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1. Introduction

Let E be a real Banach space with dual space E∗. A map A : E → E is said to be
accretive if for each x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0,

where J : E → 2E
∗

is the normalized duality map. The map A is called m-accretive if it
is accretive, and in addition, the graph of A is not properly contained in the graph of any
other accretive operator. Consider the evolution equation

du

dt
+Au = 0, (1.1)

where A : E → E is an accretive operator. Observe that at equilibrium, equation (1.1)
reduces to

Au = 0, (1.2)
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whose solution(s) will be the equilibrium state of the system (1.1). Since A is nonlinear,
in general, there is no known closed form solution of equation (1.2). Browder [1] defined
a map T : E → E by T := I − A; and called T a pseudocontractive map. Observe that
Au = 0 ⇔ Tu = u. So, zeros of A (which are equilibrium states of (1.1)) correspond
to fixed points of T . Hence, approximating fixed points of pseudocontractive maps has
become a flourishing area of interest to researchers in nonlinear operator theory (see, for
e.g., these monographs of Alber [2], Berinde [3], Chidume [4], Goebel and Reich [5] and
the references contained in them).

Let A : E → E∗ be a map. Then, A is said to be monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀ x, y ∈ E.
The map A is called maximal monotone if it is monotone and, in addition, the graph of
A is not properly contained in the graph of any other monotone map.

Interest in monotone maps stems mainly from their usefulness in applications. For ex-
ample, monotone maps appear in convex optimization problems. Consider the function
f : E → R ∪ {∞}, where f is convex, proper and lower semi-continuous. The subdiffer-
ential of f , ∂f : E → 2E

∗
defined by

∂f(x) := {x∗ ∈ E∗ : f(y)− f(x) ≥ 〈y − x, x∗〉, ∀ y ∈ E}
is a monotone operator on E. It is easy to see that 0 ∈ ∂f(u) if and only if u is a
minimizer of f .

In general, if A : E → E∗ is a monotone map, solutions of (1.2) correspond to either
the equilibrium states of an evolution system, or, minimizers of some convex functional
defined on E. This is a motivation for studying the equation Au = 0, where A : E → E∗

is monotone.

Observe that Browder’s fixed point technique for equation (1.2) is not applicable when A
is monotone in Banach spaces, since A maps E to E∗, defining T := I −A does not even
make sense. We note, however, that for the special case in which E is a real Hilbert space,
say H, we have E = E∗ = H and the fixed point technique introduced by Browder is still
applicable. This, perhaps, explains why virtually all results for approximating solutions of
(1.2), when A is of monotone type, have been confined to real Hilbert spaces. However, as
has been rightly observed by (a Series Editor of Kluwer Academic Publishers), Hazewinkle,
”... many, and probably most, mathematical objects and models do not naturally live in
Hilbert space”, [6] pg. viii.

Recently, the notion of J-fixed point (which has also been called semi-fixed point, Zegeye
[7], duality fixed point, Liu [8]) has been defined and studied by Chidume and Idu [9], for
maps from a space, say E, to its dual space E∗.

Let T : E → E∗ be any map. A point u ∈ E is called a J-fixed point of T if Tu = Ju,
where J : E → E∗ is the single valued normalized duality map on E. We shall denote
the set of J fixed points of T by FJ(T ).

Consider the map T : E → E∗ defined by T := J − A, where A : E → E∗ is monotone.
Observe that u is a J-fixed point of T if and only if u is a solution of (1.2). Consequently,
approximating solutions of (1.2) is equivalent to approximating J-fixed points of maps
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T : E → E∗. This connection is now generating considerable research interest in the
study of J-fixed points (see Chidume and Idu [9], Chidume and Monday [10], Chidume
et al. [11–13], and the references contained in them). This notion turns out to be
very useful and applicable in approximating solutions of equation (1.2). For example,
Chidume and Idu [9], introduced the concept of J-pseudocontractive maps and proved a
strong convergence theorem for approximating J-fixed points of a J-pseudocontractive
map. As an application of their theorem, they proved a strong convergence theorem for
approximating a zero of a maximal monotone map.

