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Abstract In this paper, we introduce the modified MM-algorithm (MMMA) and forward-backward mod-

ified MM-algorithm (FBMMMA). Furthermore, we prove that any sequence generated by the proposed

algorithms converge to a set of solution. As applications, we apply the FBMMMA algorithm to solving

image restoration problems. We found that our algorithm has a higher efficiency than the others in the

literature.
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1. Introduction

The fixed point theory for contractive mappings including the Banach contraction
principle plays an important role in proving that the algorithms strongly converge to a
unique solution to the problem. The Picard iteration is the most popular fixed point
algorithm for solving problems in real life. Currently, there is widespread development of
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algorithms in applying and solving various kinds of real world problems, such as Mann
iteration [1], Ishikawa iteration [2], S-iteration [3], Noor iteration [4], SP-iteration [5] and
MM-iteration [6]. There is a lot of research that extends these methods (e.g. [7–13]). In
this paper, we focus on image restoration by using fixed point optimization method.

Image restoration plays an important part in various areas of applied sciences such as
medical and astronomical imaging. The mathematical model for the image restoration
problem is formulated by the linear model:

b = Y u+ ε, (1.1)

where u is an original image, Y is a blurring matrix and ε is a noise term.

In order to solve the problem (1.1), Tibshirani [14] introduced the least absolute shrinkage
and selection operator (LASSO) for solving the following minimization problem:

min
u

{
1

2
‖Y u− b‖22 + η‖u‖1

}
, (1.2)

where η > 0, ‖u‖1 =
∑k
i=1 ui, and ‖u‖2 =

√∑k
i=1 |ui|2.

In optimization, it often needs to solve a convex minimization problem which includes
(1.2) as a special case is the following convex minimization problem:

min
u∈Rn

{Φ(u) + Ψ(u)}, (1.3)

where Φ : Rn → R ∪ {∞} is proper convex and lower semi-continuous, and Ψ : Rn → R
is a continuously differentiable convex function, whose gradient is Lipschitz continuous
(L > 0).

From convex minimization problem (1.3), the optimality conditions are

0 ∈ ∇Ψ(u) + ∂Φ(u), (1.4)

where ∂Φ is the subdifferential of Φ defined by

∂Φ(u) := {z ∈ Rn : Ψ(u) ≥ Ψ(v) + 〈z, u− v〉, ∀v ∈ Rn}
and ∇Ψ is the gradient of Ψ.

Lions and Mercier [15] introduced forward-backward splitting (FBS) algorithm for prob-
lem (1.3) as follows:

uk+1 = proxγkΦ(Id − γk∇Ψ)(uk), γ ∈ (0, 2/L), k ∈ N, (1.5)

where u1 ∈ Rn, γk is the step-size, Id is an identity operator and proxΦ is the proximity
operator of Φ defined by

proxΦ(u) := arg min
x

{
Φ(x) +

1

2
‖u− x‖22

}
. (1.6)

Moudafi and Oliny [16] presented the inertial forward-backward splitting (IFBS) as fol-
lows: {

pk = uk + θk(uk − uk−1),
uk+1 = proxγkΦ(pk − γk∇Ψ(uk)), γk ∈ (0, 2/L), k ∈ N, (1.7)

where u0, u1 ∈ Rn, θk is the inertial parameter which controls the momentum uk − uk−1.
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Beck and Teboulle [17] introduced fast iterative shrinkage thresholding algorithm (FISTA)
as follows:

pk = prox 1
L Φ(uk − 1

L∇Ψ(uk)),

tk+1 =
1 +

√
1 + 4t2k
2

, θk =
tk − 1

tk+1
,

uk+1 = pk + θk(pk − pk−1), k ∈ N,

(1.8)

where u1 = p0 ∈ Rn, t1 = 1. They proved the convergence rate of the FISTA and applied
to the image restoration problem.

