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1. Introduction

Let X be a metric space and let M be a nonempty closed convex subset of X. A
mapping T : M →M is said to be nonexpansive, if d(Tx, Ty) ≤ d(x, y), for each x, y ∈M.
In 2011, Aoyama and Kohsaka [1] introduced the class of α-nonexpansive mappings in
Banach spaces as follow: Let X be a Banach space and M be a nonempty closed and
convex subset of X. A mapping T : M → M is said to be α-nonexpansive if for all
x, y ∈ M and α < 1, ‖Tx− Ty‖2 ≤ α ‖Tx− y‖2 + α ‖x− Ty‖2 + (1 − 2α) ‖x− y‖2 .
This class contains the class of nonexpansive mappings and is related to the class of
firmly nonexpansive mappings in Banach spaces. Then F (T ) is nonempty if and only if
there exists x ∈ M such that {Tnx} is bounded, where X is a uniformly convex Banach
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space, and M is a nonempty, closed and convex subset of X, and T : M → M is an
α-nonexpansive mapping for some real number α such that α < 1.

In 2013, Naraghirad et al. [2] considered appropriate Ishihawa iterate algorithms
ensure weak and strong convergence to a fixed point of such a mapping. Their theorems
are also extended to CAT(0) spaces as follow : Let {xn} be a sequence with {x1} in M
defined by {

yn = βnTxn ⊕ (1− βn)xn,

xn+1 = γnTyn ⊕ (1− γn)xn.

In 2016, Song et al. [3] introduced the concept of monotone α-nonexpansive mappings
in an ordered Banach space E with the partial order ≤, which contains monotone α-
nonexpansive mappings as special case. With the help of the Mann iteration. In 2017,
Shukla et al. [4] introduced some existence and convergence results for monotone α-
nonexpansive mappings in partially ordered hyperbolic metric spaces as follow : Let {un}
be defined by 

u1 ∈ K,
vn = γnT (un)⊕ (1− γn)un,

un+1 = βnT (vn)⊕ (1− βn)T (un).

In 2018, Mebawondu and Izuchukwu [5] introduced some fixed points properties and
demiclosedness principle for generalized α-nonexpansive mappings in the frame work of
uniformly convex hyperbolic spaces as follow : Suppose that the sequence {xn} is defined
by 

x1 ∈ C,
zn = W (xn, Txn, βn),

yn = W (zn, T zn, γn),

xn+1 = W (Ty, 0, 0).

Recently, there are some works that relate to hyperbolic spaces such as CAT(0) spaces
that appeared (see [6–17]).

In this paper, we prove convergence and ∆-convergence theorems of the generalized
Picard normal S5-iterative process to approximate a fixed point for α-nonexpansive map-
pings. Moreover, we prove some properties of such mappings on a nonempty subset of a
hyperbolic space.

2. Preliminaries

Throughout this paper, we work in the setting of hyperbolic spaces which were intro-
duced by Kohlenbach [18].

Definition 2.1. A hyperbolic space is a metric space (X, d) with a mapping W : X2 ×
[0, 1]→ X satisfying the following conditions.
(i) d(u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y);
(ii) d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y);
(iii) W (x, y, α) = W (y, x, 1− α);
(iv) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w).
for all x, y, z, w ∈ X and α, β ∈ [0, 1].
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Some definitions on hyperbolic space are considered as follow:

Definition 2.2. [19] Let X be hyperbolic space with a mapping W : X2 × [0, 1] → X.
A nonempty subset M ⊆ X is said to be convex, if W (x, y, α) ∈ M for all x, y ∈ M and
α ∈ [0, 1]. A hyperbolic space is said to be uniformly convex if for any r > 0 and ε ∈ (0, 2],
there exists a δ ∈ (0, 1] such that for all u, x, y ∈ X

d(W (x, y,
1

2
), u) ≤ (1− δ)r,

provided d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr. A map η : (0,∞) × (0, 2] → (0, 1]
which provides such a δ = η(r, ε) for given r > 0 and ε ∈ (0, 2], is known as a modulus
of uniform convexity of X. η is said to be monotone, if it decreases with r (for a fixed ε),
i.e., ∀ε > 0, ∀r1 ≥ r2 > 0 [η(r2, ε) ≤ η(r1, ε)]. We denote the unit sphere and the closed
unit ball centered at the origin of M by SM and BM , respectively. We also denote the
closed ball with radius r > 0 centered at the origin of M by rBM .