An inertial-type algorithm was first introduced and studied by Polyak [14], as an accel-
eration process in solving smooth convex minimization problems. This algorithm is a
two step iterative method in which the next iterate is obtained using the previous two
iterates. Numerical experiments have shown that incorporating an inertial term in an
algorithm speeds up the convergence of the sequence generated by the algorithm. Thus,
a lot of research effort is now devoted to inertial-type algorithms (see, e.g., [15–23] and
the references contained in them).

Recently, Chidume et al. [15], studied an inertial algorithm for approximating a common
fixed point of a countable family of relatively nonexpansive maps in a uniformly smooth
and uniformly convex real Banach space. They proved that the sequence generated by
their algorithm converges strongly to a common fixed point of the family.

It is our purpose in this paper to contribute to the on-going research on iterative methods
for approximating J-fixed points of nonlinear maps defined from E to E∗.

2. Preliminaries

Let J be the normalized duality map from E to 2E
∗
. It is well known that if E is

a reflexive, strictly convex and smooth real Banach space, then J is single-valued and
bijective. In particular, if E is uniformly smooth and uniformly convex, then the dual
space E∗ is also uniformly smooth and uniformly convex and the normalized duality map
J and its inverse, J−1, are both uniformly continuous on bounded sets. (see, e.g., Ibaraki
and Takahashi, [24]).

Let E be a smooth real Banach space and φ : E × E → R be defined by,

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E. (2.1)

The function φ was first introduced by Alber and has been extensively studied by many
authors (see, for example, Alber [25]; Chidume et al. [26–29]; Ofoedu and Shehu [30];
Kamimura and Takahashi [31]; Nilsrakoo and Saejung, [32]; Reich [33]; Xu, [34]; Zegeye
[7]; and the references contained in them). It is easy to see from the definition of φ that,
in a real Hilbert space H, equation (2.1) reduces to φ(x, y) = ‖x− y‖2, ∀x, y ∈ H.

Furthermore, given x, y, z ∈ E, and τ ∈ (0, 1), we have the following properties and
definitions (see, e.g., Nilsrakoo and Saejung, [32]):

P1: (‖u‖ − ‖v‖)2 ≤ φ(u, v) ≤ (‖u‖+ ‖v‖)2,
P2: φ(u, v) = φ(u,w) + φ(w, v) + 2〈w − u, Jv − Jw〉.
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Definition 2.1. Let E be a smooth, strictly convex and reflexive real Banach space and
let C be a nonempty, closed and convex subset of E. The map ΠC : E → C defined by
x̃ = ΠC(x) ∈ C such that φ(x̃, x) = infy∈C φ(y, x) is called the generalized projection of x
onto C. Clearly, in a real Hilbert space H, the generalized projection ΠC coincides with
the metric projection PC from H onto C.

Definition 2.2. Let T : E → E be a map. Then, T is called relatively nonexpansive if
the following conditions hold:

(i) F (T ) := {x ∈ E : Tx = x} 6= ∅;
(ii) φ(x, Ty) ≤ φ(x, y), ∀ x ∈ F (T ) and y ∈ E;

(iii) (I − T ) is demi-closed at zero, i.e., whenever a sequence {xn} in C converges
weakly to x and {xn − Txn} converges strongly 0, then x ∈ F (T ),

Lemma 2.3 ([2]). Let C be a nonempty closed and convex subset of a smooth, strictly
convex and reflexive real Banach space E. Then,

(1) if x ∈ E and y ∈ C, then x̃ = ΠCx if and only if 〈x̃− y, Jx− Jx̃〉 ≥ 0, for all
y ∈ C,

(2) φ(y, x̃) + φ(x̃, x) ≤ φ(y, x), for all x ∈ E, y ∈ C.

