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1. INTRODUCTION

Let C' be a nonempty closed convex subset of a real Hilbert space H. Let F': CxC — R
be a bifunction. The equilibrium problem for F' is to determine its equilibrium point, i.e.,
the set

EP(F)={xe€C:F(zx,y) >0,Vy € C}. (1.1)

Equilibrium problems were introduced by [1] in 1994 where such problems have had
a significant impact and influence in the development of several branches of pure and
applied sciences. Various problems in physics, optimization, and economics are related
to seeking some elements of EP(F), see [1, 2]. Many authors have been investigated
iterative algorithms for the equilibrium problems, see, for example, [2, 3].

If we take F(z,y) = (y — x, Az), where A : C' — H is a nonlinear mapping, then the
classical equilibrium problem is equivalent to finding an element x € C' such that

(y —x, Ax) > 0,Vy € C, (1.2)
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which is well-known as the classical variational inequality problem. The solution set of
the problem (1.2) is denoted by VI(C, A).

Variational inequalities were introduced and investigated by Stampacchia [4] in 1964.
It is now well known that variational inequalities cover as diverse disciplines as opti-
mal control, optimization, mathematical programming, mechanics and finance, see [5-7].
There are several techniques to analyze various iterative methods for solving variational
inequality problem and the related optimization problems, see [8—10] and the references
therein.

In 2013, Suwannaut and Kangtunyakarn [3] introduced the combination of equilibrium
problem which is to find x € C such that

N
> aiFi(z,y) > 0,%y € C, (1.3)
=1

where F; : C x C — R be bifunctions and a; € (0,1) with Zfil a; = 1, for every
i=1,2,...,N. The set of solution (1.3) is denoted by EP (zj\; aq;Fi) — NN, EP(F).
If F; = F,Vi=1,2,...,N, then the combination of equilibrium problem (1.3) reduces to
the equilibrium problem (1.1).

The fixed point problem for the mapping T : C' — C'is to find « € C such that z = T'x.
We denote the fixed point set of a mapping T' by Fiz(T).
Definition 1.1. Let T : C'— C be a mapping. Then

(i). a mapping T is called contractive if there exists a € (0,1) such that

[Tz =Tyl < allz -yl Vz,y € C;
(ii). a mapping T is called nonexpansive if
[Tz =Tyl < |l -yl ,Vo,y € C;

(iii). T is said to be k-strictly pseudo-contractive if there exists a constant x € [0,1)
such that

Tz = Ty|* < llz = y|* + & [|(I = T)a — (I = T)yl* ,Va,y € C.

Note that the class of k-strictly pseudo-contractions strictly includes the class of non-
expansive mappings, that is, a nonexpansive mapping is a O-strictly pseudo-contractive
mapping.

For the last decades, many researchers have studied fixed point theorems associated
with various types of nonlinear mappings, see, for instance, [11-18].

In 2015, Yao et al. [19] proposed the intermixed algorithm for two strictly pseudo-
contractive mappings S and T as follows:

For arbitrarily given xo € C,yo € C, let the sequences {z,} and {y,} be generated
iteratively by
Tn+l = (1 - Bn) Ty + ﬁnPC [anf (yn> + (1 — k- an) Ty + kTwn] , N Z 07
Yn+1 = (1 - /Bn) Yn + BnPc [ang (xn) + (1 —k— an) Yn + kSZ/n] ,n >0, (14)

where T': C' — C' is a A-strictly pseudo-contraction, f : C'— H is a pj-contraction and
g: C — H is a py-contraction, k € (0,1 — A) is a constant and {«,}, {#,} are two real
sequences in (0, 1).
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Furthermore, under some control conditions, they proved that the iterative sequences
{z,} and {y, } defined by (1.4) converge independently to Ppiz(7)f (y*) and Ppizs)9 (z*),
respectively, where 2* € Fiz(T) and y* € Fiz(S).

In 2018, Suwannaut [20] introduced the S-intermized iteration for two finite families
of nonlinear mappings as in the following algorithm:

Starting with x1,y1, 21 € C, let the sequences {z,}, {yn} and {z,} be defined by
Tn+l = (1 - Bn) Ty + ﬂn (anfl (yn) + (1 - an) an) 5
Yn+1 = (1 - /Bn) Yn + Bn (aan (xn) + (1 - an) Tyn) ,n>1, (15)

where S, T : C'— C are nonlinear mappings with Fiz(S)N Fiz (T) #0, f; :C - Cisa
contractive mapping with coefficients p;;i = 1,2 and {a,,}, {8,} are real sequences in
(0,1), ¥n > 1.

Moreover, a strong convergence theorem for finding a common solution of two finite
families of equilbrium problems is proved.

Inspired by previous research described above, we introduce the new iterative method
called the general intermized iteration for two finite families of nonlinear mappings as in
the following algorithm:

Starting with z1,y; € C, let the sequences {x,} and {y,} be defined by
Tptl = (1 - ﬂn) ZTn + BnPc (O‘n'Yfl (yn) =+ (I - anA) an) s
Ynt1 = (1= Bn) yn + BuPc (anvfo (xn) + (I — anA) Tyyn) ,n > 1, (1.6)
where S,T : C — C are nonlinear mappings with Fiz(S) N Fiz (T) #0, fi: C — Cis a
contractive mapping with coefficients p;;i = 1,2 and p = min;egy 21{pi}, A is a strongly
positive linear bounded operator on H with coefficient 4 and 0 <y < 2 and {an}, {8,}
are real sequences in (0,1), Vn > 1.

