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Abstract A Banach space X is said to have the fixed point property if for each nonexpansive mapping

T : E → E on a bounded closed convex subset E of X has a fixed point. Let X be an infinite dimensional

unital Abelian real Banach algebra with Ω(X) 6= ∅ satisfying: (i) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|,
for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖, (ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0. We prove that, for each element

x0 in X with infinite spectrum, the Banach algebra 〈x0〉 =
{∑k

i=1 αixi0 : k ∈ N, αi ∈ R
}

generated by

x0 does not have the fixed point property.
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1. Introduction

A Banach space X is said to have the fixed point property if for each nonexpansive
mapping T : E → E on a bounded closed convex subset E of X has a fixed point, to have
the weak fixed point property if for each nonexpansive mapping T : E → E on a weakly
compact convex subset E of X has a fixed point.

In 1981, D. E. Alspach [1] proved that there exists an isometry T : E → E on a
weakly compact convex subset E of the Lebesgue space L1[0, 1] without a fixed point.
Consequently, L1[0, 1] does not have the weak fixed point property.

In 1983, J. Elton, P. K. Lin, E. Odell, and S. Szarek [2] showed that CR(α) has the
weak fixed point property, if α is a compact ordinal with α < ωω.

In 1997, A. T. Lau, P. F. Mah, and Ali Ülger [3] proved the following theorem.
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Theorem 1.1. Let X be a locally compact Hausdorff space. If C0(X) has the weak fixed
point property, then X is dispersed.

Moreover, by using Theorem 1.1, they proved the following corollaries.

Corollary 1.2. Let G be a locally compact group. Then the C∗-algebra C0(G) has the
weak fixed point property if and only if G is discrete.

Corollary 1.3. A von Neumann algebra M has the weak fixed point property if and only
if M is finite dimensional.

In 2005, Benavides and Pineda [4] proved the following results.

Theorem 1.4. Let X be a ω-almost weakly orthogonal closed subspace of C(K) where K
is a metrizable compact space. Then X has the weak fixed point property.

Theorem 1.5. Let K be a metrizable compact space. Then, the following conditions are
all equivalent:

(1) C(K) is ω-almost weakly orthogonal,
(2) C(K) is ω-weakly orthogonal,
(3) K(ω) = ∅.

Corollary 1.6. Let K be a compact set with K(ω) = ∅. Then C(K) has the weak fixed
point property.

In 2008, A. T. Lau and M. Leinert [5] proved the following theorem.

Theorem 1.7. A(G) has the fixed point property if and only if G is finite.

As a consequence, they obtained the following corollary.

Corollary 1.8. B(G) has the fixed point property if and only if G is finite.

If X is a complex Banach algebra, condition (A) is defined by:

(A) For each x ∈ X, there exists an element y ∈ X such that τ(y) = τ(x), for each
τ ∈ Ω(X).
Note that each C*-algebra satisfies condition (A).

In 2010, W. Fupinwong and S. Dhompongsa [6] proved that each infinite dimensional
unital Abelian real Banach algebra X with Ω(X) 6= ∅ satisfying (i) if x, y ∈ X is such that
|τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖, (ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0,
does not have the fixed point property. Moreover, they proved the following theorem.

Theorem 1.9. Let X be an infinite dimensional unital Abelian complex Banach algebra
satisfying condition (A) and each of the following statements:
(i) If x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖.
(ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0.
Then X does not have the fixed point property.

In 2010, by using Theorem 1.9, D. Alimohammadi and S. Moradi [7] obtain sufficient
conditions to show that some unital unifromly closed subalgebras of C(Ω), where Ω is a
compact space, do not have the fixed point property.

In 2011, S. Dhompongsa, W. Fupinwong, and W. Lawton [8] proved that a C∗-algebra
has the fixed point property if and only if it is finite dimensional.