Lemma 2.4 ([32]). Let E be a smooth Banach space. Then,

φ
(
u, J−1[βJx+ (1− β)Jy]

)
≤ βφ(u, x) + (1− β)φ(u, y), ∀ β ∈ [0, 1], u, x, y ∈ E.

Lemma 2.5 ([31]). Let E be a uniformly convex and smooth real Banach space, and let
{un} and {vn} be two sequences of E. If either {un} or {vn} is bounded and φ(un, vn)→
0, then ‖un − vn‖ → 0.

Remark 2.6. The converse of Lemma 2.5 is also true whenever {un} and {vn} are both
bounded (see, e.g., [15]).

Lemma 2.7 ([35]). Let C be a closed convex subset of a uniformly smooth and uniformly
convex Banach space E and let (Si)

∞
i=1, Si : C → E, for each i ≥ 1, be a family of relatively

nonexpansive maps such that
⋂∞
i=1 F (Si) 6= ∅. Let (ηi)

∞
i=1 ⊂ (0, 1) and (µi)

∞
i=1 ⊂ (0, 1) be

sequences such that
∑∞
i=1 ηi = 1. Consider the map S : C → E defined by

Sx = J−1

( ∞∑
i=1

ηi(µiJx+ (1− µi)JSix

)
for each x ∈ C. (2.2)

Then, S is relatively nonexpansive and F (S) =
⋂∞
i=1 F (Si).
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2.1. Analytical Representations of Duality Maps in Lp, lp, and W p
m,

Spaces, 1 < p <∞
The analytical representations of duality maps are known in Lp, lp, and W p

m, 1 < p <
∞. Precisely, in the spaces lp, Lp(G) and W p

m(G), p ∈ (1,∞), p−1+q−1 = 1, respectively,

Jz = ‖z‖2−plp
y ∈ lq, y = {|z1|p−2z1, |z2|p−2z2, ...}, z = {z1, z2, ...},

J−1z = ‖z‖2−qlq
y ∈ lp, y = {|z1|q−2z1, |z2|q−2z2, ...}, z = {z1, z2, ...},

Jz = ‖z‖2−pLp
|z(s)|p−2z(s) ∈ Lq(G), s ∈ G,

J−1z = ‖z‖2−qLq
|z(s)|q−2z(s) ∈ Lp(G), s ∈ G, and

Jz = ‖z‖2−p
Wp

m

∑
|α|≤m

(−1)|α|Dα(|Dαz(s)|p−2Dαz(s)) ∈W q
−m(G),m > 0, s ∈ G,

(see e.g., Alber and Ryazantseva, [25]; p. 36).

3. Main Results

The symbols → and ⇀ will denote strong and weak convergence, respectively.

Definition 3.1. Let E be a reflexive, strictly convex and smooth real Banach space and
let T : E → E∗ be a map. A point x∗ ∈ E is called an asymptotic J-fixed point of T if
there exists a sequence {xn} ⊂ E such that xn ⇀ x∗ and ‖Jxn − Txn‖ → 0, as n→∞.

We shall denote the set of asymptotic J-fixed points of T by F̂J(T ).

Definition 3.2. A map T : E → E∗ is said to be relatively J-nonexpansive if

(i) F̂J(T ) = FJ(T ) 6= ∅;
(ii) φ(p, J−1Tx) ≤ φ(p, x), ∀ x ∈ E, p ∈ FJ(T );

where FJ(T ) = {x ∈ E : Tx = Jx}.

We first prove the following Lemma which will be central in the sequel.

