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Abstract We prove the best proximity point results for condensing operators on C-class of functions,

by using a concept of measure of noncompactness. The results are applied to show the existence of a

solution for certain integral equations. We express also an illsutrative examples to indicate the validity

of the observed results.
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1. Introduction and Preliminaries

In 1930 Kuratowski [1], introduced the measure of non-compactness α(S) where S is
a bounded subset of a metric space X. This notion was used effectively in the definition
of a Hausdorff measure of non-compactness, χ(S), see e.g. [2] and the references therein.
One of the main aim of this paper is to derive best proximity point results for certain
mappings, by using the concept of a measure of noncompactness.
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We shall present some definitions, notations and results which will be needed in the
sequel. Throughout this paper, the letter E represents an infinite dimensional Banach
space. The symbols co(C) denotes the closure of convex hull of C ⊂ E, which is the
smallest closed and convex set that contains C. Furthermore, the expressions ME and
NE indicated the family of nonempty bounded subsets of E and the subfamily consisting
of all relatively compact subsets of E, respectively.

A function ψ : [0,∞)→ [0,∞) is called an altering distance function [3] if the following
properties are satisfied:

(1) ψ is nondecreasing and continuous;
(2) ψ−1(0) = 0;
(3) ψ(t) < t for t > 0.

The class of all altering distance functions will be denoted by Ψ. Also, by Φ we denote
the class of all continuous and nondecreasing functions ϕ : [0,∞) → [0,∞) such that
ϕ(t) > 0 for all t > 0.

A mapping F : [0,∞)2 → R is called C-class function [4] if it is continuous and satisfies
the following axioms:

(1) F (s, t) ≤ s ;
(2) F (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

We denote C-class functions as C, for short.

Definition 1.1 ([5]). A mapping µ : ME → [0,∞) is said to be a measure of noncom-
pactness in E if it satisfies the following conditions:

(A1) ∅ 6= Kerµ := {X ∈ME : µ(X) = 0} ⊆ NE .
(A2) X ⊆ Y ⇒ µ(X) ≤ µ(Y ).
(A3) µ(X) = µ(coX) = µ(X).
(A4) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].
(A5) If (Xn) is a sequence of closed sets in ME such that Xn+1 ⊆ Xn, for each

positive integer n, and if limn→∞ µ(Xn) = 0 then the intersection set X∞ =⋂∞
n=1Xn is nonempty.

The family Kerµ described in (A1) is said to be the kernel of the measure of non-
compactness µ. Note that the intersection set lies in 6= Ker, that is, X∞ ∈ Kerµ, since
µ(X∞) ≤ µ(Xn) for any n.

The following is one of the pioneer results in the direction of finding fixed point via the
measure of non-compactness and it extend the well-known Schauder fixed point theorem.

Theorem 1.2 ([5]). Let C be a nonempty, bounded, closed, and convex subset of a Banach
space E and let T : C → C be a continuous mapping. Assume that there exists a constant
k ∈ [0, 1) such that

µ(T (X)) ≤ kµ(X),

for any subset X of C, then T has a fixed point.

Definition 1.3. Let X be a Banach space. We say that X is strictly convex if the
following implication holds, for all x, y, p ∈ X and R > 0:

‖x− p‖ ≤ R,
‖y − p‖ ≤ R,
x 6= y

⇒ ‖x+ y

2
− p‖ < R.
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Let A and B be two nonempty subsets of a normed linear space Y . The pair (A,B)
satisfies a property if both A and B satisfy that property. So, we say that (A,B) is closed
if and only if both A and B are closed; (A,B) ⊆ (C,D)⇔ A ⊆ C, B ⊆ D. From now on,
B(x; r) will mean the closed ball in the Banach space X centered at x ∈ X with radius
r > 0. We shall also adopt the following notations

δx(A) = sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) = sup{d(x, y) : x ∈ A, y ∈ B},

diam(A) = δ(A,A).

We mention that if A is a nonempty and compact subset of a Banach space X, then
co(A) is compact (see Dunford-Schwartz [6]). In addition, we set

dist(A,B) := inf{‖x− y‖ : (x, y) ∈ A×B},

A0 := {x ∈ A : ∃ y′ ∈ B : ‖x− y′‖ = dist(A,B) (y′ is called a proximal point of x)},

B0 := {y ∈ B : ∃ x′ ∈ A : ‖x′ − y‖ = dist(A,B) (x′ is called a proximal point of y)}.

Definition 1.4. A nonempty pair (A,B) in a normed linear space Y is said to be prox-
iminal if A = A0 and B = B0.

It is remarkable to note that if (A,B) is a nonempty, bounded, closed and convex pair
in a reflexive Banach space X, then (A0, B0) is also nonempty, closed and convex.

