) �m1

C F (x̄) + αe.

This implies that x ∈ Qx̄(αe). Since αe ∈ B(0, δ), one has x ∈ V and so

Q+
x̄ (α) ⊂ V for all α ∈ [0, β),

since α is arbitrarily chosen. Hence, Q+
x̄ (·) is u.s.c at α = 0.

Conversely, suppose that Q+
x̄ is upper semicontinuous at 0. Let V be an open set such

that Qx̄(0) ⊂ V . Then Q+
x̄ (0) ⊂ V . It follows that there exists a positive number β such

that Q+
x̄ (α) ⊂ V for every α ∈ [0, β). Let γ ∈ [0, β). Then there exists a positive number ρ

such that B(0, ρ) ⊂ γe−C. Let c ∈ B(0, ρ)∩C and x ∈ Qx̄(c). Thus, F (x) �m1

C F (x̄)+c
implies

F (x) �m1

C F (x̄) + c �m1

C F (x̄) + γe.

This means that x ∈ Qx̄(γ) ⊂ V . Hence, we have desired.

Theorem 4.9. Let x̄ ∈ Effm1(F,K) and e ∈ intC. Assume that F (x̄) is compact.
Problem (SOP ) is B-well-posed at x̄ iff Problem (OPI) satisfies

W (α) :=α−arg min(K, Im1
e (F (x), F (x̄))) is upper semicontinuous at α=0. (4.3)

Proof. Suppose that Problem (SOP ) is B-well-posed at x̄. It follows from Lemma 4.8
that the set-valued mapping Q+

x̄ : R+ → 2K is define in (4.2) is upper semicontinuous at
α = 0. From the prove in Theorem 4.7 implies

Q+
x̄ (α) = L(x̄, e, α) = α− arg min(K, Im1

e (F (x), F (x̄))) = W (α).

Conversely, we assume that W (α) is upper semicontinuous at α = 0. Thus Q+
x̄ (α) is also.

Lemma 4.8 implies that Problem (SOP ) is B-well-posed at x̄.
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Theorem 4.10. Let x̄ ∈ Effm1(F,K) and e ∈ intC. Assume that F is compact valued
on K. If problem (SOP ) is L-well-posed at x̄, then Problem (OPI) is Tikhonov well-posed
in generalized sense.

Proof. Let x̄ ∈ Effm1
(F,K) and e ∈ intC. Assume that (SOP ) is L-well-posed at x̄. Let

{xn} be a minimizing sequence to problem (OPI). Then,

Im1
e (F (xn), F (x̄))→ inf

x∈K
Im1
e (F (x), F (x̄)) = 0.

This implies that there exists {εn} ⊆ (0,+∞) with εn → 0 such that

0 ≤ inf{t ∈ R : A �m1

C te+B} < εn.

So, there exists tn ∈ [0, εn) such that

F (xn) �m1

C tne+ F (x̄).

Thus, {xn} is e-minimizing sequence to problem (SOP ). Thanks to Lemma 3.4 {xn} is
minimizing sequence to problem (SOP ). Since (SOP ) is L-well-posed at x̄, there exists
a subsequence {xnk

} of {xn} which converse to an element x̃ ∈ Effm1
(F,K). Then, by

Theorem 4.6, x̃ ∈ arg min (Im1
e (F (·), F (x̄)), X). Therefore, problem (OPI) is Tikhonov

well-posedness in the generalized sense.

5. Global Well-Posedness

In this following, we give sufficiency results for generalized e-well-posedness and extended-
e-well-posedness notions.

Theorem 5.1. Let K be a compact set. If F is l.s.c, compact on K and F (u) = F (v)
for all u, v ∈ Effm1

(F,K), then (SOP ) is generalized e-well-posed.

Proof. Let {xn} be a generalized e-minimizing sequence. Then there exists a real sequence
{εn} with εn → 0 and a sequence {zn} ⊆ Effm1

(F,K) such that

F (xn) �m1

C F (zn) + εne.

Since K is compact, there exist a subsequence {xnk
} and x̃ ∈ K such that xnk

→ x̃. For
any z̃ ∈ Effm2

(F,K), F (z̃) = F (zn) for all n. We then have

F (xn) �m1

C F (z̃) + εne.