Lemma 3.3. Let E be a uniformly convex and uniformly smooth real Banach space. Let
T : E → E∗ be a relatively J-nonexpansive map such that FJ(T ) 6= ∅. Define inductively
the sequence {xn} by x0, x1 ∈ E

C0 = E,

wn = xn + αn(xn − xn−1),

yn = J−1
(
(1− β)Jwn + βTwn

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, wn)},
xn+1 = ΠCn+1

x0,

(3.1)

n ≥ 0, where αn ∈ [0, 1), β ∈ (0, 1). Then, {xn} converges strongly to p = ΠFJ (T )x0

Proof. We divide the proof into two steps:
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Step 1. We show that {xn} is well-defined, FJ(T ) ⊂ Cn, ∀ n ≥ 0 and {xn} is bounded.
Let z ∈ Cn+1, then,

φ(z, yn) ≤ φ(z, wn)

⇔ ‖z‖2 − 2〈z, Jyn〉+ ‖yn‖2 ≤ ‖z‖2 − 2〈z, Jwn〉+ ‖wn‖2

⇔ 2〈z, Jwn − Jyn〉 ≤ ‖wn‖2 − ‖yn‖2. (3.2)

Using inequality (3.2), it is easy to see that Cn is closed and convex, ∀ n ≥ 0. We now
show that FJ(T ) ⊂ Cn, ∀ n ≥ 0. We show this by induction. For n = 0, FJ(T ) ⊂ E = C0.
Assume FJ(T ) ⊂ Cn, for some n ≥ 0, let p ∈ FJ(T ). Then, by Lemma 2.4 and the fact
that T is relatively J-nonexpansive, we have that

φ(p, yn) = φ
(
p, J−1((1− β)Jwn + βTwn)

)
= φ

(
p, J−1((1− β)Jwn + βJ(J−1Twn))

)
≤ (1− β)φ(p, wn) + βφ(p, J−1Twn)

≤ (1− β)φ(p, wn) + βφ(p, wn) = φ(p, wn),

which implies that p ∈ Cn+1. Thus, FJ(T ) ⊂ Cn, for all n ≥ 0. Hence, {xn} is well-
defined.

Next, we show that {xn}, {yn} and {wn} are bounded. By definition, observe that xn =
ΠCn

x0 and Cn+1 ⊂ Cn, for all n ≥ 0. So, by Lemma 2.3 (2), we have that φ(xn, x0) ≤
φ(xn+1, x0), which implies that {φ(xn, x0)} is nondecreasing. Furthermore,

φ(xn, x0) = φ(ΠCn
x0, x0) ≤ φ(p, x0)− φ(p, xn) ≤ φ(p, x0),

implies that {φ(xn, x0)} is bounded and consequently, {φ(xn, x0)} is convergent. By P1,
{xn} is bounded. From Lemma 2.3 (2), we have that

φ(xm, xn) = φ(xm,ΠCnx0) ≤ φ(xm, x0)− φ(xn, x0)→ 0 as n,m →∞.
Hence, {xn} is Cauchy and this implies that ‖xn+1 − xn‖ → 0, as n → ∞. Using the
definition of wn, we have that ‖xn − wn‖ = ‖αn(xn−1 − xn)‖ ≤ ‖xn−1 − xn‖ → 0, as
n→∞. Since {wn} and {xn} are bounded, by Remark 2.6 we have that φ(xn, wn)→ 0,
as n → ∞. Observe that xn+1 ∈ Cn, so 0 ≤ φ(xn+1, yn) ≤ φ(xn+1, wn) → 0, as n → ∞.
By Lemma 2.5, we have ‖xn − yn‖ → 0, as n→∞ and thus, {yn} is bounded.

Step 2. We show that xn → ΠFJ (T )x0. First, establish that ‖Jwn − Twn‖ → 0, as
n→∞. By Remark 2.6, since {xn} and {yn} are bounded, we have that φ(xn, yn)→ 0,
as n→∞. By P2, and uniform continuity of J on bounded sets, we have that

φ(wn, yn) = φ(wn, xn) + φ(xn, yn) + 2〈xn − wn, Jyn − Jxn〉
≤ φ(wn, xn) + φ(xn, yn) + 2‖xn − wn‖‖Jyn − Jxn‖ → 0, as n→∞.