In 2012, W. Fupinwong [9] show that the unitality in Theorem 1.9 proved in [6] can be
omitted.
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In 2016, by using Urysohn’s lemma and Schauder-Tychonoff fixed point theorem, D.
Alimohammadi [10] proved the following result.

Theorem 1.10. Let Ω be a locally compact Hausdorff space. Then the following state-
ments are equivalent:
(i) Ω is infinite set.
(ii) C0(Ω) is infinite dimensional.
(iii) C0(Ω) does not have the fixed point property.

In 2017, J. Daengsaen and W. Fupinwong [11] proved the following theorem.

Theorem 1.11. Let X be an infinite dimensional real Abelian Banach algebra with
Ω(X) 6= ∅ and satisfying each of the following:
(i) If x, y ∈ X is such that |τ(x)| ≤ |τ(y)| for each τ ∈ Ω(X) then ‖x‖ ≤ ‖y‖.
(ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0.
Then X does not have the fixed point property.

In 2018, P. Thongin and W. Fupinwong [12] proved that if X is an infinite dimensional
complex unital Abelian Banach algebra satisfying condition (A) and satisfying (i) If x, y ∈
X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖, (ii) inf{rX(x) : x ∈
X, ‖x‖ = 1} > 0, then there exists an element x0 in X such that

〈x0〉 =

{
k∑
i=1

αixi0 : k ∈ N, αi ∈ R

}
does not have the fixed point property.

In this paper, if X is an infinite dimensional unital Abelian real Banach algebra with
Ω(X) 6= ∅ and satisfying; (i) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X),
then ‖x‖ ≤ ‖y‖, (ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0, we prove that, for each x0 in X
with infinite spectrum,

〈x0〉 =

{
k∑
i=1

αixi0 : k ∈ N, αi ∈ R

}
does not have the fixed point property. Our result is a generalization of Theorem 1.11.

2. Preliminaries

Let X be a Banach space. We say that a mapping T : E → E is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖
for each x, y ∈ E, where E is a nonempty subset of X. A Banach space X is said to have
the fixed point property if for each nonexpansive mapping T : E → E on a nonempty
bounded closed convex subset E of X has a fixed point.

We define the spectrum of an element x of a real unital Banach algebra X to be the
set

σX(x) = {λ ∈ R : λ1− x /∈ Inv(X)},
where Inv(X) is the set of all invertible elements in X.

The spectral radius of x is defined to be

rX(x) = sup
λ∈σ(x)

|λ|.
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We say that a mapping τ : X → R is a character on a real algebra X if τ is a non-zero
homomorphism. We denote by Ω(X) the set of all characters on X. If X is a real unital
Abelian Banach algebra with Ω(X) 6= ∅, it is known that Ω(X) is compact.

If Y is a real unital subalgebra of a real unital Banach algebra X with Ω(X) 6= ∅, then
Ω(Y ) 6= ∅. In fact, for each τ ∈ Ω(X), the restriction τ |Y of τ on Y is in Ω(Y ). Note that
τ |Y is nonzero since Y is unital.

We denote by CR(S) the real unital Banach algebra of continuous functions from a
topological space S to R where the operations are defined pointwise and the norm is the
sup-norm.

The following Theorem is known as the Stone-Weierstrass approximation theorem for
CR(S).

Theorem 2.1. Let A be a subalgebra of CR(S) satisfying the following conditions:
(i) A separates the points of S.
(ii) A annihilates no point of S.
Then A is dense in CR(S).

Let X be a real Abelian Banach algebra with Ω(X) 6= ∅. The Gelfand representation
ϕ : X → CR(Ω(X)) is defined by x 7→ x̂, where x̂ is defined by

x̂(τ) = τ(x),

for each τ ∈ Ω(X). If X is unital and Abelian, then σ(x) = {τ(x) : τ ∈ Ω(X)}, for each
x ∈ X. It is known that rX(x) = ‖x̂‖∞,X if X is Abelian, where

‖x̂‖∞,X = sup
τ∈Ω(X)

|x̂(τ)|.