Definition 2.3. [20] Let {xn} be a bounded sequence in a hyperbolic space (X, d). For
x ∈ X, we define a continuous functional r(·, xn) : X → [0,∞) by

r(x, xn) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, xn) : x ∈ X}.

The asymptotic center AM ({xn}) of a bounded sequence {xn} with respect to M ⊆ X is
the set

AM ({xn}) = {x ∈ X : r(x, xn) ≤ r(y, xn), ∀y ∈M}.
This implies that the asymptotic center is the set of minimizer of the functional r(·, xn)
in M. If the asymptotic center is taken with respect to X, then it is simply denoted by
AM ({xn}). It is known that uniformly convex hyperbolic spaces enjoy the property that
ounded sequences have unique asymptotic centers with respect to closed convex subsets.

Definition 2.4. Recall that a sequence {xn} in X is said to be ∆-convergent which
converges to a point x ∈ X if x is the unique asymptotic centers of {un} for every
subsequence {un} of {xn}. In this case, we write ∆ − limn→∞ xn = x and call x the
∆−limit of {xn}. Moreover, if xn → x, then ∆− limn→∞ xn = x (see [18],[21]).

Lemma 2.5. [20] Let (X, d,W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Then every bounded sequence {xn} in X has
a unqiue asymtotic center with respect to any nonempty closed convex subset M of X.

Lemma 2.6. [20] Let (X, d,W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for
some a, b ∈ (0, 1). If {xn} and {yn} are sequences in X such that lim supn→∞ d(xn, p) ≤
c, lim supn→∞ d(yn, p) ≤ c and lim supn→∞ d(W (xn, yn, αn)
, p) = c, for some c ≥ 0. Then limn→∞ d(xn, yn) = 0.

Lemma 2.7. ([21–23]) Let (X, d,W ) be a complete uniformly convex hyperbolic space
with monotone modulus of uniform convexity η. Then every bounded sequence {xn} in M
has a unique asymptotic center in M.
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Lemma 2.8. [5] Let X be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity η and let {xn} be a bounded sequence in X with AM ({xn}) =
{x}. Suppose {xnk

} is any subsequence of {xn} with AM ({xnk
}) = {x1}. and {d(xn, x1)}

converges, then x = x1.

Definition 2.9. Let M be a nonempty subset of a hyperbolic space X and {xn} be a
sequence in X. Then {xn} is called a Fejér monotone sequence with respect to M if for
all x ∈M and n ≥ 1,

d(xn+1, x) ≤ d(xn, x).

Next, we defined Picard Normal S5-iteration process (PNS5) in hyperbolic spaces
as follow : Let M be a nonempty closed convex subset of a hyperbolic space X and
T : M → M be a mapping which asymptotically Suzuki-generalized nonexpansive, for
any x1 ∈M the sequence {xn} is defined by

xn+1 = W (Tun, 0, 0)

un = W (vn, T vn, βn)

vn = W (yn, Tyn, γn)

yn = W (zn, T zn, δn)

zn = W (xn, Txn, ζn), n ∈ N,

(2.1)

where {βn}, {γn}, {δn} and {ζn} in (0, 1).

3. Main Results

In this section, we will prove some properties for class of α-nonexpansive mappings in
hyperbolic spaces.

Definition 3.1. Let (X, d) be a metric space and M be nonempty subset of X. Then
T : M →M is said to be a square α-nonexpansive mapping (or α-nonexpansive mapping),
if α < 1 such that

d2(Tx, Ty) ≤ αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y),

for all x, y ∈M .