A mapping T : A ∪B → A ∪B is said to be
(i) relatively nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for any (x, y) ∈ A×B,
(ii) relatively u-continuous mapping if

for all ε > 0, there is δ > 0 : if ‖x− y‖∗ < δ then ‖Tx− Ty‖∗ < ε,

for all (x, y) ∈ A×B, where ‖x− y‖∗ = ‖x− y‖ − dist(A,B).
(iii) cyclic if T (A) ⊆ B and T (B) ⊆ A,
(iv) noncyclic if T (A) ⊆ A and T (B) ⊆ B,

(v) compact if the pair (T (A), T (B)) is compact (see [7]).

Definition 1.5. Let (A,B) be a nonempty pair in a Banach space X and T : A ∪ B →
A ∪B be a mapping. If T is cyclic, then a point p ∈ A ∪B is said to be a best proximity
point for T provided that

‖p− Tp‖ = dist(A,B).

Also, if T is noncyclic, then the pair (p, q) ∈ A× B is called a best proximity pair for T
provided that

p = Tp, q = Tq, ‖p− q‖ = dist(A,B).

Existence of best proximity points (pairs) for cyclic (noncyclic) relatively nonexpansive
mappings was first studied by Eldred-Kirk-Veeramani ([8]), under a geometric concept
of proximal normal structure. Here, we state the following existence results which play
important roles in our coming discussions.

Theorem 1.6 ([7]). Let (A,B) be a nonempty, bounded, closed and convex pair in a re-
flexive Banach space X. Assume that T : A∪B → A∪B is a cyclic relatively nonexpansive
mapping. If T is compact, then it admits a best proximity point.
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Theorem 1.7 ([9]). Let (A,B) be a nonempty, bounded, closed and convex pair in a
reflexive and strictly convex Banach space X. Assume that T : A ∪ B → A ∪ B is a
noncyclic relatively u-continuous mapping. If T is compact, then it admits a best proximity
pair.

The cyclic (noncyclic) version of condensing mappings was introduced in [7] in order
to study the existence of best proximity points (pairs) and to generalize Theorems 1.6
and 1.7 above.

Definition 1.8. Let (A,B) be a nonempty and convex pair in a Banach space X and µ
a measure of non-compactness on X. A cyclic (noncyclic) mapping T : A ∪ B → A ∪ B
is said to be a condensing operator if there exists r ∈ (0, 1) such that for any nonempty,
bounded, closed, convex, proximal and T -invariant pair (H1, H2) ⊆ (A,B) such that
dist(H1, H2) = dist(A,B) we have

µ(T (H1) ∪ T (H2)) ≤ rµ(H1 ∪H2).

Next results are real extensions of Theorem 1.2 due to Darbo.

Theorem 1.9 ([7]). Let (A,B) be a nonempty, bounded, closed and convex pair in a
reflexive Banach space X and µ an measure of non-compactness on X. If T : A ∪B →
A ∪ B is a cyclic relatively nonexpansive mapping which is condensing in the sense of
Definition 1.8, then it admits a best proximity point.

The above theorem holds true for noncyclic relatively nonexpansive mapping whenever
we add an additional condition “strict convexity”:

Theorem 1.10 ([7]). Let (A,B) be a nonempty, bounded, closed and convex pair in
a reflexive and strictly convex Banach space X and µ an measure of non-compactness
on X. If T : A ∪ B → A ∪ B is a noncyclic relatively nonexpansive mapping which is
condensing in the sense of Definition 1.8, then it admits a best proximity pair.

We also refer to Gabeleh-Vetro [10] for the generalizations of Theorems 1.9 and 1.10,
by considering a class of cyclic (noncyclic) Meir-Keeler condensing operators.

2. Condensing Operators on C-Class of Functions

Motivated by the class of condensing operators in Definition 1.8, we introduce the
following new classes of cyclic (noncyclic) mappings.

Definition 2.1. Let (A,B) be a nonempty and convex pair in a Banach space X and µ
an measure of non-compactness on X. A cyclic (noncyclic) mapping T : A∪B → A∪B
is said to be a condensing operator on C-class of functions if for any nonempty, bounded,
closed, convex, proximal and T -invariant pair (H1, H2) ⊆ (A,B) such that dist(H1, H2) =
dist(A,B) we have

ψ
(
µ
(
T (H1) ∪ T (H2)

))
≤ F

(
ψ
(
µ(H1 ∪H2)

)
, ϕ
(
µ(H1 ∪H2)

))
, (2.1)

for all ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C.

Remark 2.2. If in the above definition ψ(t) = t and F (s, t) = rs for all s, t ∈ [0,∞) and
for some r ∈ (0, 1), then T is a condensing operator in the sense of Definition 1.8.
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Remark 2.3. If in the above definition ψ(t) = t and F (s, t) = sβ(s) for all s, t ∈ [0,∞)
where β : [0,∞) → [0, 1) is a function such that β(tn) → 1 ⇒ tn → 0, then T is a
β-condensing operator which was recently introduced in [9].

We begin our main results with the next existence theorem.

