
ISSN 1686-0209

Thai Journal of Mathematics

Volume 18 Number 3 (2020)
Pages 1475–1496

http://thaijmath.in.cmu.ac.th

Dedicated to Prof. Suthep Suantai on the occasion of his 60th anniversary

Convergence Analysis of Some Faster Iterative

Schemes for G-Nonexpansive Mappings in Convex

Metric Spaces Endowed with a Graph

Godwin Amechi Okeke1,2 and Mujahid Abbas3,4,∗

1Department of Mathematics, School of Physical Sciences, Federal University of Technology Owerri
P.M.B. 1526 Owerri, Imo State, Nigeria
2Abdus Salam School of Mathematical Sciences, Government College University, Lahore 54600 Pakistan
e-mail : gaokeke1@yahoo.co.uk, godwin.okeke@futo.edu.ng (G. A. Okeke)
3Department of Mathematics, Government College University, Lahore 54000 Pakistan
4Department of Mathematics and Applied Mathematics, University of Pretoria (Hatfield Campus)
Lynnwood Road, Pretoria 0002, South Africa
e-mail : abbas.mujahid@gmail.com, abbas.mujahid@gcu.edu.pk (M. Abbas)

Abstract We propose two iterative schemes for three G-nonexpansive mappings and present their
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1. Introduction

A well known Banach contraction principle [1] attracted the attention of several math-
ematicians due to its applications in physical and engineering sciences. This result has
been generalized in several directions either by modifying the topological structure of
underlying space or extending the contractive conditions of mappings (see, [2] and the
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references therein). Jachymski [3] proved Banach contraction mapping principle in the
setup of a complete metric space endowed with a graph. Consequently, some interesting
results for different classes of mappings in the framework of Banach spaces endowed with
graphic structure were obtained (see, e.g. [4–10]).

Approximation of fixed point of certain mappings constructing fixed point iterative
processes is an important research area (see, [11–21]) and the references therein). The
measure of rate of convergence of iterative schemes is an important parameter which helps
to prefer one iterative schemes over the other. Abbas and Nazir [22] introduced a new
iterative scheme which is faster than all of Picard, Mann and Agarwal et al. [23] iterative
schemes. In 2019, Okeke [15] introduced the Picard-Ishikawa hybrid iterative process and
proved that it converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, Noor
[13], Picard-Mann [24] and Picard-Krasnoselskii [14] iterative schemes.

There are certain mappings which fail to have a fixed point in sets equipped with
distance structure only. A rich geometric structure of Banach spaces such as convexity
and differentiability of a norm are required to assure the existence of fixed point of such
mappings. Consequently, the study of geometric properties of Banach spaces in connection
with fixed point theory has become an active research area (see, e.g. [25, 26]). In 1970,
Takahashi [27] introduced the concept of convexity in metric spaces. Several authors then
obtained some interesting results in the setup of convex metric spaces (see, [18, 25, 28]).

To the best of our knowledge, the study of iterative schemes to approximate fixed point
and common fixed points in the setting of convex metric space endowed with a graph is
not yet carried out. The purpose of this paper to fill this gap. We propose the modified
Picard-Ishikawa hybrid iterative scheme and the modified Abbas-Nazir iterative scheme
for three G-nonexpansive mappings and study the convergence analysis of our iterative
schemes in the framework of convex metric space endowed with a directed graph. We
present some numerical examples to show that the proposed iterative schemes converge
faster than all of Mann, Ishikawa and Noor iterations. Our results generalize and extend
several known results including the results in [5, 6, 9, 10] among others.

2. Preliminaries

Let X be a metric space, C a nonempty subset of X and T : C → C. A point x ∈ C
is called a fixed point of T if x = Tx. We denote the set of all fixed points of T by
F (T ) := {x ∈ C : Tx = x}.

Consisted with [3], following definitions will be needed in the sequel.
Suppose V (G) is a set of vertices of a directed graph G and E(G) is the set of edges of

G which contains all the loops, that is (x, x) ∈ E(G) for each x ∈ V (G). We can identify
the graph G with (V (G), E(G)), where G has no parallel edges. Denote by G−1 the graph
obtained from G by reversing the direction of edges, that is, E(G−1) = {(x, y) : (y, x) ∈
E(G)}. Suppose Ĝ is the undirected graph obtained from G by ignoring the direction of

edges, that is E(G) ∪ E(G−1) = E(Ĝ).
Following are some basic notions given in ([29, 30], and [31]):
Suppose x and y are vertices of a graph G, a path in G from x to y of length N

(N ∈ N ∪ {0}) is a sequence {xi}Ni=0 of N + 1 vertices such that x0 = x, xN = y and
(xi, xi+1) ∈ E(G) for i = 0, 1, · · · , N−1. A graph G is connected if there is a path between
any two vertices.