Now, we give example for a square α-nonexpansive mapping as follows :

Example 3.2. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X, and let S, T : M → M be firmly nonexpansive mappings such that S(M) and
T (M) are contained by rBM for some positive real number r. Let α and δ be real numbers
such that 0 < α ≤ 1 and δ ≥ (1 + 2/

√
α)r. Then the mapping U : M →M is defined by

Ux =

{
Sx (x ∈ δBM );

Tx (otherwise),
(3.1)

then U is a square α-nonexpansive (See [1]).

From lemma of Naraghirad [2], we obtain the lemma as follow :

Lemma 3.3. Let M be a nonempty subset of a hyperbolic space X. Let T : M → M
be a square α-nonexpansive mapping for some α < 1. Let x, y ∈ M , then the following
assertions hold
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(i) If 0 ≤ α < 1, then

d2(x, Ty) ≤ 1 + α

1− α
d2(x, Tx) +

2

1− α
(αd(x, y) + d(Tx, Ty))d(x, Tx) + d2(x, y)

(ii) If α < 0, then

d2(x, Ty) ≤ d2(x, Tx) +
2

1− α
[(−α)d(x, y) + d(Tx, Ty)]d(x, Tx) + d2(x, y)

Proof. let x, y ∈M .
(i) Suppose that 0 ≤ α < 1. Consider

d2(x, Ty) ≤ (d(x, Tx) + d(Tx, Ty))2

= d2(x, Tx) + d2(Tx, Ty) + 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + α(d(Tx, x) + d(x, y))2 + αd2(x, Ty) + (1− 2α)d2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, x) + αd2(x, y) + 2αd(Tx, x)d(x, y) + αd2(x, Ty)

+ (1− 2α)d2(x, y) + 2d(x, Tx)d(Tx, Ty)

= (1 + α)d2(x, Tx) + 2αd(Tx, x)d(x, y) + αd2(x, Ty)

+ (1− α)d2(x, y) + 2d(x, Tx)d(Tx, Ty).

We obtain that

d2(x, Ty) ≤ (1 + α)

1− α
d2(x, Tx) +

2

1− α
(αd(x, y) + d(Tx, Ty))d(Tx, x) + d2(x, y).

(ii) Suppose that α < 0. Consider

d2(x, Ty) ≤ (d(x, Tx) + d(Tx, Ty))2

= d2(x, Tx) + d2(Tx, Ty) + 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− 2α)d2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

= d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− α)d2(x, y)− αd2(x, y)

+ 2d(x, Tx)d(Tx, Ty)

≤ d2(x, Tx) + αd2(Tx, y) + αd2(x, Ty) + (1− α)d2(x, y)

− α[d2(x, Tx) + d2(Tx, y) + 2d(x, Tx)d(Tx, y)] + 2d(x, Tx)d(Tx, Ty)

= (1− α)d2(x, Tx) + αd2(x, Ty) + (1− α)d2(x, y)

− 2αd(x, Tx)d(Tx, y) + 2d(x, Tx)d(Tx, Ty)

= (1− α)d2(x, Tx) + αd2(x, Tx) + αd2(x, Ty) + (1− α)d2(x, y)

+ 2[(α)d(Tx, y) + d(Tx, Ty)]d(x, Tx),

this implies that
d2(x, Ty) ≤ d2(x, Tx) + 2

1−α [(−α)d(Tx, y) + d(Tx, Ty)]d(x, Tx) + d2(x, y).
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Lemma 3.4. Let M be a nonempty closed and convex subset of a hyperbolic space X with
monotone modulus of uniform convexity η. Let T : M → M be a square α-nonexpansive
mapping for some real number α < 1. In case 0 ≤ α < 1, we have F (T ) 6= ∅ if and only
if {Tnx}∞n=1 is bounded for some x ∈M. If M is compact, then F (T ) 6= ∅.