Theorem 2.4. Let (A,B) be a nonempty, disjoint, bounded, closed and convex pair in a
strictly convex Banach space X such that A0 is nonempty and µ is an measure of non-
compactness on X. Let T : A∪B → A∪B be a noncyclic relatively u-continuous mapping
which is a condensing operator on C-class of functions. Then T has a best proximity pair.

Proof. Notice that (A0, B0) is closed, convex and proximinal. Relatively u-continuity of
the mapping T ensures that (A0, B0) is T -invariant. By a similar notations of the proof
of [9, Theorem 6], we set A0 = A0 and D0 = B0 and for all n ∈ N define

Cn = co(T (Cn−1)), Dn = co(T (Dn−1)).

Thus

C1 = co(T (C0)) = co(T (A0)) ⊆ A0 = C0,
and iteratively we have Cn−1 ⊇ Cn for all n ∈ N. Analogously, we find that Dn−1 ⊇ Dn
for all n ∈ N. On the other hand, we have

T (Cn) ⊆ co(T (Cn)) = Cn+1 ⊆ Cn.
Equivalently, we have T (Dn) ⊆ Dn. Thus, we conclude, for all n ∈ N, that each pair
(Cn,Dn) is T invariant and moreover each mentioned pair is closed and convex. Moreover,
by the fact that T relatively u-continuous, if (x, y) ∈ C0 ×D0 with ‖x− y‖ = dist(A,B),
then ‖Tnx− Tny‖ = dist(A,B) for all n ∈ N. Since (Tnx, Tny) ∈ Cn ×Dn, we have

dist(Cn,Dn) = dist(A,B), ∀n ∈ N.

On the other hand, if u ∈ C1 = co(T (C0)), then u =
∑m
j=1 cjT (uj) where uj ∈ C0 for

all 1 ≤ j ≤ m such that cj ≥ 0 and
∑m
j=1 cj = 1. Since (C0,D0) is proximinal, for all

1 ≤ j ≤ m there exists vj ∈ D0 such that ‖uj − vj‖ = dist(C0,D0) (= dist(A,B)) and so
‖Tuj − Tvj‖ = dist(A,B). Put v :=

∑m
j=1 cjT (vj). Then v ∈ D1 and

‖u− v‖ = ‖
m∑
j=1

cjT (uj)−
m∑
j=1

cjT (vj)‖ ≤
m∑
j=1

‖T (uj)− T (vj)‖ = dist(A,B).

Hence, the pair (C1,D1) is proximinal. By a similar argument we conclude that the
(Cn,Dn) is proximinal for all n ∈ N ∪ {0}. Notice that if there exists k ∈ N for which
max{µ(Ck), µ(Dk)} = 0, then (Ck,Dk) is a compact pair and the result follows from
Theorem 1.7. Thus we suppose that max{µ(Cn), µ(Dn)} > 0 for all n ∈ N. In view of the
fact that T is a condensing operator on C-class of functions, we obtain

ψ
(
µ(Cn+1 ∪ Dn+1)

)
= ψ

(
max{µ(Cn+1), µ(Dn+1)}

)
= ψ

(
max{µ(co(T (Cn))), µ(co(T (Dn)))}

)
= ψ

(
max{µ((T (Cn))), µ((T (Dn)))}

)
≤ ψ

(
µ(T (Cn) ∪ T (Dn))

)
(*)

≤ F
(
ψ
(
µ(Cn ∪ Dn)

)
, ϕ
(
µ(Cn ∪ Dn)

))
≤ ψ

(
µ(Cn ∪ Dn)

)
. (2.2)
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Since {µ(Cn ∪ Dn)} is a decreasing sequence we may assume that

lim
n→∞

µ(Cn ∪ Dn) = r

for some r ≥ 0. Now from (2) and the continuity of the ψ, F we must have

ψ(r) ≤ F
(
ψ(r), ϕ(r)

)
≤ ψ(r),

and so by the property of the function F we conclude that either ψ(r) = 0 or ϕ(r) = 0.
In both cases, we must have r = 0. Thereby,

lim
n→∞

µ(Cn ∪ Dn) = max{ lim
n→∞

µ(Cn), lim
n→∞

µ(Dn)} = 0.

It now follows from the condition (A5) of Definition 1.1 that the pair (C∞,D∞) is
nonempty, closed and convex which is T -invariant, where C∞ =

⋂∞
n=0 Cn and D∞ =⋂∞

n=0Dn. Also dist(C∞,D∞) = dist(A,B) and clearly, (C∞,D∞) is proximinal. On the
other hand,

max{µ(C∞), µ((D∞))} = 0,

which ensures that the pair (C∞,D∞) is compact. Now the result follows from Theorem
1.7.

The cyclic version of Theorem 2.4 can be constructed in order to study the existence
of best proximity points in the setting of Banach spaces which are not strictly convex,
necessarily.