3. Lemmas

Some lemmas are proved in this section. In the next section, we will use them to prove
our main theorem.

Lemma 3.1. Let X be a real unital Abelian Banach algebra satisfying Ω(X) 6= ∅ and

inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0.

If Y is a unital subalgebra of X, then

inf{rY (x) : x ∈ Y, ‖x‖ = 1} > 0.

Proof. If x ∈ Y, since σY (x) ⊃ σX(x), then

rY (x) = supλ∈σY (x)|λ| ≥ supλ∈σX(x)|λ| = rX(x).

So
inf{rY (x) : x ∈ Y, ‖x‖ = 1} ≥ inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0.

Therefore, inf{rY (x) : x ∈ Y, ‖x‖ = 1} is greater than zero.

Lemma 3.2. Let X be an infinite dimensional real unital Abelian Banach algebra with
Ω(X) 6= ∅, and let x0 be an element in X with infinite spectrum. Then {xn0 : n ∈ N} is
linearly independent. Consequently,

〈x0〉 =

{
k∑
i=1

αixi0 : k ∈ N, αi ∈ R

}
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infinite dimensional.

Proof. Assume that
k∑
i=1

αix
i
0 = 0,

where αi ∈ R. Let {λ1, λ2, λ3, ...} ⊆ σX(x0), with λi 6= λj for each i 6= j. Since σX(x0) =
{τ(x0) : τ ∈ Ω(X)}, write λj = τj(x0), where τj ∈ Ω(X). Then

k∑
i=1

αi (τj(x0))
i

= τj

(
k∑
i=1

αix
i
0

)
= 0,

therefore,
k∑
i=1

αiλ
i
j = 0,

for each j ∈ N. Hence αi = 0, for each i ∈ {1, 2, 3, ..., k}.

Lemma 3.3. Let X be an infinite dimensional real unital Abelian Banach algebra with
Ω(X) 6= ∅, and let x0 be an element in X with infinite spectrum. Define

Z =

{
k∑
i=0

αixi0 : k ∈ N, αi ∈ R

}
.

If X satisfies

inf{‖x̂‖∞,X : x ∈ X, ‖x‖ = 1} > 0,

then Z is a real unital Abelian Banach algebra satisfying the following conditions:
(i) The Gelfand representation ϕ from Z into CR(Ω(Z)) is a bounded isomorphism.
(ii) The inverse ϕ−1 is also a bounded isomorphism.

Proof. (i) Since ker(ϕ) = {0}, ϕ is injective. We have ϕ(Z) is a subalgebra of CR(Ω(Z))
separating the points of Ω(Z), and annihilating no point of Ω(Z). Moreover, ϕ(Z) is
complete, so ϕ(Z) is closed. Indeed, if {ẑn} is a Cauchy sequence in ϕ(Z), assume to the
contrary that {zn} is not Cauchy, then there exists ε0 > 0 and subsequences {z′n} and
{z′′n} of {zn} such that

‖z′n − z′′n‖ ≥ ε0,

for each n ∈ N. Define yn = (z′n − z′′n)/ε0. Thus ‖yn‖ ≥ 1, for each n ∈ N. Since {ẑn} is

Cauchy, so lim ŷn = 0̂. From Lemma 3.1, we have

inf{rZ(x) : x ∈ Z, ‖x‖ = 1} > 0.

Hence

0 < inf{rZ(x) : x ∈ Z, ‖x‖ = 1} = inf{‖x̂‖∞,Z : x ∈ Z, ‖x‖ = 1}

≤ inf
n∈N

∥∥∥∥∥ ̂( yn
‖yn‖

)∥∥∥∥∥
∞,Z

≤ inf
n∈N
‖ŷn‖∞,Z = 0,
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which is a contradiction. Hence we conclude that {zn} is a Cauchy sequence. Then {zn}
is a convergent sequence in Z, say lim zn = z0 ∈ Z. From, for each n ∈ N,

‖ẑn − ẑ0‖∞,Z = ‖ϕ(zn − z0)‖∞,Z ≤ ‖zn − z0‖,

it follows that

lim ‖ẑn − ẑ0‖∞,Z = 0.