Proof. Assume that 0 ≤ α < 1. The necessity is obvious. We verify the sufficiency.
Suppose that {Tnx}∞n=1 is bounded for some x in M . Set xn := Tnx for n = 1, 2, . . . . By
the boundedness of {xn}∞n=1, there exists z in X such that AM ({xn}) = {z}. It follows
from Lemma 2.6 that z ∈M . Furthermore, we have

d2(xn, T z) ≤ αd2(xn, z) + αd2(xn−1, T z) + (1− 2α)d2(xn, z), ∀n = 1, 2, . . . .

This implies that

lim sup
n→∞

d2(xn, T z) ≤ α lim sup
n→∞

d2(xn, z) + α lim sup
n→∞

d2(xn−1, T z)

+ (1− 2α) lim sup
n→∞

d2(xn, z).

We obtain

lim sup
n→∞

d2(xn, T z) ≤ lim sup
n→∞

d2(xn, z).

Consequently, Tz ∈ AM ({xn}) = {z}, we obtain that F (T ) 6= ∅.
Next, we assume that α < 0 and M is compact. In particular, T is continuous and the
sequence of xn := Tnx for any x ∈M is bounded. We adapt in [Lemmas 3.1 and 3.2][24],
we have µ is a Banach limit, i.e., µ is a bounded unital positive linear functional of l∞
such that µ◦ s = µ, where s is the left shift operator on l∞. We write µn, an for the value
of µ(a) with a = (an) in l∞ as usual. In particular, µn an+1 = µ(s(a)) = µ(a) = µnan.
We get

µnd
2(xn, T y) ≤ µnd2(xn, y), ∀y ∈M, (3.2)

and

g(y) := µnd
2(xn, y)

defines a continuous function from M into R.
By compactness, there exists y in M such that g(y) = inf g(M). Suppose that there is

another z in M such that g(z) = g(y). Let m be the midpoint by definition 2.1, we see
that g is convex. Thus, g(m) = g(y) too. Observing the comparison triangles in E2, we
have

d2(xn, y) + d2(xn, z) ≥ 2d2(xn,m) +
1

2
d2(y, z), ∀n = 1, 2, . . . .

Consequently,

µnd
2(xn, y) + µnd

2(xn, z) ≥ 2µnd
2(xn,m) +

1

2
µnd

2(y, z).

So,

g(y) + g(z) ≥ 2g(m) +
1

2
d2(y, z).

Since g(y) = g(z) = g(m), we have y = z. Finally, it follows from (3.2) that g(Ty) ≤
g(y) = inf g(M). By uniqueness, we have Ty = y ∈ F (T ).



The Convergence Theorem for a Square α-Nonexpansive ... 1603

Lemma 3.5. Let M be a nonempty closed and convex subset of a hyperbolic space X.
Let T : M →M be a square α-nonexpansive mapping and F (T ) 6= ∅, then F (T ) is closed
and convex.

Proof. Let {xn} ⊂ F (T ) such that {xn} converges to y for some y ∈ M . We will show
that y ∈ F (T ). We consider d2(xn, T y) ≤ αd2(xn, y) + αd2(Ty, xn) + (1 − 2α)d2(xn, y).
So, we get (1− α)d2(xn, T y) ≤ (1− α)d2(xn, y) implies that, d(xn, Ty) ≤ d(xn, y). Since
lim
n→∞

d(xn, y) = 0, then by Sandwish theorem, we obtain that lim
n→∞

d(xn, Ty) = 0. By

uniqueness of limit, we get that Ty = y. Hence y ∈ F (T ), and then F (T ) is closed.
Next, we will show that F (T ) is convex. Let x, y ∈ F (T ). By definition of T , we obtain
that

d2(x, Tz) ≤ αd2(Tx, z) + αd2(Tz, x) + (1− 2α)d2(x, z).