Theorem 2.5. Let (A,B) be a nonempty, disjoint, bounded, closed and convex pair in
a Banach space X such that A0 is nonempty and µ is an measure of non-compactness
on X. Let T : A ∪ B → A ∪ B be a cyclic relatively nonexpansive mapping which is a
condensing operator on C-class of functions. Then T has a best proximity point.

Proof. Using a similar argument of Theorem 2.4 we have that (A0, B0) is closed, convex,
proximinal and T -invariant, that is, T (A0) ⊆ B0 and T (B0) ⊆ A0. By a similar argument
of the proof of [9, Theorem 8] we define the sequence {(Cn,Dn)} as below:

Cn = co(T (Cn−1)), Dn = co(T (Dn−1)),

where, C0 := A0 and D0 := B0, then we have

C1 = co(T (C0)) = co(T (A0)) ⊆ B0 = D0,

and so, T (C1) ⊆ T (D0) which ensures that C2 = co(T (C1)) ⊆ co(T (D0)) = D1. Iteratively,
we obtain Cn+1 ⊆ Dn which is equivalent to say that Dn ⊆ Cn−1 for all n ∈ N. Therefore,

Cn+2 ⊆ Dn+1 ⊆ Cn ⊆ Dn−1, for all n ∈ N.

This concludes that {(C2n,D2n)}n≥0 is a decreasing sequence consisting of closed and
convex pairs in A0 ×B0. Besides,

T (D2n) ⊆ T (C2n−1) ⊆ co(T (C2n−1)) = C2n,

T (C2n) ⊆ T (D2n−1) ⊆ co(T (D2n−1)) = D2n.

Thus (C2n,D2n) is T -invariant. We also can see that by a similar approach of the proof
of Theorem 2.4,

dist(C2n,D2n) ≤ ‖T 2nx− T 2ny‖ ≤ ‖x− y‖ = dist(A,B),
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and that (C2n,D2n) is also proximinal for all n ∈ N. Notice that if

max{{µ(C2k), µ(D2k)} = 0

for some k ∈ N, then the result follows from Theorem 1.9. Let

max{{µ(C2n), µ(D2n)} > 0

for all n ∈ N. By the fact that T is a condensing operator on C-class of functions,

ψ
(
µ(C2n+2 ∪ D2n+2)

)
= ψ

(
max{µ(C2n+2), µ(D2n+2)}

)
≤ ψ

(
max{µ(D2n+1), µ(C2n+1)}

)
= ψ

(
max{µ(co(T (D2n))), µ(co(T (C2n)))}

)
= ψ

(
max{µ((T (C2n))), µ((T (D2n)))}

)
≤ ψ

(
µ(T (C2n) ∪ T (D2n))

)
≤ F

(
(µ(C2n ∪ D2n)), µ(C2n ∪ D2n)

)
(**)

≤ ψ
(
µ(C2n ∪ D2n)

)
.

It now follows from the conditions on C-class of functions that

lim
n→∞

µ(C2n ∪ D2n) = max{ lim
n→∞

µ(C2n), lim
n→∞

µ(D2n)} = 0.

Now if we set C∞ =
⋂∞
n=0 C2n, and D∞ =

⋂∞
n=0D2n then (C∞,D∞) is nonempty, closed,

convex, and T -invariant with dist(A,B) = dist(C∞,D∞) for which we have
max{µ(C∞), µ((D∞))} = 0. Again by using Theorem 1.9 the result follows.

It is worth noticing that if in Theorem 2.4 A = B, then the existence of fixed points
will be concluded as follows.

Corollary 2.6 ([11]). Let A be a nonempty, bounded, closed, and convex subset of a
Banach space X and let T : A→ A be a nonexpansive mapping such that

ψ(µ(T (H))) ≤ F (ψ(µ(H)), ϕ(µ(H))), (2.3)

for any subset H ⊆ A and where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Then T has a fixed point.

Remark 2.7. It is remarkable to note that the considered mapping T in Corollary 2.6
need to be nonexpansive and if that is continuous, then the result still holds (see Theorem
2.1 of [11] for more details).

3. Application to a Class of Functional Integral Equations

Let a > 0 and C([0, a]) be the family of all continuous real valued functions defined on
interval [0, a]. It is known that C([0, a]) is a Banach space with the standard norm

‖x‖ = max{|x(t)| : t ∈ [0, a]}.

Let X be a subset of MC([0,a]). For ε > 0 and x ∈ X, we denote by ω(x, ε) the modulus
of continuity of x defined by

ω(x, ε) = sup{|x(t1)− x(t2)| : t1, t2 ∈ [0, a], |t1 − t2| ≤ ε}. (3.1)
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Furthermore, let ω(X, ε) and ω0(X) are defined by

ω(X, ε) = sup{ω(x, ε) : x ∈ X},
ω0(X) = lim

ε→0
ω(X, ε).

It was announced in [5] that above function ω0 is a measure of non-compactness in space
C[0, a].