Remark 1.2. The general intermixed iteration (1.6) is a modification and extension of
several iterations as follows:

(1) If y =1 and A = I, then the general intermixed iteration (1.6) reduces to the
S-intermixed iteration (1.5). Hence, the S-intermixed iteration is a special case
of the general intermixed iteration.

(2) The general intermixed iteration (1.6) can be seen as a modification and ex-
tension of the intermixed algorithm (1.4) in sense that the constant k is not
considered.

Motivated by the related research, we introduce the general intermixed iteration for
two nonlinear mappings. Under some control conditions, a strong convergence theorem
for finding a common solution of a finite family of equilibrium problems and a finite
family of variational inequality problems is proved in Hilbert spaces. Finally a numerical
example is given in a space of real numbers.
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2. PRELIMINARIES

Let H be a real Hilbert space and C' a nonempty closed convex subset of H. We denote
weak convergence and strong convergence by notations  — and ' —", respectively. In
a real Hilbert space H, it is well known that

2 2 2 2
loz + (1 —a)y|” = aflz[” + (1 —a) ly[” —all =) [z —y|",

for all x,y € H and « € [0,1].
For every x € H, there is a unique nearest point Pox in C' such that

[l = Pox| < |lz —yll,Vy € C.

Such an operator P¢ is called the metric projection of H onto C.
Recall that H satisfies Opial’s condition [21], i.e., for any sequence {x,,} with =, — x,
the inequality

liminf ||z, — z|| < liminf ||z, — y||
n—oo n— oo

holds for every y € H with y # z.
To prove the main results in this paper, the following lemmas and remark are used:

Definition 2.1. Let T': H — H be a mapping. Then T is called

(i). a strongly positive operator on H if there exists a constant > 0 with property
(Tx,z) > 7 ||z||*,Vz € H.
(ii). &-inverse-strongly monotone if there exists a positive real number £ such that
(¢ —y, Tz —Ty) > | Tw — Ty|* ,Va,y € H.
Lemma 2.2. Let H be a real Hilbert space. Then, the following inequality holds:
o+ > < ll2ll® + 2 (g, + )
forall x,y € H.
Lemma 2.3 ([22]). For a given z € H and u € C,
u=Poze (u—z,0—u)y >0,VveC.
Furthermore, Po is a firmly nonexpansive mapping of H onto C and satisfies
|Pox — Poy||* < (Pox — Poy,x — ) ,Va,y € H.
Lemma 2.4 ([23]). Let {s,} be a sequence of nonnegative real numbers satisfying
Snt1 < (1 —ap)sp + 0,,Vn >0,

where {a,} is a sequence in (0,1) and {0,} is a sequence such that
(i). Z ay, = 00,
n=1

6 oo
(ii). limsup — < 0 or Z |0n] < 0.
n—oo Op el

Then, lim s, = 0.
n—oo
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Lemma 2.5 ([22]). Let H be a Hilbert space, let C' be a nonempty closed convex subset
of H and let A be a mapping of C into H. Let u € C. Then, for A > 0,

u=Po(I = A)u<ueVIC,A),
where Pg is the metric projection of H onto C.

Lemma 2.6 ([24]). Let C' be a nonempty closed convex subset of a real Hilbert space H
and let A, B : C — H be a, B-inverse strongly monotone, respectively, with o, 5 > 0 and

VI(C,A)NVI(C,B) #0. Then,
VI(C,aA+ (1 —a)B) = VI(C,A)NVI(C,B), Ya € (0,1).
Furthermore, if 0 < A < min{2«, 25}, then we have I — A (aA + (1 — a)B) is nonexpansive
mapping.
From concept of Lemma 2.6, we can prove the following result.

Lemma 2.7. Fori=1,2,...,N, let A; : C — H be an «;-inverse strongly monotone
with 0 < A < 2a; and ﬂivzl VI(C,A;) # 0. Then we have the following statements:

(i) VI(C. 5L aidi) = 2y VI(C, A,

(ii). I — /\Zilil a; A; 15 a monexpansive mapping,
where a; € (0,1), fori=1,2,...,N, and Z?;ai =1

N

Proof. To prove (i), we will show that ﬁ Y oino @A s %—inverse strongly monotone.
For every x,y € C, we obtain

R 1
iAir——— Ay, —y) =
1_a1;a T 1_a1;a Y, —y) =

a;

( (Aiz — Aiy) ,z —y)

-

-
Il
¥

1—(11

(Ajx — Ay, x — y)

|
£

i—2 17(11
N
Q; Qg
= 1_7;1 Az — Agyl|?

