Meromorphic Functions that share two finite values with their derivative (II)

U.Chundang and S.Tanaiadchawoot

Abstract

The purpose of this paper is to study a meromorphic functions which share two finite nonzero values with their derivatives, and the result is proved: Let f be a nonconstant meromorphic function, a, b be a nonzero distinct finite complex constant. If f and f^{\prime} share $a \mathrm{CM}$, and share $b \mathrm{IM}$ and $N_{(2}\left(r, \frac{1}{f^{\prime}-b}\right)=S(r, f)$ then $f=f^{\prime}$.

Keywords : Meromorphic function; Shared value
2000 Mathematics Subject Classification :

1 Introduction

Let f be a nonconstant meromorphic function in the complex plane \mathbb{C}. We use the standard notations in Nevanlinna theory of meromorphic functions such as the characteristic function $T(r, f)$, the counting function of the poles $N(r, f)$, and the proximity function $m(r, f)$ (see, e.g., [1]).
The notation $S(r, f)$ is used to define any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ possibly outside a set of r of finite linear measure.

Two meromorphic functions f and g share the value $a \in \hat{\mathbb{C}}$ if $f^{-1}\{a\}=g^{-1}\{a\}$. And one says that f and g share the value a CM if the value a is shared by f and by g and moreover if $f\left(z_{0}\right)=a$ with multiplicity p implies that $g\left(z_{0}\right)=a$ with multiplicity p, here $p=p\left(z_{0}\right)$.
The usual sharing is also denoted by sharing IM (IM =ignoring multiplicity). In sharing CM the abbreviation CM stands for counting multiplicities.
Obviously sharing $\mathbf{C M} \Longrightarrow$ sharing IM.
But the converse must not be true !
In 1976, Rubel and Yang [2] proved that if f is an entire function and shares two finite values CM with f^{\prime}, then $f=f^{\prime}$.
E. Mues and N. Steinmetz 3 have shown that "CM" can be replaced by "IM" . (another proof of this result for nonzero shared values is in [4]).
On the other hand, the meromorhic function [3]

$$
\begin{equation*}
f(z)=\left(\frac{1}{2}-\frac{\sqrt{5}}{2} i \tan \left(\frac{\sqrt{5}}{4} i z\right)\right)^{2} \tag{1.1}
\end{equation*}
$$

shares 0 by DM and 1 by DM with f^{\prime}; while the meromorhic function [4]

$$
\begin{equation*}
f(z)=\frac{2 A}{1-B e^{-2 z}}, A \neq 0, B \neq 0 \tag{1.2}
\end{equation*}
$$

shares 0 (picard value) and A by DM with f^{\prime}; and $f \neq f^{\prime}$ in both (1.1) and (1.2) .

Mues and Steinmetz [6, and Gundersen [5] improved this result and proved the following theorem.

Theorem 1.1. Let f be a nonconstant meromorphic function, a and b be two distinct finite values. If f and f^{\prime} share the values a and $b C M$, then $f=f^{\prime}$.

Qing Cai ZHANG [7], results that (1.2) is unique in some sense.
Theorem 1.2. Let f be a nonconstant meromorphic function, b be a nonzero finite complex constant. If f and f^{\prime} share $0 C M$, and share $b I M$, then $f=f^{\prime}$ or $f=\frac{2 b}{1-c e^{-2 z}}$, where c is a nonzero finite complex constant.

2 Preliminaries

Theorem 2.1. the first fundamental theorem of value distribution theory
Let $0<R_{0} \leq \infty$. and let $a \in \mathbb{C}$.
Let f be meromorphic in the disk $\left\{z \in \mathbb{C}:|z|<R_{0}\right\}$.
Assume that at the point $z=0$ the function $f-a$ has the
expansion $f(z)-a=c_{k}(a) z^{k}+\cdots, c_{k}(a) \neq 0$.
Then we have for $0<r<R_{0}, m\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-a}\right)=T(r, f)+\eta(r, a)$ with the estimate.
we can write the first fundamental theorem in the form
$m\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-a}\right)=T(r, f)+O(1) \quad$ if $r \rightarrow R_{0}$.
Theorem 2.2. If f is meromorphic in $\mathbb{C}, f \not \equiv$ constant, then
$m\left(r, \frac{f^{\prime}}{f}\right)=S(r, f)$.
Theorem 2.3. Left main-inequality
Let f be meromorphic in \mathbb{C} and not constant.
Let $a_{1}, a_{2}, \ldots, a_{q}$ be $q \geq 1$ pairwise different complex numbers. Then we have

$$
\sum_{\nu=1}^{q} m\left(r, \frac{1}{f-a_{\nu}}\right) \leq m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) .
$$