Let I = [0, a], J = [0, C] and let ϕ ∈ Φ, ψ ∈ Ψ, F ∈ C. Assume that αi, βj , : I → I,
γk : J → I, φ : I → R+, are continuous functions, where 1 ≤ i ≤ m, 1 ≤ j ≤ l,
and 1 ≤ k ≤ n. Moreover, motivated by the results of [12], we consider the following
continuous functions

g : I × Rl → R, f : I × Rm → R, u : I × J × Rn → R,

so that

(1) ∃ ai for 1 ≤ i ≤ m such that

|f(t, x1, · · · , xm)−f(t, y1, · · · , ym)| ≤ F (ψ(

m∑
1

ai|xi−yi|), ϕ(

m∑
1

ai|xi−yi|)), (3.2)

(2) ∃ bi 1 ≤ i ≤ l such that

|g(t, x1, · · · , xl)− g(t, y1, · · · , yl)| ≤ F (ψ(

l∑
1

bi|xi − yi|), ϕ(

l∑
1

bi|xi − yi|)), (3.3)

(3) ∃ hi : R+ → R+ for which hi is nondecreasing for any 1 ≤ i ≤ n and

|u(t, τ, x1, · · · , xn)| ≤
n∑
1

hi(|xi|), (3.4)

where t ∈ I, τ ∈ J, xi, yi ∈ R.
(4) There exists a positive solution r0 of the inequality

Blr +M + C(Amr +N)(

n∑
1

hi(r)) ≤ r, (3.5)

where B = max{bi : 1 ≤ i ≤ l}, A = max{ai : 1 ≤ i ≤ m} and M,N, and C are
the positive constants such that

|g(t, 0, 0, · · · , 0)| ≤M, |f(t, 0, 0, · · · , 0)| ≤ N, and φ(t) ≤ C, ∀t ∈ I.

(5) By definition (3.1)

sup
t,t′∈I,|t−t′|≤ε

{F (|ψ(x(t)− x(t′))|, |ϕ(x(t)− x(t′))|)} ≤ F (ψ(ω(x, ε)), ϕ(ω(x, ε)))

(3.6)

Set

xβ(t) := (x(β1(t)), x(β2(t)), · · · , x(βl(t))),

xα(t) := (x(α1(t)), x(α2(t)), · · · , x(αm(t))),

xγ(t) := (x(γ1(t)), x(γ2(t)), · · · , x(γn(t))), ∀t ∈ I.
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Consider

x(t) = g(t, xβ(t)) + f(t, xα(t))

∫ φ(t)

0

u(t, τ, xγ(τ))dτ. (3.7)

Tx(t) := g(t, xβ(t)) + f(t, xα(t))

∫ φ(t)

0

u(t, τ, xγ(τ))dτ. (3.8)

Theorem 3.1 ([11]). Let C be a nonempty, bounded, closed, and convex subset of a
Banach space E and let T : C → C be continuous mapping, such that

ψ(µ(T (M))) ≤ F (ψ(µ(M)), ϕ(µ(M))), (3.9)

for any subset M of C and where ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C. Then T has a fixed point.

Theorem 3.2. Under the assumptions (3.2),(3.3),(3.4),(3.5) and (3.6) the nonlinear
integral equation (3.8) has at least a solution.

Proof. By the above conditions, we shall prove the measure of noncompactness ω0(X) is
satisfying the contraction (3.9). To do this we have some claims:

Claim 1. Tx ∈ Br0 ; Br0 is a ball.

Claim 2. Operator T : Br0 → Br0 is continuous.

Claim 3. Operator T satisfies (3.9) with respect to measure of noncompactness ω0 in Br0 .

To prove Claim 1, we have

|Tx(t)| ≤ |g(t, xβ(t))− g(t,0l)|+ |g(t,0l)|+ |f(t, xα(t))− f(t,0m) + f(t,0m)|
×
∫ φ(t)
0
|u(t, τ, xγ(τ))|dτ

≤ F (ψ(
∑l

1 bi|xβi
(t)|), ϕ(

∑l
1 bi|xβi

(t)|)) +M

+C (F (ψ(
∑m

1 ai|xαi
(t)|), ϕ(

∑m
1 ai|xαi

(t)|)) +N) (
∑n

1 h(|xγi(t)|))
by (3.2), (3.3),(3.4)

≤
∑l

1 bi|xβi
(t)|+M + C (

∑m
1 ai|xαi

(t)|+N) (
∑n

1 h(|xγi(t)|))
by the definition of C-class function (1) and (3.4)

≤ Bl‖x‖+M + C(Am‖x‖+N) (
∑n

1 h(‖x‖))

≤ Blr0 +M + C(Amr0 +N) (
∑n

1 h(r0)) by (3.5)