So ϕ(Z) is complete. It follows from the Stone-Weierstrass theorem that ϕ is surjective.
(ii) From the open mapping theorem, ϕ−1 is a bounded isomorphism.

Lemma 3.4. Let X be an infinite dimensional real unital Abelian Banach algebra with
Ω(X) 6= ∅. If there exists x0 in X with infinite spectrum, then there exists y ∈ 〈x0〉
satisfying the following conditions:
(i) 1 ∈ σX(y) ⊂ [0, 1].
(ii) There exists a strictly decreasing sequence in σX(y).

Proof. Note that Z =
{∑k

i=0 αix
i
0 : k ∈ N, αi ∈ R

}
is unital and Abelian, so the spectrum

of x0 is x̂0(Ω(Z)). Hence

σX

(
x2

0

rX(x2
0)

)
=

{
τ

(
x2

0

rX(x2
0)

)
: τ ∈ Ω(Z)

}
⊂ [0, 1].

Let {an} be an infinite sequence in σX

(
x2
0

rX(x2
0)

)
. We may assume that {an} is strictly

increasing and a1 > 0.
Define a continuous function g : [0, 1]→ [0, 1] by

g(t) =

{
t
a1
, if t ∈ [0, a1],

1−t
1−a1 , if t ∈ [a1, 1].

So g is joining the points (0, 0) and (a1, 1), and g(1) = 0. Let

ŷ = g ◦
̂(
x2

0

rX(x2
0)

)
.

It follows from Lemma 3.3 that y ∈ Z. Since g(0) = 0, so y ∈ 〈x0〉. We have {g(an)} is a
strictly decreasing sequence in σX(y). Moreover, 1 = g(a1) ∈ σX(y) ⊂ [0, 1].

Lemma 3.5. Let X be an infinite dimensional real unital Abelian Banach algebra satis-
fying Ω(X) 6= ∅ and

inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0,

and let x0 be an element in X with infinite spectrum and τ(x0) ∈ R, for each τ ∈ Ω(X).
Then there exists a sequence {zn} in 〈x0〉 such that {τ(zn) : τ ∈ Ω(Z)} ⊂ [0, 1], for each
n ∈ N, and {(ẑn)−1{1}} is a sequence of nonempty pairwise disjoint subsets of Ω(Z),
where

Z =

{
k∑
i=0

αixi0 : k ∈ N, αi ∈ R

}
.
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Proof. From Lemma 3.1, it follows that

inf{rZ(x) : z ∈ Z, ‖z‖ = 1} > 0.

From Lemma 3.2, Z is infinite dimensional, then, from Lemma 2.10 (iii) in [6], there exists

z0 =
∑k
i=0 αix

i
0 ∈ Z such that {τ(z0) : τ ∈ Ω(Z)} is infinite. Let z1 =

∑k
i=1 αix

i
0. It can

be seen that z1 ∈ 〈x0〉 and σ(z1) is infinite. From Lemma 3.4, we may assume without
generality that z1 satisfies

1 ∈ σZ(z1) ⊂ [0, 1]

and there exists a strictly decreasing sequence of real numbers in σZ(z1), say {an}. More-
over, we may assume that a1 < 1.

Define a continuous function g1 : [0, 1]→ [0, 1] by

g1(t) =

{
t
a1
, if t ∈ [0, a1],

1 + (g1(a2)−1)(t−a1)
2(1−a1) , if t ∈ [a1, 1].

So g1 is joining the points (0, 0) and (a1, 1), and g1(1) ∈ (g1(a2), 1).
Define ẑ2 = g1 ◦ ẑ1 : Ω(Z)→ R, and define a continuous function g2 : [0, 1]→ [0, 1] by

g2(t) =

{
t

g1(a2) , if t ∈ [0, g1(a2)],

1 + (g2(g1(a3))−1)(t−g1(a2))
2(1−g1(a2)) , if t ∈ [g1(a2), 1].