Verma and Shukla [18] introduced a new accelerated proximal gradient algorithm (NAGA)
as follow:{

pk = uk + θk(uk − uk−1),
uk+1 = Tk((1− δk)pk + δkTpk), k ∈ N, (1.9)

where u0, u1 ∈ Rn, Tk is the forward-backward operator of Φ and Ψ with respect to
γk ∈ (0, 2/L). They proved the convergence of the NAGA and applied to solving the
convex minimization problem with sparsity-inducing regularizes for multitask learning
framework.

Phon-on et al. [19] proposed modified inertial S-iteration process as follows: pk = uk + θk(uk − uk−1),
qk = (1− ρk)pk + ρkT1pk,
uk+1 = (1− δk)T1pk + δkT2qk, k ∈ N,

(1.10)

where T1, T2 : C → C are nonexpansive mappings, {θk}, {ρk}, and {δk} satisfy

(D1)
∑∞
k=1 θk < ∞, {θk} ⊂ [0, θ], 0 ≤ θ < 1, {ρk}, {δk} ⊂ [δ, 1 − δ] for some δ ∈

(0, 0.5);

(D2) {Ti(pk)− pk} is bounded for i = 1, 2;

(D3) {Ti(pk)− x} is bounded for any x is in common fixed points of T1 and T2.

They proved the weak and strong convergence for finding common fixed points of T1 and
T2.

In fact, letting T1 = T2 = T , we obtain pk = uk + θk(uk − uk−1),
qk = (1− ρk)pk + ρkTpk,
uk+1 = (1− δk)Tpk + δkTqk, k ∈ N,

(1.11)

where sequences {ρk} and {δk} are in the interval (0, 1), θk is the inertial parameter which
controls the momentum uk − uk−1, and T : C → C is a nonexpansive mapping. Then, T
have fixed point which (1.11) is called inertial S-iteration (IS).

2. Preliminaries

Let H be a real Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉, and C be a
nonempty closed convex subset of H.

A nonlinear operator T : C → C is called
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• L-Lipschitz operator, if there exists L > 0 such that

‖Tu− Tv‖ ≤ L‖u− v‖, for all u, v ∈ C; (2.1)

• nonexpansive, if

‖Tu− Tv‖ ≤ ‖u− v‖, for all u, v ∈ C. (2.2)

Next, we denote by Fix(T ) the set of all fixed points of T , Fix(T ) := {x ∈ C : Tx = x},
ωw(uk) denote the set of all weak-cluster points of a bounded sequence {uk} in C, {Tk} and
Λ be families of nonexpansive operators of C into itself such that Υ :=

⋂∞
k=1 Fix(Tk) ⊃

Fix(Λ) 6= ∅, where Fix(Λ) is the set of all common fixed points of Λ.

Nakajo et al. [20] introduced the NST-condition (I) with Λ, A sequence {Tk} is said to
satisfy the NST if for every bounded sequence {uk} in C,

lim
k→∞

‖uk − Tkuk‖ = 0 implies lim
k→∞

‖uk − Tuk‖ = 0, ∀ T ∈ Λ. (2.3)

Nakajo et al. [21] introduced the NST∗-condition (I) with Λ, A sequence {Tk} is said to
satisfy the NST if for every bounded sequence {uk} in C,

lim
k→∞

‖uk − Tkuk‖ = lim
k→∞

‖uk − uk+1‖ = 0 implies ωw(uk) ⊂ Υ. (2.4)

Lemma 2.1. [22] For a real Hilbert space H, let Φ : H → R∪{∞} be a proper convex and
lower semi-continuous function, and Ψ : H → R be convex differentiable with gradient
∇Ψ being L-Lipschitz constant for some L > 0. If {Tk} is the forward-backward operator
of Φ and Ψ with respect to γk ∈ (0, 2/L) such that γk converges to γ, then {Tk} satisfies
NST-condition (I) with T, where T is the forward-backward operator of Φ and Ψ with
respect to γ ∈ (0, 2/L).

Lemma 2.2. [23] Let {δk} and {θk} be sequences of nonnegative real numbers such that

δk+1 ≤ (1 + θk)δk + θkδk−1, k ∈ N.
Then the following holds

δk+1 ≤M
k∏
j=1

(1 + 2θj), where M = max{δ1, δ2}.