≤ r0,

where 0m = (0, · · · , 0)︸ ︷︷ ︸
m times

and 0m = (0, · · · , 0)︸ ︷︷ ︸
m times

. This result shows that Tx ∈ Br0 .
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To prove Claim 2; we prove that operator T : Br0 → Br0 is continuous. To do this,
consider ε > 0 and any x, y ∈ Br0 such that |xi − yi| ≤ ε. Then we obtain the following
inequalities by using conditions of Theorem

|Tx(t)− Ty(t)| ≤ |g(t, xβ(t))− g(t, yβ(t))|
+ |f(t, xα(t))− f(t, yα(t))|

×
∫ φ(t)

0

|u(t, τ, xγ(τ))|dτ

+ |f(t, yα(t))− f(t,0m)| (0m = (0, · · · , 0)︸ ︷︷ ︸
m times

)

+ |f(t,0m)|
∫ φ(t)

0

|u(t, τ, xγ(τ))− u(t, τ, yγ(τ))|dτ

≤ F (ψ(

l∑
1

ai|xβi(t)− yβi(t)|), ϕ(

l∑
1

ai|xβi(t)− yβi(t)|)) (by (3.9))

+ C

(
F (ψ(

m∑
1

bi|xαi
(t)− yαi

(t)|), ϕ(

m∑
1

bi|xαi
(t)− yαi

(t)|))

)

×

(
n∑
1

hi(|xγi(t)|)

)

+

(
n∑
1

hi(|yγi(t)|+N)

)∫ φ(t)

0

|u(t, τ, xγ(τ))− u(t, τ, yγ(τ))|dτ

≤
l∑
1

aiψ(|xβi(t)− yβi(t)|) + C

(
m∑
1

biψ(|xαi(t)− yαi(t))

)

×

(
n∑
1

h(|xγi(t)|)

)

+

(
n∑
1

h(|yγi(t)|+N)

)∫ φ(t)

0

|u(t, τ, xγ(τ))− u(t, τ, yγ(τ))|dτ

≤
l∑
1

ai‖x− y‖+ C

(
m∑
1

bi‖x− y‖

)(
n∑
1

hi(‖x‖)

)
+ (An‖y‖+N)Cωu(I, ε)

≤ mBε+ CAmε

(
n∑
1

h(r0)

)
+ (Anr0 +N)Cωu(I, ε),

where

ωu(I, ε) = sup
t∈I,τ∈J,xi,yi∈R0,1≤i≤m,|xi−yi|≤ε

{|u(t, τ, x1, · · · , xm)− u(t, τ, y1, · · · , ym)}

where J := [0, C] and R0 = [−r0, r0]. u is uniformly continuous on I × J × Rm0 and
ωu(I, ε)→ 0 as ε→ 0. So T is continuous on Br0 .
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To prove Claim 3; we show that operator T satisfies (3.9) with respect to measure of
noncompactness ω0 in Br0 .

Fix arbitrary ε > 0. Let us consider x ∈ X and t1, t2 ∈ I with |t1 − t2| ≤ ε, for any
nonempty subset X of Br0 :

|Tx(t1)− Tx(t2)| ≤ |g(t1, xβ(t1))− g(t1, xβ(t2))|+ |g(t1, xβ(t2))− g(t2, xβ(t2))|
+ [|f(t1, xα(t1))− f(t1, xα(t2))|+ |f(t1, xα(t2))− f(t2, xα(t2))|]

×
∫ φ(t1)

0

|u(t1, τ, xγ(τ))|dτ

+ |f(t2, xα(t2))|
∫ φ(t1)

0

|u(t1, τ, xγ(τ))− u(t2, τ, xγ(τ))|dτ

+ |f(t2, xα(t2))|
∫ φ(t2)

φ(t1)

|u(t2, τ, xγ(τ))|dτ

≤ F (ψ(

l∑
1

bi|xβi
(t1)− xβi

(t2)|), ϕ(

l∑
1

bi|xβi
(t1)− xβi

(t2)|))

+ ωg(I, ε)

+ C

(
F (ψ(

m∑
1

ai|xαi
(t1)− xαi

(t1)|), ϕ(

m∑
1

ai|xαi
(t1)− xαi

(t2)|))

+ωf (I, ε))

×

(
n∑
1

hi(|xγi(τ)|)

)
+ [|f(t2, xαi

(t2)− f(t,0)|

+ |f(t,0)|

(
Cωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(|xγi(τ)|)

))

≤ F (ψ(B

l∑
1

ω(x, ω(βi, ε))), ϕ(B

l∑
1

ω(x, ω(βi, ε))))

+ ωg(I, ε) (by (3.6))

+ C

(
F (ψ((A

l∑
m

ω(x, ω(αi, ε))), ϕ((A

l∑
m

ω(x, ω(αi, ε)))) + ωf (I, ε)

)

×

(
n∑
1

hi(‖x‖)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε)) + ω(φ, ε)

(
n∑
1

hi(‖x‖)

))
.