2

.
U

S i

||
v

A a; 2
> (125 ) s - 4

a; 2
Ai _Ai
(1_a1) |4 ~ Awy

1=

| >

i
2

Py a;
> = ! Ajx — A;
=) <1a1)( x — Aiy)
=2
2
N N
A 1 1
=5 iAir — —— > " a;A;
2|1 e &M T T

1 N S
Therefore, T Yo @iA; is 5-inverse strongly monotone.
. . . 1 N . A
Using the same argument mentioned above, we also obtain Ty Yo y a;A; is 5-
inverse strongly monotone, for any j =2,3,..., N — 1.
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From Lemma 2.6, we get

N
VI <C,ZaiAi>
i=1
1 N
=VI (C’,alAl + (]. - al) <1 N Za1A2>>

N
1
=VI(C,A)NVI (C, > aiAi>

1—CL1

=VI(C,A)NVI|C 92 a4+ i?:lai iLA,
- s 411 ,1*(11 2 1—a, 1_22 i

i=1 %

N
o a9 1 e
=VI(C,A)NVI (C, A+ — - 2a1A1>

as as a;
=VI A 1 A 1-— E A;
V (07 1)ﬂV <C,1_a1 2+( 1_a1> 1_22_1ai l)

N
VI(C,A)NVI(C, A) N VI (c, 3 “3,41)
Sl
N

as Qa;
VICANVI|[C — B 4, S Yy,
(€4 ( 1-37 ’ Zl—Zfﬂai >

— 2ui=1% i=4

a 1-52 a al a;
1-> i a 1=>a ) 1= a
N
as as a;
VIC,A)NVI|C,———As+ | 1——— — A,
( ) ( 1_2?:16” ’ ( 1_2?_1‘11')2;11_2"3_1% )
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-
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<
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=
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—
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i=1 i=N—1 1- Zi—l ®
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= (VI ,A)NVI|C, Nt o+ N oA
Q A ( -y e e
e aN—1 —Z]-\hla an
- N VvIiCc,a)nVvI|c, - + i=1_% A
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N—-2
= (| VI(C,A)NVI(C,Ay_1)NVI(C,Ay)
i=1
N
(VI A).

=1

To prove (ii), let z,y € C. Then, we get
N N
(I— )\ZG;A1> Tr — (I— /\ZalAl> Yy
i=1 i=1
N N
(x—y)—A (Z a; Az — Z aiAZ-y>
i=1 i=1

2

2

2

N

(=)= A>_ai (A — Ayy)
i=1

2

N
> ai (A — Ay)

i=1

N
= |lz —y|* — 2\ <x - y,Zai (Ajx — Azy)> + A2

i=1

N N
<o =yl =22 ai(w—y, A — Aig) + A2 ai | Az — Agy|)?
=1

i=1

N N
<z =yl =20 aiai | Aiw — Ayl + XD a; || A — Agy?

=1 i=1

N

= o —yll* = D Aas 2a; = V) [ Az — Ay
i=1

<z —y|*.

N . . .
Hence, I — A)";" | a;A; is a nonexpansive mapping. ]

For solving the equilibrium problem for a bifunction F' : C' x C — R, let us assume
that F' and C satisfy the following conditions:
(Al) F(z,z) =0 for all z € C;
(A2) F is monotone, i.e., F(z,y) + F(y,x) <0 for all 2,y € C;
(A3) For each z,y,z € C,

lim F(tz+ (1 —t)z,y) < F(z,y);
t—0+

(A4) For each z € C,y — F(x,y) is convex and lower semicontinuous.

Lemma 2.8 ([3]). Let C be a nonempty closed convex subset of a real Hilbert space
H. Fori=1,2,...,N, let F; : C x C — R be bifunctions satisfying (Al) — (A4) with
NY, EP(F;) #0. Then,

N

N
EP (Z aF> = ﬂ EP (F),
i=1

=1
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N
where a; € (0,1) for everyi=1,2,...,N and Zai =1.

Lemma 2.9 ([1]). Let C be a nonempty closed convexr subset of H and let F be a bi-
function of C x C into R satisfying (A1)-(A4). Let r >0 and x € H. Then, there exists

z € C such that

1
F(z,y)—&—;(y—z,z—@EO,VyGC.

Lemma 2.10 ([2]). Assume that F : C x C — R satisfies (A1) — (A4). Forr > 0, define
a mapping T, : H — C as follows:
1
T, (z) ={z€C: F(z,y) + ;(y—z,z—x) >0,Vy € C}

for allx € H. Then, the following hold:
(i). T, is single-valued;
(ii). T, is firmly nonexpansive, i.e., for any x,y € H,

IT(z) = To()|* < (T (2) = T (), = )

(iii). Fiz (T,) = EP(F);
(iv). EP(F) is closed and convez.

Remark 2.11 ([3]). Since Eljil a; F; satisfies (A1)-(A4), by Lemma 2.8 and Lemma 2.10,

we obtain
N
Fiz(T,) = EP (Z a; 1) = ﬂ EP (F)
i=1
where a; € (0,1), for each ¢ =1,2,..., N, and Zi:l a; = 1.