Moreover, if
∑∞
k=1 θk <∞, then {δk} is bounded.

Lemma 2.3 ([24]). Let {δk}, {θk}, and {ρk} be sequences of nonnegative real numbers
such that δk+1 ≤ (1 + ρk)δk + θk, k ∈ N. If

∑∞
k=1 ρk < ∞ and

∑∞
k=1 θk < ∞, then

limk→∞ δk exists.

Lemma 2.4 ([25]). Let H be a Hilbert space and {uk} be a sequence in H such that there
exists a nonempty set Υ ⊂ H satisfying

(i) For every u ∈ Υ, limk→∞ ‖uk − u‖ exists;

(ii) Each weak-cluster point of the sequence {uk} is in Υ.

Then, {uk} converges weakly to a point in Υ.

Lemma 2.5 ([26]). Let H be a real Hilbert space. Then the following results hold:

(i) ‖u± v‖2 = ‖u‖2 ± 2〈u, v〉+ ‖v‖2, ∀ u, v ∈ H;
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(ii) ‖δu+(1−δ)v‖2 = δ‖u‖2 +(1−δ)‖v‖2−δ(1−δ)‖u−v‖2, ∀δ ∈ [0, 1], ∀ u, v ∈ H.

3. Main Results

In this section, we present a modified MM-algorithm which is called MMMA for finding
a common fixed point of a countable family of nonexpansive operators in a real Hilbert
space as follow assumptions:

(A1) H is a real Hilbert space;

(A2) {Tk : H → H} is a family of nonexpansive operators;

(A3) {Tk} satisfies the NST∗-condition;

(A4) Υ :=
⋂∞
k=1 Fix(Tk) 6= ∅.

Algorithm 1 : A modified MM-algorithm (MMMA)

Initial: Given u0, u1 ∈ H arbitrarily and k = 1.
Step 1. Compute

pk = uk + θk(uk − uk−1),
qk = (1− ρk)pk + ρkTkpk,
sk = (1− δk − βk)qk + δkTkqk + βkTkpk,
uk+1 = Tksk.

Set k =: k + 1 and go back to Step 1.

Theorem 3.1. Let {uk} be a sequence generated by MMMA where {ρk}, {δk}, and {βk}
are sequences in [0, 1] satisfying (δk + βk) ∈ [0, 1], θk ∈ (0, 1) and

∑∞
k=1 θk < ∞. Then

‖uk+1 − u∗‖ ≤ M
∏k
j=1(1 + 2θj), where M = max{‖u1 − u∗‖, ‖u2 − u∗‖} and u∗ ∈ Υ

Proof. Let u∗ ∈ Υ. Using MMMA, we have

‖pk − u∗‖ = ‖uk + θk(uk − uk−1)− u∗‖
≤ ‖uk − u∗‖+ θk‖uk − uk−1‖.

(3.1)

Using MMMA, Tk is a family of nonexpansive operators, and (3.1), we have

‖qk − u∗‖ = ‖(1− ρk)pk + ρkTkpk − u∗‖
≤ (1− ρk)‖pk − u∗‖+ ρk‖Tkpk − u∗‖
≤ (1− ρk)‖pk − u∗‖+ ρk‖pk − u∗‖
= ‖pk − u∗‖
≤ ‖uk − u∗‖+ θk‖uk − uk−1‖.

(3.2)
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Using MMMA, Tk is a family of nonexpansive operators, (3.2), and (3.1), we have

‖sk − u∗‖ = ‖(1− δk − βk)qk + δkTkqk + βkTkpk − u∗‖
≤ (1− δk − βk)‖qk − u∗‖+ δk‖Tkqk − u∗‖+ βk‖Tkpk − u∗‖
≤ (1− δk − βk)‖qk − u∗‖+ δk‖qk − u∗‖+ βk‖pk − u∗‖
= (1− βk)‖qk − u∗‖+ βk‖pk − u∗‖
≤ (1− βk)(‖uk − u∗‖+ θk‖uk − uk−1‖)

+ βk(‖uk − u∗‖+ θk‖uk − uk−1‖)
= ‖uk − u∗‖+ θk‖uk − uk−1‖.