So, we get (1− α)d2(x, Tz) ≤ (1− α)d2(x, z),

d2(x, Tz) ≤ d2(x, z) =⇒ d(x, Tz) ≤ d(x, z). (3.3)

In the other hand, we get

d2(y, Tz) ≤ d2(y, z) =⇒ d(y, Tz) ≤ d(y, z) (3.4)

Let z = W (x, y, η) where η ∈ [0, 1]. From (3.3) and (3.4), we obtain

d(x, y) ≤ d(x, Tz) + d(Tz, y)

≤ d(x, z) + d(z, y) (3.5)

= d2(x,W (x, y, η)) + d(W (x, y, η), y)

≤ (1− η)d(x, x) + ηd(x, y) + (1− η)d(x, y) + ηd(y, y)

= d(x, y).

So d(x, Tz) = d(x, z) and d(y, Tz) = d(y, z), because if d(x, Tz) < d(x, z) or d(y, Tz) <
d(y, z), which is a contradiction to d(x, y) < d(x, y). Hence Tz = z Therefor W (x, y, η) ∈
F (T ), and then F (T ) is convex.

Theorem 3.6. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M →M be a square α-
nonexpansive mapping and {xn} be a bounded sequence in M such that lim

n→∞
d(xn, Txn) =

0 and ∆- lim
n→∞

xn = x. Then x ∈ F (T ).

Proof. Let {xn} be a bounded seqence in X, By Lemma 2.5 we get {xn} has a unique
asymptotic center in M . Since, ∆- lim

n→∞
xn = x, we have that A({xn}) = {x}. Using

Lemma 3.3 and the hypothesis that lim
n→∞

d(xn, Txn) = 0, we have

(i) d2(xn, Tx) ≤ 1+α
1−αd

2(xn, Txn)+ 2
1−α (αd(xn, x)+d(Txn, Tx))d(xn, Txn)+d2(xn, x),

where 0 ≤ α < 1,
(ii) d2(xn, Tx) ≤ d2(xn, Txn)+ 2

1−α [(−α)d(xn, x)+d(Txn, Tx)]d(xn, Txn)+d2(xn, x),
where α < 0.
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Taking limit superior as n→∞ with both sides, we obtain that
Case (i) : 0 ≤ α < 1,

lim sup
n→∞

d2(xn, Tx) ≤ 1 + α

1− α
lim sup
n→∞

d2(xn, Txn)

+
2

1− α
lim sup
n→∞

(αd(x, x) + d(Txn, Tx))d(xn, Txn)

+ lim sup
n→∞

d2(xn, x)

= lim sup
n→∞

d2(xn, x).

Case (ii) : α < 0,

lim sup
n→∞

d2(xn, Tx) ≤ lim sup
n→∞

d2(xn, Txn)

+
2

1− α
lim sup
n→∞

[(−α)d(xn, x) + d(Txn, Tx)]d(xn, Txn)

+ lim sup
n→∞

d2(xn, x)

= lim sup
n→∞

d2(xn, x).

So, we get lim supn→∞ d(xn, Tx) ≤ lim supn→∞ d(xn, x). By the uniqueness of asymptotic
center, we obtain that Tx = x. Therefore x ∈ F (T ).

Now we recall the quasi nonexpansive mappings as follow: A mapping T : M →M is
said to be quasi-nonexpansive, if

d(Tx, p) ≤ d(x, p),

for each x ∈M and p ∈ F (T ).

Lemma 3.7. Let M be a nonempty subset of a hyperbolic space X. Let T : M → M be
a square α-nonexpansive mapping and F (T ) 6= ∅, then T is quasi-nonexpansive.

Proof. Let T : M → M be a square α-nonexpansive mapping and F (T ) 6= ∅, we let
p ∈ F (T ) and x ∈M . We consider

d2(Tx, Tp) ≤ αd2(Tx, p) + αd2(x, p) + (1− 2α)d2(x, p)

= αd2(Tx, p) + (1− α)d2(x, p),

we obtain that

d2(Tx, Tp) ≤ d2(x, p),

implies that

d(Tx, p) ≤ d(x, p).

Hence T is quasi-nonexpansive.