3. STRONG CONVERGENCE THEOREM
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.
Fori=1,2,....N, let F; : C x C — R be a bifunction satisfying (Al) — (A4). For
=1,2,...,N, let B; : C — H be §;-inverse strongly monotone. Let f,g : C — C
be contractive mappings with coefficients p1 and p2, respectively, with p = max;cy1 2} pi-
Suppose that A is a strongly positive linear bounded operator on H with coefficient 7y and
0<vy< %. Assume that Q) == _, EP(F;) # 0 and Qg := ﬂjvzl VI(C,Bj) # 0. Let the
sequences {xn}, {yn}, {un} and {v,} be generated by x1,y1 € C' and

Zaz i un7 <Z/—Umun—$n>207Vy€Q

N
w=Po|I-) Z Un,

Tng1 = (1= Bn) 2n + BnPo (anyf(yn) + (I — anA)u,),
Yn+1 = (]- - Bn) Yn + BnPc (an’yg(xn) + (I - anA)vn) ,Vn > 1,

where {on}, {Bn}, {rn},{bi} € (0,1),j = 1,2,...,N and 0 < a; < 1, for every i =
1,2,..., N, satisfy the following conditions:
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(Z), nh—>Holoan:0 andzlanzoo;
(ii). 0 <7< B, <wv<1, for some 1,0 > 0;
(ii). 0 < e <rp, <n < oo, for some €, > 0;
(). 0 <A< 2§, forallj=1,2,...,N;

N

N
(v). Zai =1 and Zb{l =1;
= =1

oo [o ] oo
(V). > lomi1 — anl <00, Y |Bns1 — Bl <00, D rny1 — 1| < 00,
n=1 n=1 n=1

j=1,2,...,N.

n+1

Then the sequences {x,} and {y,} converge strongly & = Pq, (& — Ag+~f(9)) and § =
P, (§ — Az + vf(Z)), respectively.

Proof. Since va 1 a;F; satisfies (A1)-(A4), by Lemma 2.10 and Remark 2.11, we have

Uy =Ty, xn and Fiz(T,.,) = ﬂl L EP(Fy).
Moreover, from Lemma 2.5 and Lemma 2.7, we also obtain

N N
ﬂ =VI CZbB =Fiz | Po [ I- ) Zb{lBj

j=1

Step 1 We show that {z,,} and {y,} are bounded.
Let z* € Q1 and y* € Q5. Then we derive

Jnr = 2| < (1= Ba) ln = 21|+ B | Pe (a7 (yn) + (T — o AYun) — 27|
< (1= Bn) oy — 2|
+ B llom (3 (gn) = A2*) + (I = an A) (un = ")
< (1= Bu) lon — 2"
+ B[y £ () = F) |+ an £ () = Aa”
+ (1= @) lun — 2| ]
< (1= Ba) o = 21|+ Ba [anr0 lyn = y7ll + @ | fy") = Az"|
+ (1= a7 =27l

= (1=anfn¥) [len =2 + Bnanyp [lyn —y" || + Brom IIf(y*)*Afv(*H !
3.1

Using the same argument as (3.1), we also obtain

[Yn+1 =9 | £ A=nBn¥) lyn — Y| + Bacnyp |0 — (| + B [|g(z™) — Ay™|| .
(3.2)
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Combining (3.1) and (3.2), we have

@nts =2+ llgnss =5 < (1= anBu(y =70) [ lzn = 2"l + 1y — "]
[ 15" = A2 + lg(@*) = Ay ]
By induction, we get

[ = 2" + lyn — 47|l

| /() — Az™] + llvg (@) — Ay } '

< max{|x1 — 4l — o
Y =P

This implies that {x,} and {y,} are bounded. So are {u,} and {v,}.
Step 2. Derive that ||z, 11 — 25| — 0 and [|yni1 — yull — 0 as n — oo.
Using the same method as in [3], we get

1
lun — wn—1| < [|on — Tpall + . 7 — Tnt1| Jun — 2| - (3.3)

Take p, = anvf(yn) + I — apA)u, and g, = apyg(z,) + (I — @ A)v,. Then, by (3.3),
we obtain

[Ty Y|
< Y 1 f(n) = fyn—0)ll +vlen = an-a| [1f @n-1)ll + 1] — an Al lun — wn—1]|
+|(I —anA)up—1— (I — an_14) upn_1||
< an¥p [y — Yn—1ll + v lan — an—1| | f (yn—1) [ + (1 — a0 ¥) [ — un—1]|
+ lay — an—1| [[Aun—1|

< an1p lyn = Y-l + v lan = anal [1f (yn-1)ll + (1 = an?) [Ilwn — Zpa|

1
+ < [P0 — rn—| flun — xn”} + lan — an_1| [|Aup 1|
< an¥p |Yn — Yn—1ll + vl — can—a| | f (yn—1)ll + (1 — an¥) |20 — Tp—1 |

1
+ . ‘Tn - Tn—1| ”un - xn” + |an - an—1| ||Aun—1|| . (3-4)
From (3.4), we get

[Znt+1 — @nll
S (1 - 6n) ||xn - xn—l” + |ﬂn - Bn—l| ||:17n—1|| + ﬂn ||pn - pn—l”
+ |ﬁn - 5n71| ”PCpnfl“

1
< Bnan¥p [Yn — Yn—1ll + (1 = Buan?) |20 — Tn_1l + < 75 = 1] [Un — u]|

+lan = ana [ (VIf Wn-Dll + [[Aun—1l) + 18n = Br-a| (1 Pepn-1 |l + ||wn—1||)& |
3.5
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Put w, = Z;\f:l bJ, B;. Next, we derive

v = vn—1ll < [[Po (I = Awn) yn — Po (I = Awn) Yn—1|
+1Pc (I = Awn) Yn—1 — Po (I — Mwp—1) Yn—1]|
<yn = ynall + [[( = Awp) yn—1 — (I = Awn—1) Yp—1]|
= llyn = yn—1ll + A[wnyn—1 — wn-1yn—1|