Next, from the definition of yn, we observe that ‖Jyn − Jwn‖ = β‖Jwn − Twn‖. Since
‖yn−wn‖ → 0, by uniform continuity of J on bounded sets, we have that ‖Jyn−Jwn‖ →
0, and so β‖Jwn − Twn‖ → 0. Hence, ‖Jwn − Twn‖ → 0, as n→∞.

Now, since {wn} is bounded, there exists {wnk
}, a subsequence of {wn} such that wnk

⇀
x∗, as k → ∞. Thus, ‖Jwnk

− Twnk
‖ → 0, as k → ∞. Since T is relatively J-

nonexpansive, we have that x∗ ∈ FJ(T ). Furthermore, there exists {xnk
} ⊂ {xn}, such

that xnk
⇀ x∗, as k → ∞. We now show that x∗ = ΠFJ (T )x0. Set y = ΠFJ (T )x0. Since
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xn = ΠCnx0 and FJ(T ) ⊂ Cn, ∀ n ≥ 0, we have φ(xn, x0) ≤ φ(y, x0). By the weak lower
semi-continuity of the norm, we obtain

φ(x∗, x0) = ‖x∗‖2 − 2〈x∗, Jx0〉+ ‖x0‖2

≤ lim inf
k→∞

(‖xnk
‖2 − 2〈xnk

, Jx0〉+ ‖x0‖2)

= lim inf
k→∞

φ(xnk
, x0) ≤ lim sup

k→∞
φ(xnk

, x0) ≤ φ(y, x0). (3.3)

But φ(y, x0) ≤ φ(z, x0), ∀ z ∈ FJ(T )

⇒ φ(y, x0) ≤ φ(x∗, x0) ≤ φ(y, x0) (3.4)

⇒ φ(y, x0) = φ(x∗, x0).

By uniqueness of ΠFJ (T )x0, y = x∗. So, we deduce that x∗ = ΠFJ (T )x0. Next, we
show that xnk

→ x∗, as k → ∞. Using inequalities (3.3) and (3.4), we obtain that
φ(xnk

, x0) → φ(x∗, x0), as k → ∞. Thus, ‖xnk
‖ → ‖x∗‖, as k → ∞. By the Kadec-Klee

property of E, we conclude that xnk
→ x∗ as k → ∞. Therefore, xn → ΠFJ (T )x0. This

completes the proof.

Using Lemma 3.3, we now prove our main theorem.

Theorem 3.4. Let E be a uniformly convex and uniformly smooth real Banach space. Let
{Ti}∞i=1 be a countable family of relatively J-nonexpansive maps such that

⋂∞
i=1 FJ(Ti) 6=

∅, where Ti : E → E∗, ∀ i. Let {ηi}∞i=1 ⊂ (0, 1) and {µi}∞i=1 ⊂ (0, 1) be sequences such
that

∑∞
i=1 ηi = 1. Define inductively the sequence {xn} by x0, x1 ∈ E

C0 = E,

wn = xn + αn(xn − xn−1),

yn = J−1
(
(1− β)Jwn + βTwn

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, wn)},
xn+1 = ΠCn+1

x0,

(3.5)

n ≥ 0, where Tx =
∑∞
i=1 ηi(µiJx+ (1− µi)Tix), for each x ∈ E, αn ∈ [0, 1), β ∈ (0, 1).

Then, {xn} converges strongly to p = ΠFJ (T )x0

Proof. Observe that since Ti is relatively J-nonexpansive for each i, it is easy to see
that Si = J−1Ti, is relatively nonexpansive for each i. So, using Lemma 2.7, setting
G = J−1T, we obtain that

Gx = J−1
( ∞∑
i=1

ηi
(
µiJx+ (1− µi)J(Six)

))
is relatively nonexpansive. Furthermore, it is easy to see that T is relatively J-nonexpansive
and F (J−1T ) = FJ(T ). Using Lemma 3.3, since T is relatively J-nonexpansive, {xn}
converges strongly to x∗ ∈ FJ(T ).