New, we recall Picard normal S5-iteration process (PNS5). Let M be a nonempty
closed convex subset of a hyperbolic space X and T : M → M be a mapping which a
square α-nonexpansive , for any x1 ∈M the sequence {xn} is defined by
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

xn+1 = W (Tun, 0, 0)

un = W (vn, T vn, βn)

vn = W (yn, T yn, γn)

yn = W (zn, T zn, δn)

zn = W (xn, Txn, ζn), n ∈ N,

(3.6)

where {αn} and {βn} in (0, 1).

Theorem 3.8. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M → M be a square
α-nonexpansive mapping with F (T ) 6= ∅. Suppose that the sequence {xn} is defined by
(2.1) then {xn} ∆-converges to a fixed point of T .

Proof. Step1: We prove that limn→∞ d(xn, p) exists for each p ∈ F (T ). Let p ∈ F (T ).
Since T is an α-nonexpansive mapping and Lemma 3.7, we get

d(un, p) = d(W (vn, T vnβn), p)

≤ (1− βn)d(vn, p) + βnd(Tvn, p)

= (1− βn)d(vn, p) + βnd(Tvn, p)

≤ (1− βn)d(vn, p) + βnd(vn, p)

= d(vn, p), (3.7)

d(vn, p) = d(W (yn, T yn, γn), p)

≤ (1− γn)d(yn, p) + γnd(Tyn, p)

= (1− γn)d(yn, p) + γnd(Tyn, p)

≤ (1− γn)d(yn, p) + γnd(yn, p)

= d(yn, p), (3.8)

d(yn, p) = d(W (zn, T zn, δn), p)

≤ (1− δn)d(zn, p) + δnd(Tzn, p)

= (1− δn)d(zn, p) + δnd(Tzn, Tp)

≤ (1− δn)d(zn, p) + δnd(zn, p)

= d(zn, p), (3.9)

d(zn, p) = d(W (xn, Txn, ζn), p)

≤ (1− ζn)d(xn, p) + ζnd(Txn, p)

= (1− ζn)d(xn, p) + ζnd(Txn, Tp)

≤ (1− ζn)d(xn, p) + ζnd(xn, p)

= d(xn, p). (3.10)
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By (3.7),(3.8),(3.9), and (3.10), we have

d(xn+1, p) = d(W (Tun, 0, 0), p)

= d(Tun, p)

≤ d(un, p)

≤ d(vn, p)

≤ d(yn, p)

≤ d(zn, p)

≤ d(xn, p). (3.11)

We obtain limn→∞ d(xn, p) exists for each p ∈ F.
Step 2: We will show that limn→∞ d(xn, Txn) = 0. Suppose that limn→∞ d(xn, p) = c ≥
0. If c = 0, then

lim
n→∞

d(xn, Txn) = 0.

Next, we consider c > 0. By (3.11), we obtain that

d(xn+1, p) ≤ d(un, p) ≤ d(vn, p) ≤ d(yn, p) ≤ d(zn, p) ≤ d(xn, p). (3.12)

Taking limsup in (3.12), we get

lim sup
n→∞

d(un, p) ≤ lim sup
n→∞

d(vn, p) ≤ lim sup
n→∞

d(yn, p) ≤ lim sup
n→∞

d(zn, p) ≤ c (3.13)

Since d(Txn, p) ≤ d(xn, p), we have

lim
n→∞

sup d(Txn, p) ≤ c. (3.14)

Since d(xn+1, p) ≤ (zn, p), as n→∞, we get

c = lim inf
n→∞

d(xn+1, p) ≤ lim inf
n→∞

d(zn, p) ≤ lim sup
n→∞

d(zn, p) ≤ c. (3.15)

From (3.14) and (3.15), we have

lim
n→∞

d(zn, p) = c,

it implies that

lim
n→∞

d(W (xn, Txn, γn), p) = c.

By Lemma 2.6, we obtain that

lim
n→∞

d(xn, Txn) = 0. (3.16)

Step 3: Let W∆(xn) :=
⋃
AM ({µn}), where the union is taken over all subsequence

{µn} of {xn}. Next, we prove that W∆(xn) ⊂ F (T ) and contains only one point. Let
u ∈ W∆(xn), there exists a subsequence {µn} of {xn} such that AM ({µn}) = {u}. By
Lemma 2.5 we let subsequence {νn} of {µn} such that ∆− lim

n→∞
νn = v, for some v ∈M .