Theorem 2.4. second fundamental theorem of value distribution theory.
Let f be meromorphic in \mathbb{C} and not constant.
Let $a_{1}, a_{2}, \ldots, a_{q}$ be $q \geq 1$ pairwise different complex numbers. Then we have

$$
(q-1) T(r, f) \leq \bar{N}(r, f)+\sum_{\nu=1}^{q} \bar{N}\left(r, \frac{1}{f-a_{\nu}}\right)+S(r, f)
$$

3 Main Results

Theorem 3.1. Let f be a nonconstant meromorphic function let $a, b \neq 0$ be distinct finite complex constants. If f, f^{\prime} share the value a $C M$ and the value $b I M$ and $N_{(2}\left(r, \frac{1}{f^{\prime}-b}\right)=S(r, f)$, then $f \equiv f^{\prime}$. where $N_{(2}\left(r, \frac{1}{f^{\prime}-b}\right)$ is the counting function which only includes multiple zero of $f^{\prime}(z)-b$

Proof.

We prove by contradiction. Suppose that $f \not \equiv f^{\prime}$.
Let $\alpha=\frac{f^{\prime}}{(f-a)(f-b)}-\frac{f^{\prime \prime}}{\left(f^{\prime}-a\right)\left(f^{\prime}-b\right)}\left[=\frac{1}{a-b}\left(\frac{H^{\prime}}{H}\right)\right.$ where $\left.H=\left(\frac{f-a}{f^{\prime}-a}\right)\left(\frac{f^{\prime}-b}{f-b}\right)\right]$
If $\alpha \equiv 0$ then $f \equiv f^{\prime}$. get a contradiction.
If $\alpha \not \equiv 0$ we have $m(r, \alpha)=S(r, f)$ and $N(r, \alpha)=\bar{N}_{(2}\left(r, \frac{1}{f^{\prime}-b}\right)=S(r, f)$.
Then $T(r, \alpha)=S(r, f)$.
For f has a pole at z_{0} of order $p \geq 2$ then $\alpha\left(z_{0}\right)=0$.
Hence $N_{(2}(r, f) \leq N\left(r, \frac{1}{\alpha}\right) \leq T(r, \alpha)+O(1)=S(r, f)$.
Let $G=\frac{(f-a)(f-b)}{f^{\prime}-f}$.
Then

$$
\begin{aligned}
N(r, G) & \leq N\left(r, \frac{1}{f^{\prime}-f}\right)-N\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f-b}\right)+N_{(2}(r, f) \\
& =N\left(r, \frac{1}{f^{\prime}-f}\right)-N\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f-b}\right)+S(r, f)
\end{aligned}
$$

And $\frac{1}{G}$ has no poles then $N\left(r, \frac{1}{G}\right)=0$.
Let $\Omega=\frac{G^{\prime}}{G}+\frac{\alpha^{\prime}}{\alpha}-1$.
If z_{0} is a simple pole of f then $\Omega\left(z_{0}\right)=0$.
Let $N_{1)}(r, f)$ be the counting function of the simple pole of f.
If $\Omega \not \equiv 0$ then

$$
\begin{aligned}
N_{1)}(r, f) & \leq N\left(r, \frac{1}{\Omega}\right) \\
& \leq T(r, \Omega)+O(1) \\
& \leq \bar{N}(r, G)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}(r, \alpha)+\bar{N}\left(r, \frac{1}{\alpha}\right)+S(r, f) \\
& \leq N\left(r, \frac{1}{f^{\prime}-f}\right)-N\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f-b}\right)+S(r, f)
\end{aligned}
$$

That is

$$
\begin{equation*}
N_{1)}(r, f) \leq N\left(r, \frac{1}{f^{\prime}-f}\right)-N\left(r, \frac{1}{f-a}\right)-N\left(r, \frac{1}{f-b}\right)+S(r, f) \tag{3.1}
\end{equation*}
$$

Since

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime}-f}\right) \leq T\left(r, f^{\prime}-f\right)+O(1) \leq T(r, f)+\bar{N}(r, f)+S(r, f) \tag{3.2}
\end{equation*}
$$

$\operatorname{From}(1) \operatorname{and}(2)$ and $N_{(2}(r, f)=S(r, f)$ we have

$$
\begin{equation*}
N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right) \leq T(r, f)+S(r, f) \tag{3.3}
\end{equation*}
$$

By Left main inequality

$$
\begin{equation*}
m\left(r, \frac{1}{f-a}\right)+m\left(r, \frac{1}{f-b}\right) \leq m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) . \tag{3.4}
\end{equation*}
$$

From (3) and (4) we have

$$
\begin{equation*}
T(r, f) \leq m\left(r, \frac{1}{f^{\prime}}\right)+S(r, f) \tag{3.5}
\end{equation*}
$$