Corollary 3.5. Let E = Lp(or lp or W
M
p (Ω)), 1 < p < ∞. Let {Ti}∞i=1 be a countable

family of relatively J-nonexpansive maps such that
⋂∞
i=1 FJ(Ti) 6= ∅, where Ti : E → E∗,
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∀ i. Let {ηi}∞i=1 ⊂ (0, 1) and {µi}∞i=1 ⊂ (0, 1) be sequences such that
∑∞
i=1 ηi = 1. Define

inductively the sequence {xn} by x0, x1 ∈ E

C0 = E,

wn = xn + αn(xn − xn−1),

yn = J−1
(
(1− β)Jwn + βTwn

)
,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, wn)},
xn+1 = ΠCn+1

x0,

(3.6)

n ≥ 0, where Tx =
∑∞
i=1 ηi(µiJx+ (1− µi)Tix), for each x ∈ E, αn ∈ [0, 1), β ∈ (0, 1).

Then, {xn} converges strongly to p = ΠFJ (T )x0.

Example 3.6. Let E = lp. Then E∗ = lq , 1 < p, q <∞ and 1
p + 1

q = 1. Define

fi : lp → lp by fi(x) := fi(x1, x2, · · · ) =
1

2i
(0, x1, x2, · · · ), and Ti : lp → lq by

Tix := (J ◦ fi)(x) =
1

2i
J(0, x1, x2, · · · ).

Clearly, Ti is weakly sequentially continuous for each i = 1, 2, 3, · · · .

Claim: Ti is relatively J-nonexpansive for each i.

Proof of claim.

(i) We show that FJ(Ti) = F̂J(Ti) 6= ∅, ∀ i ≥ 1. Now,

Tix = Jx ⇔ 1

2i
J(0, x1, x2, · · · ) = J(x1, x2, · · · ).

This implies
1

2i
(0, x1, x2, · · · ) = (x1, x2, · · · ), since J is one-to-one.

Hence, x = (0, 0, · · · ). Thus, FJ(Ti) = {0}, ∀i ≥ 1. We show that F̂J(Ti) =
FJ(Ti). Consider the constant sequence {xn} ⊂ lp, where xn = (0, 0, · · · ), ∀ n.

Clearly, xn ⇀ 0 and ‖Jxn − Tixn‖ → 0. Hence, 0 ∈ F̂J(Ti). Let x∗ ∈ F̂J(Ti).
Then, there exists {xn} ⊂ lp such that

xn ⇀ x∗ and ‖Jxn − Tixn‖ → 0. (∗)

Now, by the weak sequential continuity of J and Ti, we obtain

xn ⇀ x∗ ⇒ Jxn ⇀ Jx∗ and xn ⇀ x∗ ⇒ Tixn ⇀ Tix
∗.

Furthermore, from (∗),

‖Jxn − Tixn‖ → 0, so we obtain (Jxn − Tixn) ⇀ 0.

Thus, by the uniqueness of the weak limit, we obtain that

Jx∗ − Tix∗ = 0,

i.e., Tix
∗ = Jx∗ so that x∗ ∈ FJ(Ti) = {0}.

Hence, x∗ = (0, 0, · · · ),

which yields FJ(Ti) = F̂J(Ti) = {0}, ∀ i.
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(ii) We show φ(u, J−1Tix) ≤ φ(u, x), ∀u ∈ FJ(Ti), ∀x ∈ lp.
Let u ∈ FJ(Ti) and x ∈ lp. Then,

φ(u, J−1Tix) = φ
(
0,

1

2i
(0, x1, x2, · · · )

)
= ‖x‖2lp = φ(0, x) = φ(u, x).