(3.3)

Using MMMA, Tk is a family of nonexpansive operators, and (3.3), we have

‖uk+1 − u∗‖ = ‖Tksk − u∗‖
≤ ‖sk − u∗‖
≤ ‖uk − u∗‖+ θk‖uk − uk−1‖
≤ (1 + θk)‖uk − u∗‖+ θk‖uk − uk−1‖.

(3.4)

Applying Lemma 2.2, we obtain that ‖uk+1 − u∗‖ ≤ M
∏k
j=1(1 + 2θj), where M =

max{‖u1 − u∗‖, ‖u2 − u∗‖}, it follows that {uk} is bounded.
This implies

∑∞
k=1 θk‖uk − uk−1‖ <∞.

Theorem 3.2. Let {uk} be a sequence generated by MMMA where {ρk}, {δk}, and {βk}
are sequences in [0, 1] satisfying (δk + βk) ∈ [0, 1], θk ∈ (0, 1) and

∑∞
k=1 θk < ∞. Then

{uk} converges weakly to a point in Υ .

Proof. Using (3.4) and Lemma 2.3, we get limk→∞ ‖uk−u∗‖ exists. Using Lemma 2.5(i),
we get

‖pk − u∗‖2 ≤ ‖uk − u∗‖2 + θ2
k‖uk − uk−1‖2 + 2θk‖uk − u∗‖‖uk − uk−1‖. (3.5)

Using Lemma 2.5(ii), we get

‖qk − u∗‖2 = ‖(1− ρk)pk + ρkTkpk − u∗‖2

= (1− ρk)‖pk − u∗‖2 + ρk‖Tkpk − u∗‖2 − ρk(1− ρk)‖pk − Tkpk‖2

≤ (1− ρk)‖pk − u∗‖2 + ρk‖pk − u∗‖2 − ρk(1− ρk)‖pk − Tkpk‖2

= ‖pk − u∗‖2 − ρk(1− ρk)‖pk − Tkpk‖2.
(3.6)

Using Lemma 2.5(ii), (3.5), and (3.6), we obtain

‖uk+1 − u∗‖2 = ‖Tksk − u∗‖2

≤ ‖sk − u∗‖2

≤ ‖(1− δk − βk)qk + δkTkqk + βkTkpk − u∗‖2
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= (1− δk − βk)‖qk − u∗‖2 + δk‖Tkqk − u∗‖2 + βk‖Tkpk − u∗‖2

− δk(1− δk − βk)‖qk − Tkqk‖2

≤ (1− δk − βk)‖qk − u∗‖2 + δk‖qk − u∗‖2 + βk‖pk − u∗‖2

− δk(1− δk − βk)‖qk − Tkqk‖2

= (1− βk)‖qk − u∗‖2 + βk‖pk − u∗‖2

− δk(1− δk − βk)‖qk − Tkqk‖2

≤ ‖pk − u∗‖2 − (1− βk)ρk(1− ρk)‖pk − Tkpk‖2

− δk(1− δk − βk)‖qk − Tkqk‖2

≤ ‖uk − u∗‖2 + θ2
k‖uk − uk−1‖2 + 2θk‖uk − u∗‖‖uk − uk−1‖

− (1− βk)ρk(1− ρk)‖pk − Tkpk‖2

− δk(1− δk − βk)‖qk − Tkqk‖2.