N N
= ”yn - yn—ln + A Z bg@Bjyn—l - Zbiz—lBjyn—l
j=1 =1

-

= llyn = gl + A | (¥ = Bir ) Biyns

—

[]= i

< Ny =yl + A D |6 = By [ 1Byl (3.6)

Jj=1

Using the same method as (3.4), from (3.6), we have

lgn — gn-1ll Canypllzn — Ta_all + 7o — a1l [lg (Tn-1)|l
+ (1= an¥) lon — vp—1ll + o — 1] [[Avp—1]|

<apyp |Tn — Tn-all + 7l — an—1lllg (@n—1)[| + (1 — an?¥) [”yn — Yn—1]|
N
+AY
j=1
<apyp |lTn — Tn-1ll + 7 |on — an—1lllg (@n—1)|| + (1 = a2 ¥) [yn — Yn-1l|

N
+/\Z
j=1

by = by | 1Bl + o — @ Avga|

by = Y| 1Bin-1ll + o = an-a | Ava-a | (3.7)

From (3.7), it yields that

Hyn+1 - yn” S (1 - 571) ||yn - ynfln + |5n - Bn*1| ||yn71|| + Bn ||qn - Qn71||
+ |6n - ﬁn—1| ||PCQn—1||
<Brnonyp ”zn - zn—ln + (1 - 5n04n'_7) ”yn - yn—l“

N
+AY
j=1

+ 1Bn = Bl (lyn—ll + 1Pogn-1l) - (3.8)

b, = b 1Bjn— 1l + law = anal (7 lgn—) | + | Ava 1 )
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By (3.5) and (3.8), we obtain
[Zn41 = Znll + [Yn+1 — ynll

_ 1
< (1= anBn(y —p)) [Hxn — Zp-1|l + [lyn — yn—l\l} + < [7r = 1] | Un — 20|
N
+AY
j=1

At 4+ | Avn-al ] + 180 — Bacal [ Iznoall + sl + | Popaca

= Vs | 1Byl + lan = ol [ 1 0l + 7 llg(n1)]

+1Pogal ]
From Lemma 2.4 and the condition ((i).), ((ii).) and ((vi).), we get

|Znt1 — 2]l = 0 as n — oo (3.9)
and

lyn+1 — ynl|l = 0 as n — oco. (3.10)
Step 3. Prove that lim,, o ||ty — 25| = 0 and lim,— o ||vn — ynl| = 0.

Since u, = T, x, and T, is firmly nonexpansive mapping, we obtain
* 2 * 2
|z* = Tp,zall” = | Tr, 2" — T}, 24|
<AT, x* =Ty p, " — xp)
1 |2 )2 2
= 5 (1T, 20 = 2" > + llzn = 2*I° = |1T5, 20 — 2a)
which follows that
|2 2 2
[tn — 277 < flon — 2™ = llun — zal” (3.11)
By (3.11), thus we obtain
* (|2
[Zn1 — 2"
%112 * 2
< (1= Bn) lzn — 217+ Bn llan (v (yn) — Aun) + (un — z7)||
%112 %12 *
< (1= ) llow = &I + B | lun — 2117 + 20 (1 (y) — Atin, P — 2°)
* (12 * (12 2
< (1= ) llom = 21> + Ba | (o = 2*1° = llun — 2a*)
+ 20 (7 f(Yn) — Atn, pn — CE*>]

< lzn — :E*HQ = Bn lJun — mn”Q + 200 B |7 f (Yn) — Aun|l lpn — 2| .
This implies that
2
< (lon = 2™ + llentr — 27 [Zns1 — zall + 20080 [7.f (Yn) — Aval| [pn — 27| -
From the condition ((i).), ((ii).) and (3.9), we have

|lun — xn|| — 0 as n — oc. (3.12)
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From the definition of w,,, we have

N N
(Yn — Y*, WnlYn — wny™) <yn v Ui By, — > bl Bjy*>

J=1 J=1
N
:<yn y*:z Bjyn — Jy*)>
j=1
N
=) b (yn =" Bjyn — Bjy")
j=1
N
Z 7,65 1Bjym — Biy*|I” - (3.13)

Next, we derive

2

Mzw

N
* (12
[wnyn = way* || = || b3 Bjyn — > biBjy"
j=1

.
Il
=

2

Il
5E

b] ( iYn — Bjy*)
1

<.
Il

b, | Bjyn — Biy* | (3.14)

-

1

J

Next, it implies by (3.13) and (3.14) that

[ = y*II* = |1 Pe (I = Mwn) yn — Po (I = dw,) y*|®
< = Mwn) g — (T = dwy) ||
=llyn = y" = A (Wayn — wny")|?
= llyn — ¥* 1> = 2\ (Y — ¥, W — W) + N2 fwnyn — way*|)?