Hence, Ti is relatively J-nonexpansive for each i.

Next we show how to compute Tx =
∑∞
i=1 ηi(µiJx + (1 − µi)Tix) in Theorem 3.4 and

Corollary 3.5. Let Ti be as defined above. Then,
⋂∞
i=1 F

(
Ti(x)

)
= {0}. Define {µi} ⊂

(0, 1) and {ηi} ⊂ (0, 1) by ηi = 1
2i , µi = 1

2i , i ≥ 1. Clearly,

∞∑
i=1

ηi =

∞∑
i=1

1

2i
= 1.

Furthermore,

Tx =

∞∑
i=1

ηi
(
µiJx+ (1− µi)Tix

)
=

∞∑
i=1

[ 1

2i

( 1

2i
J(x1, x2, · · · ) +

(
1− 1

2i

) 1

2i
J(0, x1, x2, · · · )

)]
=

∞∑
i=1

[ 1

2i

( 1

2i
‖x‖2−p(|x1|p−2x1, |x2|p−2x2, · · · )

+
(

1− 1

2i

) 1

2i
‖x‖2−p(0, |x1|p−2x1, |x2|p−2x2, · · · )

)]
=

∞∑
i=1

[ 1

2i

( 1

2i
‖x‖2−p

(
|x1|p−2x1, |x2|p−2x2, · · ·

)
+

1

2i
‖x‖2−p

(
0, |x1|p−2x1, |x2|p−2x2, · · ·

)
− 1

22i
‖x‖2−p

(
0, |x1|p−2x1, |x2|p−2x2, · · ·

))]
=

∞∑
i=1

[ 1

2i

( 1

2i
‖x‖2−p

(
|x1|p−2x1, |x1|p−2x1 + |x2|p−2x2, |x2|p−2x2

+ |x3|p−2x3, · · ·
)
− 1

22i
‖x‖2−p

(
0, |x1|p−2x1, |x2|p−2x2, · · ·

))]
= ‖x‖2−p

(
|x1|p−2x1, |x1|p−2x1 + |x2|p−2x2, |x2|p−2x2

+ |x3|p−2x3, · · ·
)
(

∞∑
i=1

1

22i
)− ‖x‖2−p

(
0, |x1|p−2x1, |x2|p−2x2, · · ·

)
(

∞∑
i=1

1

23i
)

=
1

3
‖x‖2−p

(
|x1|p−2x1, |x1|p−2x1 + |x2|p−2x2, |x2|p−2x2 + |x3|p−2x3, · · ·

)
− 1

7
‖x‖2−p

(
0, |x1|p−2x1, |x2|p−2x2, · · ·

)
.
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4. Numerical Illustration

In the last section, we give an example of a family of relatively J-nonexpansive maps
in lp spaces, 1 < p < ∞, that has a unique common J-fixed point. For the purpose of
illustrating the convergence of our algorithm, we give two examples here where the duality
map J is the identity.

Example 4.1. Let E = R and Tx = 1
2 (x− sinx), C0 = R in Lemma 3.3. It is easy to see

that T is relatively J-nonexpansive with 0 as its unique fixed point. Here J is the identity
map on R. Set αn = 4n

4n+5 , β = 1
4 , x0 = x1 = 1

2 . Then, by Lemma 3.3, the sequence

generated by algorithm (3.1) converges to zero. The numerical results are sketched in the
figures below, where the y-axis represents the value of |xn−0| while the x-axis represents
the number of iterations n.

5. Conclusion

In this paper, a new class of relatively J-nonexpansive maps is introduced and studied.
An inertial J-fixed point algorithm to approximate a common J-fixed point of a countable
family of relatively J-nonexpansive maps is proposed, in a uniformly convex and uniformly
smooth real Banach space. Furthermore, strong convergence is established and also an
example of the map introduced is given. Finally, a numerical example is presented to
show that our algorithm is implementable.
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