So g2 is joining the points (0, 0) and (g1(a2), 1), and g2(1) ∈ (g2(g1(a3)), 1).
Define ẑ3 = g2 ◦ ẑ2 : Ω(Z) → R. Continuing in this process, we have a sequence {zn}

in Z with 1 ∈ {τ(zn) : τ ∈ Ω(Z)} ⊂ [0, 1], for each n ∈ N, and {(ẑn)−1{1}} is a sequence
of nonempty pairwise disjoint subsets of Ω(Z). Note that, from Lemma 3.3, {zn} is in Z .

Since gn(0) = 0, for each n ∈ N, it follows that zn ∈ 〈x0〉, for each n ∈ N.

Lemma 3.6. Let X be an infinite dimensional real unital Abelian Banach algebra satis-
fying Ω(X) 6= ∅ and

inf{r(x)X : x ∈ X, ‖x‖ = 1} > 0,

and let x0 be an element in X with infinite spectrum. Assume that there exists a bounded
sequence {yn} in 〈x0〉 which contains no convergent subsequences and such that {τ(yn) :
τ ∈ Ω(Z)} is finite, for each n ∈ N, where

Z =

{
k∑
i=0

αixi0 : k ∈ N, αi ∈ R

}
.

Then there exists an element z0 ∈ 〈x0〉 such that {τ(z0) : τ ∈ Ω(Z)} is equal to
{0, 1, 1

2 ,
2
3 ,

3
4 , ...} or {0, 1, 1

2 ,
1
3 ,

1
4 , ...}.

Proof. It follows form Lemma 3.2 and Lemma 3.3 that Z is an infinite dimensional real
unital Abelian Banach algebra with Ω(Z) 6= ∅ and homeomorphic to CR(Ω(Z)). Assume
that there exists a bounded sequence {yn} in 〈x0〉 which contains no convergent subse-
quences and such that {τ(yn) : τ ∈ Ω(Z)} is finite, for each n ∈ N. From the proof of
Lemma 2.10 (ii) in [6], we have

Ω(Z) = (∪n∈NGn) ∪ F,
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where F is a closed set in Ω(Z), Gn is closed and open for each n ∈ N, and {F,G1, G2, ...}
is a partition of Ω(Z). Define τZ : Z → R by

τZ(

k∑
i=0

αix
i
0) = α0,

for each
∑k
i=0 αix

i
0 ∈ Z. So τZ ∈ Ω(Z). There are two cases to be considered. If τZ is in

F, define ψ : Ω(Z)→ R by

ψ(τ) =


1, if τ ∈ G1,
1
n , if τ ∈ Gn, n ≥ 2,

0, if τ ∈ F.

If τZ is in Gn0
, for some n0 ∈ N, without loss of generality, we may assume that n0 = 1,

define ψ : Ω(Z)→ R by

ψ(τ) =


0, if τ ∈ G1,
n−1
n , if τ ∈ Gn, n ≥ 2,

1, if τ ∈ F.

For each case, the inverse image of each closed set in ψ(Ω(Z)) is closed, so ψ ∈ CR(Ω(Z)).
Let ϕ : Z → CR(Ω(Z)) be the Gelfand representation. Therefore, ϕ−1(ψ) is an element
in Z. Write z0 = ϕ−1(ψ). Then {τ(z0) : τ ∈ Ω(Z)} is equal to {0, 1, 1

2 ,
2
3 ,

3
4 , ...} or

{0, 1, 1
2 ,

1
3 ,

1
4 , ...}. Moreover, z0 ∈ 〈x0〉 since τZ(z0) = ψ(τZ) = 0.