From definition of a partial order �m1

C , there exists c̃ ∈ C such that

c̃+ F (xn) ⊆ F (z̃) + εne.

Let ξ̂ ∈ F (x̃). Since F is l.s.c, there exists ξ̂n ∈ F (xn) such that ξ̂n → ξ̂.

Thus, (z̃, c̃ + ξ̂n − εne) ∈ graph(F ). Then, there exist subsequence {εnk
} and {ξ̂nk

}
such that

c̃+ ξ̂nk
− εnk

e→ c̃+ ξ̂ ∈ F (z̃).

Since ξ̂ is an arbitrary element in F (x̃), one has c̃+F (x̃) ⊆ F (z̃). That is, F (x̃) �m1

C F (z̃).
Since z̃ ∈ Effm1

(F,K), we have x̃ ∈ Effm1
(F,K). The proof is complete.

The following example shows that the compactness of F cannot be dropped.
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Example 5.2. Let K = [0, 1] and C = R2
+. A set-valued mapping F : K → 2R

2
+ is

defined by

F (x) =

{
[0, 1]× [0, 1], if 0 < x ≤ 1,

[2, 3]× [2, 3], if x = 0.

Let e = (1, 1). We see that Effm1(F,K) = (0, 1], K is compact and F (u) = F (v) for all
u, v ∈ Effm1(F,K). But F is not compact at 0. Indeed,

(
1
n ,
(
0, 1

n

))
∈ graph(G) with

1
n → 0, but

(
0, 1

n

)
→ (0, 0) /∈ F (0). Let xn = εn = 1

n . Then clearly that xn is a
generalized e-minimizing sequence and xn → 0 /∈ Effm1(F,K).

We recall the extended e-well-posedness notion defined for m1-weak-minimal solutions
which developed from the concept in Zhang et al. [17].

Definition 5.3. A sequence {xn} is an extended e-minimizing sequence if there exists a
sequence {εn} ⊆ R with εn → 0 such that

F (x) + εne ⊀m1

C F (xn), ∀ x ∈ K.
(SOP ) is said to be extended e-well-posed if for each extended e-minimizing sequence
there exist a subsequence {xnk

} and x̄ ∈WEffm1(F,K) such that xnk
→ x̄.

Theorem 5.4. If K is a compact set, F is a compact on K, then (SOP ) is extended
e-well-posed.

Proof. Let {xn} be an extended e-minimizing sequence. Then there exists a real sequence
{εn} with εn → 0 such that

F (xn) + εne ⊀m1

C F (y) for all y ∈ K. (5.1)

Since K is compact, there exist a subsequence {xnk
} and x̃ ∈ K such that xnk

→ x̃. Let
x ∈ K. It follows from (5.1) for any c̃ ∈ int (C) ,

F (xnk
) + εnk

e+ c̃ * F (x).

Then, there exists a sequence ξnk
∈ F (xnk

) such that

ξnk
+ εnk

e+ c̃ /∈ F (x)⇒ ξnk
+ εnk

e /∈ F (x)− c̃.
Since F is a compact map, there exist subsequence {ξnkl

} of {ξnk
} and ξ̄ ∈ F (x̄) such

that ξnkl
→ ξ̄. Hence, ξnkl

+ εnk
e → ξ̄ /∈ −int (C) + F (x). One has F (x̄) * F (x) −

int(C) implies F (x) ⊀m1

C F (x̄). Therefore, x̄ ∈WEffm1
(F,K). This show that (SOP ) is

extended e-well-posed.

Remark 5.5. We observe that the problem (SOP ) in Example 5.2 is not extended e-
well-posed. Indeed, if e = (1, 1) and xn = εn = 1

n , then xn is an extended e-minimizing
sequence. We see that xn → 0 /∈WEffm1

(F,K).

We recall the global well-posedness notion defined form1-weak-minimal solutions which
developed form the concept in Crespi et al. [20].