Let G = (V (G), E(G)) be a directed graph. A set D ⊆ V (G) is said to be a dominating
set if for every v ∈ V (G)\D, there exists d ∈ D such that (d, v) ∈ E(G). Let v ∈ V (G)
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and set D ⊆ V (G). We say that v is dominated by D if (d, v) ∈ E(G) for any d ∈ D. Let
A,B ⊆ V (G). If (a, b) ∈ E(G) for all a ∈ A and all b ∈ B, then we say that A dominates
B. Unless otherwise stated, we shall assume that E(G) contains all loops in this paper.

A graph G is called transitive if for each x, y, z ∈ V (G) such that (x, y) and (y, z) are
in E(G), then (x, z) ∈ E(G).

Let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) contains all
loops, that is, ∆ = {(x, x) : x ∈ C} ⊆ E(G).

A mapping T : C → C is called a G-contraction if T preserves edges of G, that is, for
each x, y ∈ C,
(i) (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G)
(ii) T decreases weights of edges of G, that is, there exists ` ∈ (0, 1) such that for each
x, y ∈ C, we have

(x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ `d(x, y).

The mapping T : C → C is said to be G-nonexpansive ( [32]) if the following conditions
are satisfied:
(i) T preserves edges of G, i.e.

(x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G),

(ii) T non-increases weights of edges of G, tha is:

(x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ d(x, y).

A mapping T : C → C is called G-continuous if for any given x ∈ C and a sequence
{xn}n∈N in C,

xn → x and (xn, xn+1) ∈ E(G) imply that Txn → Tx.

Definition 2.1. Mappings Ti : C → C (i = 1, 2, 3) satisfy condition (C) if there exists
a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for each r > 0
such that for all x ∈ C, we have

max{d(x, T1x), d(x, T2x), d(x, T3x)} ≥ f(d(x, F )),

where F = F (T1) ∩ F (T2) ∩ F (T3) and d(x, F ) = inf{d(x, p) : p ∈ F}.

Definition 2.2 ([27]). Let (X, d) be a metric space. A mapping W : X ×X × [0, 1]→ X
is said to be a convex structure on X if for each (x, y, λ) ∈ X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y). (2.1)

A metric space X together with the convex structure W is called a convex metric space.
We denote it by (X, d,W ).

From the definition of convex structure W on X, it is obvious that

d(u,W (x, y, λ)) ≥ (1− λ)d(u, y)− λd(u, x), (2.2)

for each x, y, u ∈ X and λ ∈ [0, 1].
A nonvoid subset C of the convex metric space X is said to be convex if W (x, y, λ) ∈ C

whenever (x, y, λ) ∈ C × C × [0, 1]. Takahashi [27] proved that open spheres B(x, r) =
{y ∈ X : d(y, x) < r} and closed spheres B[x, r] = {y ∈ X : d(y, x) ≤ r} are convex.
It is known that every normed space is a convex metric space. However, the converse
is not true in general. There are many examples of convex metric spaces which are not
embedded in any normed space ([25, 27]).
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Let us recall some important concepts which are needed to measure the performances
of iterative schemes.

Definition 2.3 ([33]). Let {an}∞n=0, and {bn}∞n=0 be two sequences of positive numbers
that converge to a, and b, respectively. Assume that

l = lim
n→∞

|an − a|
|bn − b|

. (2.3)

1. If l = 0, then the sequence {an}∞n=0 converges to a faster than the sequence {bn}∞n=0

converges to b;
2. If 0 < l <∞, then we say that the sequences {an}∞n=0 and {bn}∞n=0 have the same rate
of convergence.

Suppose that for two fixed point iterative processes {xn} and {yn} converging to the
same fixed point z of T, the error estimates d(xn, z) ≤ an and d(yn, z) ≤ bn for all n ≥ 1,
are available, where {an} and {bn} are two sequences of positive real numbers converging
to zero. Then, in view of above definition the following concept appears to be very natural
(see, [28, 34]).