Since f, f^{\prime} share a CM and share b IM so
$N\left(r, \frac{1}{f^{\prime}-a}\right)=N\left(r, \frac{1}{f-a}\right)$ and
$N\left(r, \frac{1}{f^{\prime}-b}\right)=N_{1)}\left(r, \frac{1}{f^{\prime}-b}\right)+N_{(2}\left(r, \frac{1}{f^{\prime}-b}\right) \leq N\left(r, \frac{1}{f-b}\right)+S(r, f)$.
Hence
$N\left(r, \frac{1}{f^{\prime}-a}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right) \leq N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-b}\right)+S(r f)$.
By (3) we have

$$
\begin{equation*}
N\left(r, \frac{1}{f^{\prime}-a}\right)+N\left(r, \frac{1}{f^{\prime}-b}\right) \leq T(r, f)+S(r, f) \tag{3.6}
\end{equation*}
$$

Again By Left main inequality

$$
\begin{equation*}
m\left(r, \frac{1}{f^{\prime}}\right)+m\left(r, \frac{1}{f^{\prime}-a}\right)+m\left(r, \frac{1}{f^{\prime}-b}\right) \leq m\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) . \tag{3.7}
\end{equation*}
$$

From (5), (6), (7) we have
$2 T\left(r, f^{\prime}\right) \leq m\left(r, \frac{1}{f^{\prime \prime}}\right)+S(r, f) \leq T\left(r, f^{\prime \prime}\right)+S(r, f)$.
Since $T\left(r, f^{\prime \prime}\right) \leq T\left(r, f^{\prime}\right)+\bar{N}\left(r, f^{\prime}\right)+S(r, f)$.
so

$$
\begin{equation*}
T\left(r, f^{\prime}\right) \leq \bar{N}(r, f)+S(r, f) \tag{3.8}
\end{equation*}
$$

Since $2 \bar{N}(r, f) \leq N\left(r, f^{\prime}\right)$ and (8) so we have $\bar{N}(r, f)=S(r, f)$.
Use (8) again we have
$T\left(r, f^{\prime}\right)=S(r, f)$.
From (5) then $T(r, f)=S(r, f)$ get a contradiction.
If $\Omega \equiv 0$.

Then

$$
\begin{aligned}
\frac{G^{\prime}}{G}+\frac{\alpha^{\prime}}{\alpha} & =1 \\
G \cdot \alpha & =C e^{z} \\
\frac{(f-a)(f-b)}{f^{\prime}-f} & =\left(\frac{C}{\alpha}\right) e^{z} \\
f^{\prime}-f & =\frac{\alpha}{C} e^{-z}(f-a)(f-b) \\
f^{\prime}-b & =(f-b)\left[1+\frac{\alpha}{C} e^{-z}(f-a)\right]
\end{aligned}
$$

If there exist some z_{1} such that $f^{\prime}\left(z_{1}\right)=b$ multiplicity p where $p \geq 2$ then we have $\left[1+\frac{\alpha}{C} e^{-z}\left(f\left(z_{1}\right)-a\right)\right]=0$ multiplicity $p-1$.
But $\alpha\left(z_{1}\right)=\infty$ and $e^{-z_{1}} \neq 0, \infty$ and $f\left(z_{1}\right)-a=b-a \neq 0$ which impossible.
That is b is a simple b point of f^{\prime} conclude that f, f^{\prime} share b CM.
Hence $f \equiv f^{\prime}$ contradiction.
Therefore $f \equiv f^{\prime}$.

Acknowledgement(s) : We wish to thank Professor Dr Erwin Mues for helpful suggestions.

References

[1] W. Hayman, Meromorphic Functions, Clarendon, Oxford, 1964.
[2] L.A. Rubel, C.C. Yang, Values shared by an entire function and its derivative, in: Lecture Notes in Math., vol. 599, Springer-Verlag, New York, 1977, pp. 101103.
[3] Mues E., Steinmetz N., Meromorphe funktionen, die mit ihrer ableitung werte teilen, Manuscripta Math.,1979, 29: 195-206.
[4] Gundersen G. G., Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl.,1980 75: 441-446.
[5] Gundersen G. G., Meromorphic functions that share two finite values with their derivative, Pacific J. Math., 1983,105: 299-309.
[6] Mues E., Steinmetz N., Meromorphe funktionen, die mit ihrer ableitung zwei werte teilen, Resultate Math.,1983, 6: 48-55.
[7] Qing Cai ZHANG., Uniqueness of Meromorphic Functions with Their Derivatives,Acta Math. Sci.,2002 .Vol 45. No 5.,871-876.
(Received 30 May 2007)

Ungsana Chundang

Department of Mathematics
King Mongkut's University of Technology Thonburi
Bangkok 10140 , Thailand.
e-mail : ungsana.chu@kmutt.ac.th
Suchai Tanaiadchawoot
Department of Mathematics
Kasetsart University
Bangkok 10900 , Thailand.
e-mail : fscisut@ku.ac.th