N N
<lyn = y*1* = 20D 0405 1 Bjyn — Byl + X* Db | Bjyn— Biy*|I?
j=1 j=1

<llyn —y"|I? Zb]/\ (26; = N) | Bjyn — Biy"II”. (3.15)
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From (3.15), we get

lyni1 — "I
< (1= B) lyn = v* 17 + Bu llgn — v*II°
= (1= Bn) lyn = v" 17 + B llan (79 () — Av) + (00 — y*)|>
< (1= Ba) lyn —y°I° + Bn [ lon — y*1” + 200 (79 (2n) — AV, gn — ")
N
< (1= Ba) g =5 I+ Ba llgm — v 1> = 302N (205 = ) | Bjyn — By’ |1
j=1

+ 200 19 (2) = Avall lan — "1l
N
(12 * (12
= llyn — v —BZ (26; = M) 1Bjyn — Bjy”||
+ 20080 19 () = Aval lln — 71l

This follows that

2

B Y AN (20; = N) | Bjyn — Byl
j=1

< (lyn = 9"+ llyn+1 = ¥* D lynt1 = ynll + 20080 lvg (2n) — Avall llgn — vl
From (3.10) and the condition ((i).),((ii).) and ((iv).), we obtain

| Bjyn — Bjy*|| = 0 as n — oo, for any j =1,2,...,N. (3.16)
By (3.14) and (3.16), it yields that

lwnyn — wpy*|| — 0 as n — oco. (3.17)
By the definition of v,,, hence we have

[on = y*|” = |Pe (I — Mwy) yn — Po (I = dwy) y*|1?
ST = Awn) Y — (I = Awp) y*, Po (I — Awp) yn — y™)

1 * *
=5 [T = M) g = (7 = Xwn) " IP + ([P (1 = Nwn) g = 9
I = Awa) yn — (I = M) y* = (Po (1= M) g — )]

<5 [l =51 + 1Pe (1 = Xwa) yo — 911

w\»—*

—lyn — Po (I = dwn) Yn — A (W yn — wny*)||2
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=5 [ =" 1 4 1Pe (7= M)y — P
~ g = Pe (T = Xe) gl = X2 g = wny” |
+2M{yn — Po (I = Awn) Yn, wnyn — wnyﬂ
<5 [l =y 4 1Pe (T = ) o —
—llyn = Po (I = Xwn) yal|* = X [[wnyn — way*||*
+ 2 [y = Pe (1 = Awn) g wng = wa”|l .
This implies that

lon = 517 <llyn = 5" 1* = llyn = Po (I = Mwn) yall* = N [[wnn — wiy*|®
+2X lyn — Po (I — Awn) yn |l [[wnyn — way™||
<|lyn — y*Hz —lyn — Pc (I = dwy,) ynHQ
+2M [yn — Po (I = Awp) Yol [wnyn — way™|| - (3.18)

It follows by (3.18) that

Ynt1 *y*”Q
< (=B lyn = ¥ + Bn llan — v°II°
= (1= B8) lgn = v" 11> + B llan (vg(@n) = Avn) + (00 — y")|>
< (1= 8n) llyn =¥ I° + B [ lvn = " [1* + 200 (vg () — AV, g — y7)
< (1= Ba) lym = "7 + Ba N = 571 = llg — Pe (I = Xew) yal”

+2M |yn — Po (I = Awp) yul| [wnyn — wny™||
+ 200 [19(n) = Avall lan = "]
= |lyn — y*”2 — B lyn — Po (I — Awy,) yn||2

+ 2>‘Bn Hyn e (I - /\wn) ynH ”wnyn - wny*”
+ 200 B [|[79(xn) — Aval| lgn — y" |-

This implies that
Br llyn — Po (I = Awn) yull* < (lyn = 4"l + [9ns1 = 4" 1) lyms1 — yall

+2ABn |yn — Po (I = Awn) Yul| [[wnyn — wny™ ||
+ 20,8, nyg(xn) - A'Unll ||Qn - y*ll .

Hence, by (3.10) and the conditions ((i).) and ((ii).), we get

lyn — Po (I — Awy,) yn|| = 0 as n — oo or |y, — v,|| = 0 as n — oco. (3.19)
Step 4 Claim that limsup (vf(§) — Ay, z, — &) < 0, where & = Pq, (z — Aj+~vf (7))
and Timsup (v9(%) — g — ) < 0, where § = Po, (7 — A7 +19(2)).

n— oo
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Without of generality, we can assume that x,, — w; as k — co. From (3.12), it follows
that u,, — w; as k — oo. Continuing the same method as in Step 4 of [3], we get

w1 € Q4. (320)
By (3.20) and z,, — w; as k — oo, we derive that
n— o0 —00
= <7f(g) - Angl - j>

=((vf(@) —Ag+2) — T,w1 — I)
0. (3.21)

IN

Similarly, we can assume that y,, — w2 as k — oo and, from (3.19), we have that
Up, — wz as k — co. From Lemma 2.5 and Lemma 2.7, we also obtain

=

N
VI(C,B;) =VI|C,> b,B;
j=1 j=1

N
=Fiz | Po [ T- ) ZbgBj

Jj=1

= Fix (Poc (I — \wy)).
Assume that we # Po (I — Awy, ) we. From Opial’s condition, we get
liminf ||y, — ws| < liminf ||y,, — Po (I — Awn,,) wal|
k—o0 k—o0
< liminf ||y’ﬂk - Pc (I - )\wnk) ynk”
k—o0
+ th_ligf ”PC (I - )\wnk) Ynp — Pc (I - Aw”k) w2||