Therefore
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|Tx(t1)− Tx(t2)| ≤ F (ψ(Bmω(X, ε), ϕ(Bmω(X, ε))) + ωg(I, ε)

+C (F (ψ((Alω(X, ε))), ϕ((Alω(X, ε)))) + ωf (I, ε))

(
n∑
1

hi(‖x‖)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(‖x‖)

))
(3.10)

≤ B

m∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

+C

(
A

l∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

)(
n∑
1

hi(‖x‖)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(‖x‖)

))

≤ B

m∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

+C

(
A

l∑
1

ω(x, ω(βi, ε)) + ωg(I, ε)

)(
n∑
1

hi(r0)

)

+ (Anr0 +N)

(
Cωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(r0)

))
,

where

ωg(I, ε) = sup{|g(t, x1, ..., xl)− g(t′, x1, ..., xl)| : t, t′ ∈ I, xi ∈ R0, 1 ≤ i ≤ l, |t− t′| ≤ ε}
ωf (I, ε) = sup{|f(t, x1, ..., xm)−g(t′, x1, ..., xm)| : t, t′ ∈ I, xi ∈ R0, 1 ≤ i ≤ m, |t− t′| ≤ ε}
ωu(I, ε) = sup{|u(t, τ, x1, ..., xm)− u(t, τ, y1, ..., yn)| : t ∈ I, τ ∈ J, xi, yi ∈ R0, 1 ≤ i ≤ n,

|xi − yi| ≤ ε},
also

ωαi(I, ε) = sup{|αi(t)− αi(t′)| : t, t′ ∈ I, |t− t′| ≤ ε},
ωβi(I, ε) = sup{|βi(t)− βi(t′)| : t, t′ ∈ I, |t− t′| ≤ ε},
ω(φ, ε) = sup{|φ(t)− φ(t′)| : t, t′ ∈ I, |t− t′| ≤ ε},

By (3.10),

ψ(ω(TX, ε)) ≤ ω(TX, ε)

≤ F (ψ(Bmω(X, ε), ϕ(Bmω(X, ε))) + ωg(I, ε)

+ C (F (ψ((Alω(X, ε))), ϕ((Alω(X, ε)))) + ωf (I, ε))

(
n∑
1

hi(r0)

)

+

(
n∑
1

ai‖x‖+N)

)(
Cω(x, ωu(I, ε) + ω(φ, ε)

(
n∑
1

hi(r0)

))
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so we obtain ω(αi, ε)→ 0, ω(βi, ε)→ 0 and ω(φ, ε)→ 0 as ε→ 0, by uniformly continuous
of αi, βi on I. And similarly ωf (I, ε) → 0, ωg(I, ε) → 0 and ωu(I, ε) → 0 as ε → 0, by
uniformly continuous of f, g, u on I ×Rm0 , I ×Rl0 and I × [0, C]×Rn0 , respectively. Hence

ψ(ω0(T (X))) ≤ F (ψ(ω0(X)), ϕ(ω0(X))).

Therefore, by Theorem 3.1 we get that T has at least one fixed point in Br0 . Consequently,
nonlinear functional integral equation (3.8) has at least one continuous solution in Br0 ⊆
C(I). This completes the proof.

In what follows, we present an example to illustrate Theorem 3.2.

Theorem 3.3 ([2]). Let T be the self-operator on BC([0,∞)) in (3.8). If

(i) the function t→ g(t,0) is a member of the space BC([0,∞));
(ii) there exists δ ∈ [1,+∞) such that, for each t ∈ [0,∞), we have

|g(t, xβ(t))− g(t, yβ(t))| ≤ 2eδ‖xβ(t)− yβ(t)‖
(iii) there are continuous c0, c1 : [0,∞)→ [0,∞) such that

lim
t→∞

c0(t)

∫ t

0

c1(s)ds = 0

and c0(t)c1(s) ≥ |G(t, s, u)| for all t, s ∈ [0,∞) such that t ≥ s, and for each
u ∈ R;

(iv) there exists a positive r0 such that (eα − 1)r0 ≥ eαm, where m is given by

m∗ = sup
t≥0
{|g(t,0)|+ c0(t)

∫ t

0

c1(s)ds},

then T admits a fixed point in BC([0,∞)).

Fixed t ∈ [0,∞), we get C(t) = {u(t) : u ∈ C} and hence we consider the measure of
noncompactness µ on the family of all nonempty bounded, closed and convex subsets of
BC([0,∞)), say B(BC([0,∞))), as follows

µ(C) = ω0(C) + lim sup
t→∞

diamC(t), (3.11)

where diamC(t) = sup{|u(t)− v(t)| : u, v ∈ C}.