(3.7)

Since
∑∞
k=1 θk‖uk − uk−1‖ <∞ and limk→∞ ‖uk − u∗‖ exists, it follows that

limk→∞ ‖qk − Tkqk‖ = 0 and limk→∞ ‖pk − Tkpk‖ = 0. On the other hand,

‖uk−Tkuk‖ ≤ ‖uk−pk‖+‖pk−Tkpk‖+‖Tkpk−Tkuk‖ ≤ 2‖uk−pk‖+‖pk−Tkpk‖,
(3.8)

and

‖sk − qk‖ ≤ ‖sk − pk‖+ ‖pk − qk‖
≤ (1− δk − βk)‖qk − pk‖+ δk‖Tkqk − pk‖

+ βk‖Tkpk − pk‖+ ‖pk − qk‖
≤ (2− δk − βk)‖qk − pk‖+ δk‖Tkqk − qk‖

+ δk‖qk − pk‖+ βk‖Tkpk − pk‖
= (2− βk)‖qk − pk‖+ δk‖Tkqk − qk‖+ βk‖Tkpk − pk‖
≤ ((2− βk)ρk + βk)‖Tkpk − pk‖+ δk‖Tkqk − qk‖.

(3.9)

These imply by MMMA that limk→∞ ‖uk − Tkuk‖ = 0 and limk→∞ ‖sk − qk‖ = 0. Using
MMMA and nonexpansivity of Tk, we obtain

‖uk+1 − uk‖ = ‖Tksk − uk‖
≤ ‖Tksk − Tkuk‖+ ‖Tkuk − uk‖
≤ ‖sk − uk‖+ ‖Tkuk − uk‖
≤ ‖sk − qk‖+ ‖qk − uk‖+ ‖Tkuk − uk‖
≤ ‖sk − qk‖+ ‖qk − pk‖+ ‖pk − uk‖+ ‖Tkuk − uk‖,

(3.10)

which
‖qk − pk‖ = ρk‖Tkpk − pk‖ → 0 as k →∞,

and
‖pk − uk‖ = θk‖uk − uk−1‖ → 0 as k →∞.

These imply that limk→∞ ‖uk − uk+1‖ = 0. Using (A3), we have ωw(uk) ⊂ Υ. Hence,
using Lemma 2.4, we conclude that {uk} converges weakly to a point in Υ.
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Finally, we apply MMMA for solving the minimization problem (1.3) by setting Tk =
proxγkΦ(Id − γk∇Ψ), the forward-backward operator of Φ and Ψ with respect to γk,
where Φ : Rn → R ∪ {∞} is proper convex and lower semi-continuous, and Ψ : Rn → R
is a continuously differentiable convex function, whose gradient is Lipschitz continuous
(L > 0).

Algorithm 2 : A forward-backward modified MM-algorithm (FBMMMA)

Initial: Given u0, u1 ∈ H arbitrarily and k = 1.
Step 1. Compute

pk = uk + θk(uk − uk−1),
qk = (1− ρk)pk + ρkproxγkΦ(Id − γk∇Ψ)pk,
sk = (1− δk − βk)qk + δkproxγkΦ(Id − γk∇Ψ)qk + βkproxγkΦ(Id − γk∇Ψ)pk,
uk+1 = proxγkΦ(Id − γk∇Ψ)sk.

Set k =: k + 1 and go back to Step 1.

Theorem 3.3. Let {uk} be a sequence generated by FBMMMA where θk, δk, βk, θk are
the same as in Theorem 3.1, and γk ∈ (0, 2/L) such that {γk} converges to γ. Then

‖uk+1 − u∗‖ ≤ M
∏k
j=1(1 + 2θj), where M = max{‖u1 − u∗‖, ‖u2 − u∗‖} and u∗ ∈

arg min(Φ + Ψ).

Proof. Let Tk be the forward-backward operator of Φ and Ψ with respect to γk and
Tk = proxγkΦ(Id − γk∇Ψ). Using Proposition 26.1 in [27], T and {Tk} are nonexpansive

operators for all k, and Fix(T ) =
⋂∞
k=1 Fix(Tk) = arg min(Φ + Ψ). Hence, we obtain the

required result directly by Theorem 3.1.

Theorem 3.4. Let {uk} be a sequence generated by FBMMMA where θk, δk, βk, θk are
the same as in Theorem 3.1, and γk ∈ (0, 2/L) such that {γk} converges to γ. Then {uk}
converges weakly to a point in arg min(Φ + Ψ).