IN

lim inf ||y, — wa||.
k—o0

This is a contradiction. Then, we have

N
wy € [\ VI(C, By).

j=1
That is, wy € Q5. This follows that

limsup (vg(Z) — AZ,yn —9) = lim (y9(Z) — AZ, yn, — )

= (v9(2) — AZ, w2 — 7)
(vg(7) — AZ +7) — w2 — )
<. (3.22)

Step 5 Show that {z,} and {y,} converge strongly to Z = Py, (z — Ag + vf(7)) and
g = Pa, (§ — AT + vf(&)), respectively.
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Hence, we obtain

|1 — 2|

< [ Ba) e — &l + B (1~ %) fn — 7]
200807 1 (4n) = F@I 1 = 3] + 2000 (1f(F) = AT, 1 — 7)
< [ 0w 2w — ] + 200 B0l — 3l 21 — 2
+ 2000 (1(7) — AF, i1 — 7)
< (1= auBu )’ llzn = 3l + cnBorp | [ = 31 + l2nss — 317 ]
+ 200,80 (v f(Z) — AT, kg1 — T) .
This implies that

_\2
~n2 (1 - anﬁn’}’) ~112 anﬂnfyp ~112
[#ns1 = 2" < lzn = 2"+ ————— llyn — ¥l
1 Oénﬂn’yp 1 anﬂn’)’p
2an5n ~ ~ ~
———— (vf(Z) — AT, xpy1 — T) . 3.23
g 0@ =) (323
Similarly, we get
_\2
~112 (1 - anﬁn'y) ~112 (Jénﬁn’}/p ~112
Ynt1 — 0" <—F—lyn 0"+ ——— llzn — 7
sl b s ol
20471571 ~ ~ ~
———— (19) — AY, Ynt1 — ) - 3.24
o 00(0) ~ Ay — ) (3.4
Combining (3.23) and (3.24), we obtain
#n 1 = E* + lyns1 — 7)1
1- O‘nﬂn’? ? + anﬂn'yp ~ ~
<! ) [z — 1P + 1 — 1]
1 —anBnyp
200, B |: ~ ~ ~ ~ ~ ~
_Snbn A - —A - }
T onBip (W f(@) — A%, znp1 — T) + (v9(F) — AY, Yns1 — J)
200080 (7 — w)) 2 2
=\1l-— 7 [xn—x +llyn — 9 }
(1= 28202000 [, — 3 4 o~ )
20%5”(’7 - 'Yp)) O‘nﬂn’_y2 ( ~112 ~112
+ - T — || + - )
(P00 | BB (= 1 + i~ )

+ 5 _17[) ((vf(@) = A%, 2py1 — %) + (v9(9) — AY, Ynt1 — 27>)]
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By Lemma 2.4 and the conditions ((i).),((ii).), we can conclude that {z,} and {y,}
converge strongly & = Po, (2 — Ay +~f(9)) and § = Pq, (§ — AZ + vf(Z)), respectively.
Moreover, from (3.12) and (3.19), thus we obtain {u,} and {v,} converge strongly to
T = Po, (T— A7+ ~f(9)) and § = Pq, (§ — AT + vf(Z)), respectively. This completes
the proof. m

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F :C xC — R be a bifunction satisfying (A1) — (A4). Let B : C — H be d-inverse
strongly monotone. Let f,g: C — C be contractive mappings with coefficients p1 and p2,
respectively, with p = max;e(1,2) pi.- Suppose that A is a strongly positive linear bounded

operator on H with coefficient ¥ and 0 < v < %. Assume that Qq = ﬂfil EP(F;) # 0 and
Qg := ﬂ;vzl VI(C,Bj) # 0. Let the sequences {x,}, {yn}, {un} and {v,} be generated by
z1,y1 € C and
1
F(un’y) + 7 <y — Up, Up — xn> > 07Vy € C’
Tpy1 = (1= Bn) Tn + BuPo (anf(yn) + (I — anA)u,),
Yn+1 = (1 - /Bn) Yn + Bl (O‘n’)/g(xn) + (I - O‘nA)PC (I - )\B) yn) ,Vn > 1,

where {an},{Bn},{rn} C (0, 1) satisfying the following conditions:

(i). hm ozn—()andZan— 005

(ii). 0<T<ﬂngv<l forsomeT'U>()
(iii). 0 <e<r, <n<oo, for some e, n>0;
(1v). 0<)\<26

o0

(v). Z|an+1 | < 00, ZW”“ Bnl| < o0, Z\rn+1—rn\<oo.

n=1 n=1
Then the sequences {x,} and {yn} converge strongly to & = Pq, (T — Ag+~vf(9)) and
7= Po, (§ — AT + v f(Z)), respectively.

Proof. Take F' = F; and G = Gy, for all i = 1,2,...,N and j = 1,2,...,N. Then, by
Theorem 3.1, we can obtain the desired result. [

4. A NUMERICAL EXAMPLE
In this section, we give numerical examples to support our main theorem.

Example 4.1. Let C = [-1,1], and let R be the set of real numbers. For every i =
1,2,...,N, let F; : [-1,1] x [-1,1] — [=1, 1] be defined by

Fi(z,y) =i(y —z)(y + Tz + 8), for all z,y € [-1,1].
For all j =1,2,..., N, let B; : [-1,1] — R be defined by

-1
Bj(x) = T for all z € [-1,1].
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Suppose that A = ﬁ and v = % Let A: R — R be defined by
Ax = g, for all x € R.