Lemma 3.7. Let X be an infinite dimensional real unital Abelian Banach algebra satis-
fying Ω(X) 6= ∅ and the following conditions:
(i) If x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0.
Let x0 be an element in X with infinite spectrum, and let x ∈ 〈x0〉R with (x̂)−1{1} 6= ∅,
and 0 ≤ τ(x) ≤ 1, for each τ ∈ Ω(Z), where

Z =

{
k∑
i=0

αixi0 : k ∈ N, αi ∈ R

}
.

Define

E = {z ∈ 〈x0〉 : 0 ≤ τ(z) ≤ 1 for each τ ∈ Ω(Z), and τ(z) = 1 if τ ∈ A},

where A = (x̂)−1{1}, and define T : E → E by

z 7→ xz.

Then E is a nonempty bounded closed convex subset of 〈x0〉 and T : E → E is a nonex-
pansive mapping.

Proof. Obviously, E is closed and convex. E is nonempty since x ∈ E. From Lemma 3.1,
we have

inf{rZ(x) : x ∈ Z, ‖x‖ = 1} > 0.
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If z ∈ E, then

inf{rZ(x) : x ∈ Z, ‖x‖ = 1} = inf{‖x̂‖∞,Z : x ∈ Z, ‖x‖ = 1}

≤

∥∥∥∥∥
(̂

z

‖z‖

)∥∥∥∥∥
∞,Z

≤ 1

‖z‖
.

Then, for each z ∈ E,
‖z‖ ≤ 1

inf{rZ(x) : x ∈ Z, ‖x‖ = 1}
.

Therefore, E is bounded.
Let ω ∈ Ω(X), and let z, z′ ∈ E. Note that the restriction ω|Z of ω on Z is in Ω(Z).
Then

|ω(Tz − Tz′)| = |ω|Z(Tz − Tz′)|,
= |ω|Z(xz − xz′)|,
= |ω|Zx||ω|Z(z − z′)|,
≤ |ω|Z(z − z′)|,
= |ω(z − z′)|.

From (i), we have

‖Tz − Tz′‖ ≤ ‖z − z′‖.
So T is nonexpansive.

4. Main Results

We now present the main theorem.

Theorem 4.1. Let X be an infinite dimensional real unital Abelian Banach algebra with
Ω(X) 6= ∅, and let X satisfy the following conditions:
(i) If x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{rX(x) : x ∈ X, ‖x‖ = 1} > 0.
If x0 is an element in X with infinite spectrum, then the closed subalgebra

〈x0〉 =

{
k∑
i=1

αixi0 : k ∈ N, αi ∈ R

}
does not have the fixed point property.

Proof. From Lemma 3.2, 〈x0〉 and Z are infinite dimensional real Abelian Banach alge-
bras, where

Z =

{
k∑
i=0

αixi0 : k ∈ N, αi ∈ R

}
.

Note that Ω(Z) 6= ∅ since Ω(X) 6= ∅.
From Lemma 3.5, there exists a sequence {zn} in 〈x0〉 such that, for each n ∈ N,

{τ(zn) : τ ∈ Ω(Z)} ⊂ [0, 1],

and {(ẑn)−1{1}} is a sequence of nonempty pairwise disjoint subsets of Ω(Z).
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Let An = (ẑn)−1{1}, and define Tn : En → En by

x 7→ znx,

where

En = {x ∈ 〈x0〉 : 0 ≤ τ(x) ≤ 1 for each τ ∈ Ω(Z), and τ(x) = 1 if τ ∈ An}.

From Lemma 3.7, Tn : En → En is a nonexpansive mapping on the bounded closed
convex set En, for each n ∈ N.