Proof. Using Lemma 2.1, we obtain that {Tk} satisfies (A3). Hence, we obtain the re-
quired result directly by Theorem 3.2.

4. Image Restoration

In this section, we apply FBMMMA to solving the image restoration problem (1.2)

which Ψ(u) =
1

2
‖Y u−b‖22 and Φ(u) = η‖u‖1 compare with FISTA [17] and NAGA [18] by

using maximum iteration number is 200 iteration. All codes were written in Matlab 2016b
and run on Dell i-5 Core laptop. We illustrate the performance of our proposed algorithm
for image restoration problems. The improvement in signal to noise ratio (ISNR) are used
to measure the quality of the restored images. They are defined as follows:

ISNR = 10 log
‖u− b‖22
‖u− uk‖22

where u, b, k, and uk are the original image, the observed image, the noise matrix added
in the test, and estimated image at iteration k, respectively. The Lipschitz constant L,
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was computed by the maximum eigenvalues of the matrix ΨTΨ. We take η = 10−4, γk =
1

L
, ρk = 0.99, δk = 0.01, βk = 0.99, θk = 0.99. We show numerical comparison in case

Gaussian blur “fspecial(′gaussian′, 9, 9)” and Motion blur “fspecial(′motion′, 15, 9)” of
FISTA, NAGA and FBMMMA in Table 1 and Table 2. The SNR results in case Gaussian
blur show in Figure 2, 3, 4, 5. Image restoration results in case Gaussian blur show in
Figure 6. The SNR results in case Motion blur show in Figure 7, 8, 9, 10. Image
restoration results in case Gaussian blur show in Figure 11.

(a) (b) (c) (d)

Figure 1. Test images: (A) Eye, (B) Fish, (C) Power, and (D) Butterfly.

Experiment
FISTA NAGA FBMMMA

SNR SNR SNR

Eye (256× 165) 21.6976 21.8010 22.0386

Fish (256× 164) 16.2553 20.3542 20.6041

Power (187× 172) 17.2094 17.3374 17.6585

Butterfly (256× 256) 16.1611 16.2553 16.2553

Table 1. Numerical comparison in case Gaussian blur.

Figure 2. SNR results in case Gaussian blur for Eye image.
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Figure 3. SNR results in case Gaussian blur for Fish image.

Figure 4. SNR results in case Gaussian blur for Power image.

Figure 5. SNR results in case Gaussian blur for Butterfly image.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 6. Restoration results in case Gaussian blur for test images.
(A), (F), (K), (P) Original image; (B), (G), (L), (Q) blurred and noisy; (C), (H), (M),
(R) FISTA; (D), (I), (N), (S) NAGA restored result; (E), (J), (O), (T) FBMMMA

restored result.

Experiment
FISTA NAGA FBMMMA

SNR SNR SNR

Eye (256× 165) 23.0907 23.4269 24.0904

Fish (256× 164) 21.3795 21.6952 22.5701

Power (178× 172) 17.3409 17.7694 18.8316

Butterfly (256× 256) 15.7281 16.1250 17.2098

Table 2. Numerical comparison in case Motion blur.
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Figure 7. SNR results in case Motion blur for Eye image.

Figure 8. SNR results in case Motion blur for Fish image.

Figure 9. SNR results in case Motion blur for Power image.
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Figure 10. SNR results in case Motion blur for Butterfly image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 11. Restoration results in case Motion blur for test images.
(A), (F), (K), (P) Original image; (B), (G), (L), (Q) blurred and noisy; (C), (H),

(M), (R) FISTA; (D), (I), (N), (S) NAGA restored result; (E), (J), (O), (T) FBM-

MMA restored result.
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5. Conclusions

In this paper, we propose a MM-iteration with inertial extrapolation term for approx-
imation of fixed point of nonexpansive mapping and convergence result in real Hilbert
spaces. Applying our results in the image restoration problem comparing the proposed
methods with the FISTA and the NAGA. Our proposed algorithm has a better perfor-
mance (SNR) than two algorithms above.
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