Definition 5.6. (SOP ) is said to be globally well-posed if for every extended e-minimizing
sequence {xn} there exists a subsequence {xnk

} such that

d(xnk
,WEffm1)→ 0,

where d(a,B) = infb∈B ‖a− b‖.
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Proposition 5.7. Problem (SOP ) is extended e-well-posed, then (SOP ) is globally well-
posed. Conversely, if problem (SOP ) is globally well-posed and WEffm1(F,K) is compact,
then (SOP ) is extended e-well-posed.

Proof. Since (SOP ) is extended e-well-posed, every extended e-minimizing sequence there
exist a subsequence {xnk

} and x̄ ∈WEffm1(F,K) such that xnk
→ x̄. One has

d(xnk
,WEffm1

(F,K)) ≤ ‖xnk
− x̄‖ → 0.

Hence, (SOP ) is globally well-posed.
Conversely, we assume that (SOP ) is globally well-posed. From the definition of

d(xnk
,WEffm1

(F,K)), we can find a sequence x̄nk
∈ WEffm1

(F,K) such that ‖xnk
−

x̄nk
‖ → 0. It follow from the compactness of WEffm1(F,K), there exist a subsequence

{x̄nkl
} of {x̄nk

} and x̄ ∈WEffm1(F,K) such that x̄nkl
→ x̄. Then we have

‖xnkl
− x̄‖ ≤ ‖xnkl

− x̄nkl
‖+ ‖x̄nkl

− x̄‖ → 0.

Therefore, (SOP ) is extended e-well-posed.

6.�m1
C -Robustness

In this section we discuss solution concepts for set optimization problems with the
�m1

C to study robust vector optimization problems. Detailed overviews of the existing
robustness concepts for vector optimization problem can be found in [2, 30]. Let U ⊆ Rm
be a nonempty compact set. We consider the following uncertain vector-optimization
problem

min
x∈K

f(x, ξ) (UV OP )

where f : K × U → Y and ξ ∈ U is the uncertain parameter of the problem. In this
setting, the objective function f depends on scenarios ξ which are unknown to uncertain.
This means that, finding the valued x̄ ∈ K such that

(f(x̄, ξ)− C) ∩ f(K, ξ) = {f(x̄, ξ)}.

For studying the robust counterpart problem of the uncertain vector optimization problem
(UVOP), we consider the following set optimization problem:

min
x∈K

f(x,U)

where f(x,U) = {f(x, ξ) : ξ ∈ U} is compact subset in Y .
We define “the robust counterpart”of (UV OP ) as the set optimization problem with

�m1

C relation. This means that x̄ ∈ K is a solution of the robust counterpart of (UV OP )
if

there is no any x ∈ K with f(x,U) �m1

C f(x̄,U) and f(x,U) 6= f(x̄,U).

In same way, x̄ ∈ K is a solution of the weak robust counterpart of (UV OP ) if

there is not any x ∈ K with f(x,U) ≺m1

C f(x̄,U).

Let Eff(f(x,U),K) and WEff(f(x,U),K) be the set of all (weak) solutions of the robust
counterpart optimization problem, respectively.

The following two corollaries are immediately obtained form Theorem 5.1 and Theorem
5.4, respectively.
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Corollary 6.1. Let K is a compact set. If f(·,U) is l.s.c and compact on K and f(u,U) =
f(v,U) for all u, v ∈ Effm1(f(x,U),K), then (UV OP ) is generalized e-well-posed.

Corollary 6.2. If K is a compact set, f(·,U) is compact on K, then (UV OP ) is extended
e-well-posed.

7. Conclusions

In this paper we discuss the notions of pointwise well-posedness and global well-
posedness for set optimization problem with �m1

C order. We introduce the concept of m1-
C-convexity for set-valued mappings and show some convexity properties for nonlinear
scalarizing function. We consider pointwise B-well-poseness, pointwise L-well-poseness
and pointwise DH-well-poseness for set optimization problems with �m1

C order. We gave
some relations among the three kinds of pointwise well-posedness. Moreover, we obtain
some relations between pointwise well-posedness of set optimization problems and well-
posedness of scalar optimization problems by using a nonlinear scalarizing function. Some
relation between pointwise well-posedness and global well-posedness are also studied.
Finally, we discuss the generalized e-well-posedness and extended e-well-posedness of ro-
bust vector optimization.
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