Since, lim
n→∞

d(νn, T νn) = 0, we have v ∈ F (T ). Hence, {d(un, v)} converges and by

lemma 2.8, we have that v = u ∈ F (T ). Hence, W∆(xn) ⊂ F (T ). Let AM ({xn}) = x
and {µn} be arbitrary subsequence of {xn} such that AM ({µn}) = {u}. We have that
{d(xn, u)} converges, since u ∈ F (T ). Thus, by Lemma 2.8, we have that u = x ∈ F (T ).
and W∆(xn) = {x}. Therefore, {xn} ∆-converges to a common fixed point of T.
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Theorem 3.9. Let M be a nonempty closed and convex subset of a complete hyperbolic
space X with monotone modulus of uniform convexity η. Let T : M →M be a square α-
nonexpansive mapping with F (T ) 6= ∅. Suppose that the sequence {xn} is defined by (2.1).
Then {xn} converges to a fixed point of T if and only if lim infn→∞ d(xn, F (T )) = 0,
where d(xn, F (T )) = infx∈F (T ) d(xn, x).

Proof. First, we show that the fixed point set F (T ) is closed, let {xn} be a sequence in
F (T ) which converges to some point z ∈M.

d(xn, T z) = d(Txn, T z) ≤ d(xn, z).

By taking the limit of both sides we obtain

lim
n→∞

d(xn, T z) ≤ lim
n→∞

d(xn, z) = 0.

In view of the uniqueness of the limit, we have z = Tz, so that F (T ) is closed. Suppose
that

lim
n→∞

inf d(xn, F (T )) = 0.

From (3.11),

d(xn+1, F (T )) ≤ d(xn, F (T )),

then lim
n→∞

d(xn, F (T )) exists. Hence we know lim
n→∞

d(xn, F (T )) = 0.

We have lim
n→∞

d(xn, z) = 0, and since 0 ≤ d(xn, F (T )) ≤ d(xn, z), it follows that

lim
n→∞

d(xn, F (T )) = 0. Therefore, lim infn→∞ d(xn, F (T )) = 0.

Conversely, consider a subsequence {xnk
} of {xn} such that d(xnk

, pk) < 1
3k , for all k ≥ 1

where {pk} is in F (T ). By (3.11), we have

d(xnk+1
, pk) ≤ d(xnk

, pk) <
1

3k
,

which implies that

d(pk+1, pk) ≤ d(pk+1, xnk+1
) + d(xn+1

, pk)

<
1

3k+1
+

1

3k

<
1

3k−1
.

This show that {pk} is a Cauchy sequence. Since F (T ) is closed, {pk} is convergent
sequence. Let lim

n→∞
pk = p. In fact, since d(xnk

, p) ≤ d(xnk
, pk)+d(pk, p)→ 0 as k →∞,

we have lim
k→∞

d(xnk
, p) = 0. Since lim

n→∞
d(xn, p) exists, the sequence {xn} converges to p.

Theorem 3.10. Let M be a nonempty compact convex subset of a complete hyperbolic
space X with monotone modulus of uniformly convexity η. Let T : M → M be a square
α-nonexpansive mapping for some α < 1. Let {βn}, {γn} be sequences in (0, 1) such
that 0 < lim infk→∞ γnk

≤ lim supk→∞ γnk
< 1 for a subsequence {γnk

} of {γn}. In case
α ≤ 0, we assume that lim supk→∞ βnk

< 1. Let {xn} be a sequence with x1 in M defined
by (2.1). Then {xn} converges in metric to a fixed point of T .

Proof. We use Lemma 3.3 and Lemma 3.4, and replacing ‖·, ·‖ with d(·, ·) in the proof of
[Theroem 3.4][2], we conclude the desired result.
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