Moreover, let f,g:[—1,1] = [—1,1] be defined by

x
x=—
/ 2
x
9T =, for all z € [-1,1].
Putai:;+N§N,foreveryi—l2 ..,N. Letan:ﬁ,ﬁn:5313,rn:i:ﬂg and

1 _ 2n+1 2 _ n+3 3 _ 3n+2 4 _ 2n+3 5 _ n+2
bn = 505010 00 = geii10 00 = Sntit On = somit On = gaiirs for every n € N. Then, the

sequences {z,} and {y,} converge strongly to —1 and 1, respectively.
Solution. Since a; = % + %81% we obtain

N N
;aiFi(l',y):;(;‘f'ngN) ity —x)(y + 72 +8)
=&y —2)(y+ Tz +8), (4.1)

where £ = va 1 (81 + NSN) It is clear to check that ZZ 1 a; F; satisfies all conditions
(A1)-(A4) and —1 € EP(ZZ —i a; Fy) = ﬂl L EP (F;).

It is easy to see that Zz 1 a;F; satisfies all conditions in Theorem 3.1 and —1 €
EP(Zl 16 F) = ﬂz 1 EP (F;). By the definition of F', we have

0<ZCLz Un7 <y_un7un_xn>

Tn

E(y — )y + T+ 8) 4 (y — ) (un — 22)

n

i

0<or,é(y—2)(y+ 70 +8)+ (y — un) (U — xp)
=¢érpy’ + (up + 8Ery, + 6Erpty — Tpn) Y + UnTy — i — 8&rpy, — 7§rnu2
w2

Let G(y) = &rny? + (upn + 8&rp + 6Erpuy — T0) Y + Un®y — U2 — 8Erpu, — 7€r,u?. Then
G(y) is a quadratic function of y with coefficient a = &r,, b = u,, + 8&r, + 6£rnun — Ty,
and ¢ = u,x, — u% — 8&rpu, — 7§rnui. Determine the discriminant A of G as follows

A =b* — dac
= (up, + 8&ry + 6Er u, — xn)2 —4(&ry) (uny — u? — 8Erpuy, — 7§rnui)
=u? 4+ 16&r,u, + 16€r,u? + 64€2r2 +128¢%r2u,, + 64&%r2u? — 2u,x,
— 16&rpx, — 16Er,Uunxy + xi
= (up + 8&ry, + 8Erpuy, — mn)2 .

We know that G(y) > 0,Vy € R. If it has most one solution in R, then A < 0, so we
obtain

Up =

N
T, — 8Ery 7 1 .
———— wh :E —+ —— | i 4.2
1—|—8§Tn’w ere § i_1<81+N8N>Z (4.2)
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Observe that {1} = ﬂ;\;l VI(C,Bj) =VI (C, Zjvzl b{lBj). Clearly, all sequences and
parameters are satisfied all conditions of Theorem 3.1. Hence, by Theorem 3.1, we can
conclude that the sequences {z,} and {y,} converge strongly to —1 and 1 respectively.

Table 1 and Figure 1 show the numerical results of sequences {u,}, {z,}, {v,} and
{yn} with 2y =1, y; = —1, N =20, N = 5 and n = 500.

Remark 4.2. From the previous example, we can conclude that
(i). Table 1 and Figure 1 show that the sequences {u, }, {x,} converge to —1 €
and {v, },{yn} converge to 1 € Qy, independently.
(ii). The convergence of {u,}, {z,}, {v,} and {y,} can be guaranteed by Theorem
3.1.

Unp, Tn Un Yn
-0.751026 | 1.000000 | -0.929028 | -1.000000
-0.831844 | 0.343836 | -0.899294 | -0.971331
-0.899370 | -0.198386 | -0.865122 | -0.936980
-0.943200 | -0.548519 | -0.829206 | -0.900357
-0.969017 | -0.754118 | -0.792577 | -0.862754

CU s W N =3

250 | -0.999996 | -0.999965 | 0.993388 | 0.993121

496 | -0.999998 | -0.999983 | 0.999660 | 0.999646
497 | -0.999998 | -0.999983 | 0.999661 | 0.999648
498 | -0.999998 | -0.999983 | 0.999662 | 0.999649
499 | -0.999998 | -0.999983 | 0.999664 | 0.999650
500 | -0.999998 | -0.999983 | 0.999665 | 0.999651

TABLE 1. The values of {u,}, {z,}, {vn} and {y, } withz, =1, y1 = —1,

N =20, N =5 and n = 500.

- =l

i’ -- -

/ - -y |

FIGURE 1. An independent convergence of {u,}, {z,}, {vn} and {y,}

with 1 =1, y; = —1, N =20, N =5 and n = 500.
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5. CONCLUSION

The general intermixed iteration for two nonlinear mappings for solving the fixed point
problem of two nonlinear mappings is introduced. This iterative method can be consid-
ered as an extension and modification of work by Yao [19] and Suwannaut [3]. Strong
convergence theorem of the proposed algorithm is obtained under some control conditions.
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