Example 3.4. Put

f(t, xα(t)) =
1

reα

(
1 +

∑m
i=1 |xi|

1 + t+
∑m
i=1 |xi|

)
,

g(t, xβ(t)) =
1

r

(
1 + t2

2 + t2
ln(1 +

∑l
i=1 |xi|)

2
√
eα + ln(1 +

∑l
i=1 |xi|)

+ 2e−t

)
, t ∈ [0, 1],

|u(t, τ, xγ(τ))| ≤ cos ‖xγ(τ)‖
1 + t2

e−teτ/2,

ϕ(t) =
√
t,

ψ(t) =
t

1 + t
,

F (s, t) =
s

2eα
,

h1 = h2 = · · · = hn = 2.
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Consider the following functional integral equation

x(t) = 1
r

(
1 + t2

2 + t2
ln(1 +

∑l
i=1 |xi|)

2
√
eα + ln(1 +

∑l
i=1 |xi|)

+ 2e−t

)
+

1

2reα

(
1 +

∑m
i=1 |xi|

1 + t+
∑m
i=1 |xi|

)∫ ϕ(t)
0

u(t, τ, xγ(τ))dτ,

in the space BC([0, 1]).
We have

M = N = A = B =
1

r
and C = 1,

so

Blr +M + C(Amr +N)(

n∑
1

hi(r)) ≤ l +
1

r
+ (m+

1

r
)n ≤ r, (3.12)

inequality (3.12) holds for some r := l +mn+ n+ 1 > 1. Clearly, g is continuous and is
such that the function t→ g(t,0) is an element of BC([0, 1]).

We have

0 ≤ |f(t, xα(t))− f(t, yα(t))|

≤ 1

2reα

(
1 +

∑m
i=1 |xi|

1 + t+
∑m
i=1 |xi|

−
1 +

∑m
i=1 |yi|

1 + t+
∑m
i=1 |yi|

)
≤ 1

2reα

(
t
∑m
i=1(|xi| − |yi|)

1 + t+
∑m
i=1(|xi| − |yi|)

)
≤ 1

2reα

( ∑m
i=1(|xi − yi|)

1 +
∑m
i=1(|xi − yi|)

)
≤ 1

2reα

(
ψ(

m∑
i=1

(|xi − yi|))

)

≤ 1

r

(
F (ψ(

m∑
i=1

(|xi − yi|)), ϕ((

m∑
i=1

(|xi − yi|))))

)

≤ F

(
ψ(

m∑
i=1

(|xi − yi|)), ϕ((

m∑
i=1

(|xi − yi|))

)
,

(according to (3.2) of Theorem 3.2)

and likewise (3.3) of Theorem 3.2 holds.

0 ≤ |g(t, xβ(t))− g(t, yβ(t))|

≤ 1

2eα

l∑
i=1

(|xi − yi|) for all α ∈ [1,∞)

≤ 1

2eα

l∑
i=1

(|xi − yi|) ≤ 2eδ‖xβ(t)− yβ(t)‖

(for some δ ∈ [1,∞); (ii) of Theorem 3.3)
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and proof of Theorem 3.3. And

|u(t, τ, xγ(τ))| ≤ cos ‖xγ(τ)‖
1 + t2

e−teτ/2

≤ 1

1 + t2
e−teτ/2 ≤ 2

1 + t2
≤ 2n =

n∑
i=1

hi(|xi|).

(according to (3.4) of Theorem 3.2)

Let c1, c2 : [0,∞)→ [0,∞) be defined by

c1(t) = e−t, c2(τ) = eτ/2 for all t, τ ∈ [0,∞),

which means condition (ii) of Theorem 3.3 holds.
By

|u(t, τ, xγ(τ))| ≤ cos ‖xγ(τ)‖
1 + t2

e−tes/2 ≤ e−tes/2 for all t, s ∈ [0,∞).

Clearly,

lim
t→∞

e−t
∫ t

0

es/2ds = lim
t→∞

2e−t(et/2 − 1) = 0,

the condition (iii) form Theorem 3.3 is also holds. Also,

m∗ = sup
t≥0
{|g(t,0)|+ c0(t)

∫ t

0

c1(s)ds} = sup
t≥0
{2e−t + 2e−t(2et/2 − 1)} = 2.

Fixed t ∈ [0,∞), we get C(t) = {u(t) : u ∈ C} and hence we consider the measure of
noncompactness µ on the family of all nonempty bounded, closed and convex subsets of
BC([0,∞)), say B(BC([0,∞))), as follows

µ(C) = ω0(C) + lim sup
t→∞

diamC(t), (3.13)

where diamC(t) = sup{|u(t)− v(t)| : u, v ∈ C}. and so we get

lim sup
t→∞

diam(T (C))(t) ≤ 1

2eδ
lim sup
t→∞

diam(C)(t). (3.14)

By (3.13) and (3.14), we deduce that

ψ(µ(T (C))) =
µ(T (C))

1 + µ(T (C))

≤ µ(T (C))

≤ 1

2eδ
µ(C)

= F (ψ(µ(C)), ϕ(µ(C))).

If we put r0 = 3 in the condition (iv) of Theorem 3.3 will be hold. So, Theorem 3.3
confirms that the operator

Tx(t) := g(t, xβ(t)) + f(t, xα(t))

∫ ϕ(t)

0

u(t, τ, xγ(s))ds, (3.15)

has solution.
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