Assume to the contrary that 〈x0〉 has fixed point property. So Tn has a fixed point,
for each n ∈ N. Let yn be a fixed point of Tn, for each n ∈ N. We have yn = znyn, hence
ŷn = ẑnŷn, and then

ŷn(τ) =

{
0, if τ is not in An,

1, if τ is in An,

for each n ∈ N. It follows that ‖ŷm − ŷn‖∞,Z = 1, if m 6= n, since A1, A2, A3, ... are
pairwise disjoint. Then {ŷn} has no convergent subsequences. From Lemma 3.3, Z and
CR(Ω(Z) are homeomorphic, so {yn} has no convergent subsequences. Note that {yn}
is in 〈x0〉. It follows from Lemma 3.6 that there exists an element z0 in 〈x0〉R such that
{τ(z0) : τ ∈ Ω(Z)} is equal to {0, 1, 1

2 ,
2
3 ,

3
4 , ...} or {0, 1, 1

2 ,
1
3 ,

1
4 , ...}.

Write A0 = (ẑ0)−1{1}, define T0 : E0 → E0 by

x 7→ z0x,

where

E0 = {x ∈ 〈x0〉 : 0 ≤ τ(x) ≤ 1 for each τ ∈ Ω(Z), and τ(x) = 1 if τ ∈ A0}.

It follows from Lemma 3.7 that T0 is a nonexpansive mapping on a nonempty bounded
closed convex subset E0 in 〈x0〉R. So T0 has a fixed point in E0, say y0. There are two
cases to be considered.

Case(1) {τ(z0) : τ ∈ Ω(Z} = {0, 1, 1
2 ,

2
3 ,

3
4 , ...} :

We have ŷ0 = ẑ0ŷ0 since y0 is a fixed point of T0. Then

ŷ0(τ) =

{
0, if τ is not in A0,

1, if τ is in A0.

Therefore,

(ŷ0)−1{1} = (ẑ0)−1{1} = A0

and

Ω(Z)\A0 = (ŷ0)−1{0} =

∞⋃
n=0

(
(ẑ0)−1{ n

n+ 1
}
)
.

It follows from

{τ(z0) : τ ∈ Ω(Z)} = {0, 1, 1

2
,

2

3
,

3

4
, ...}

that
{

(ẑ0)−1{ n
n+1} : n ∈ N

}⋃{
(ẑ0)−1{0}

}
is a nonempty pairwise disjoint open covering

of the compact set Ω(Z)\A0, which is a contradiction.
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Case(2) {τ(z0) : τ ∈ Ω(Z)} = {0, 1, 1
2 ,

1
3 ,

1
4 , ...} :

Define T : E → E by

1 + x 7→ (1− z0)(1 + x),

for each 1 + x ∈ E, where

E = {1 + x ∈ 1 + 〈x0〉 : 0 ≤ τ(1 + x) ≤ 1 for each τ ∈ Ω(Z), and τ(1 + x) = 1 if τ ∈ A},

where A = (1̂− z0)−1{1}. Then

{τ(1− z0) : τ ∈ Ω(Z)} = {0, 1, 1

2
,

2

3
,

3

4
, ...}.

Define S : Z → Z by

λ+ x 7→ (−λ+ 1) + x.

Note that S2 is the identity mapping. It follows that STS : S(E)→ S(E) is a nonexpan-
sive mapping on a nonempty bounded closed convex subset S(E) of 〈x0〉.

Since 〈x0〉 has the fixed point property, so STS has a fixed point. Then T has a fixed
point, say 1 + y0. Therefore,

̂(1 + y0)(τ) =

{
0, if τ is not in A,

1, if τ is in A.

Then

(1̂ + y0)−1{1} = (1̂− z0)−1{1} = A

and

Ω(Z)\A = (1̂ + y0)−1{0} =

∞⋃
n=0

(
(1̂− z0)−1{ n

n+ 1
}
)
.

From

{τ(1− z0) : τ ∈ Ω(Z)} = {0, 1, 1

2
,

2

3
,

3

4
, ...},

we have
{

(1̂− z0)−1{ n
n+1} : n ∈ N

}⋃{
(1̂− z0)−1{0}

}
is a nonempty pairwise disjoint

open covering of the compact set Ω(Z)\A, which is a contradiction.

So we conclude that 〈x0〉 does not have the fixed point property.
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