Definition 2.4 ([34]). If {an} converges faster than {bn}, then we say that the fixed point
iterative sequence {xn} converges faster than the fixed point iterative sequence {yn} to
z.

It has been observed that the comparison of the rate of convergence in the above
definition depends on the choice of sequences {an} and {bn} which are error bounds of
{xn} and {yn}, respectively. This method of comparison of the rate of convergence of
two fixed point iterative sequences seems ambiguous (see, [28, 34]).

In 2013, Phuengrattana and Suantai [34] modified this concept as follows:
Suppose {xn} and {yn} are two iterative sequences converging to the same fixed point

z of T, then we say that {xn} converges faster than {yn} to z if

lim
n→∞

d(xn, z)

d(yn, z)
= 0.

Suppose C is a closed convex subset of a convex metric space X and Ti : C → C
(i = 1, 2, 3). Next, we recall the analogues of the following classical fixed point iterative
schemes in convex metric spaces.

The Mann iterative sequence {un} is given by{
u0 = u ∈ C,
un+1 = W (T1un, un, αn), n ≥ 1,

(2.4)

where {αn} is a sequence in [0, 1].
The modified Ishikawa iterative sequence {pn} for two mappings is given by p0 = p ∈ C,

yn = W (T2pn, pn, βn)
pn+1 = W (T1yn, pn, αn), n ≥ 1,

(2.5)

where {αn} and {βn} are sequences in [0, 1].
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The modified Noor iterative sequence {vn} for three mappings is given by
v0 = v ∈ C,
zn = W (T3vn, vn, γn)
yn = W (T2zn, vn, βn)
vn+1 = W (T1yn, vn, αn), n ≥ 1,

(2.6)

where {αn}, {βn} and {γn} are sequences in [0, 1].
In 2019, Okeke [15] introduced the Picard-Ishikawa hybrid iterative process and prove

that it converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, Noor [13],
Picard-Mann [24] and Picard-Krasnoselskii [14] iterative schemes.

Motivated by [15], we now propose the modified Picard-Ishikawa hybrid iterative
scheme {sn} in the framework of convex metric space as follows:

s0 = s ∈ C
un = W (T3sn, sn, βn)
vn = W (T2un, sn, αn)
sn+1 = T1vn, n ≥ 1,

(2.7)

where {αn}, {βn} are real sequences in [0, 1].
We also propose the following iterative scheme for three mappings in convex metric

spaces. 
x0 = x ∈ C,
wn = W (T3xn, xn, γn)
vn = W (T2wn, T3xn, βn)
xn+1 = W (T1wn, T2vn, αn), n ∈ N,

(2.8)

where {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 ∈ [0, 1].

Remark 2.5. Observe that our iterative scheme (2.8) is the modified version of iterative
scheme introduced by Abbas and Nazir in [22]. Also, note that an iterative scheme in [22]
involve a single mapping whereas our scheme generate a sequence with three mappings.
Moreover the scheme in [22] has been extended to the framework of convex metric spaces.

Definition 2.6 ([35]). A convex metric space X is called uniformly convex if for any
ε > 0, there exists α > 0 such that d(z,W (x, y, 1

2 )) ≤ r(1 − α) < r for all r > 0 and
x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε.

A closed subset X of the unit ball S1(0) = {x ∈ H : ‖x‖ ≤ 1} in a Hilbert space

H with diameter δ(X) ≤
√

2, turns out to be a uniformly convex metric space with

d(x, y) = cos−1〈x, y〉 for each x, y ∈ X and W (x, y, α) = αx+(1−α)y
‖αx+(1−α)y‖ for each x, y ∈ X

and α ∈ I = [0, 1] ([36]).
Suppose {xn} is a bounded sequence of a convex metric space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
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Definition 2.7 ([37, 38]). A sequence {xn} in X is said to ∆-converge to x ∈ X if x is
the unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case we
write ∆-limn xn = x and call x the ∆-limit of {xn}.

We use the following notations for the rest of this paper, w∆(xn) :=
⋃
{A({un})},

where the union is taken over all subsequences {un} of {xn}.
The concept of ∆-convergence was introduced in general metric space by Lim [38]. In

2008, Kirk and Panyanak [37] specialized this concept in CAT(0) spaces and proved that
several known results in Banach spaces involving weak convergence have precise analogues
in the framework of CAT(0) spaces. Moreover, they made a strong case for calling ∆-
convergence ”weak” convergence at least in the setting of CAT(0) spaces (see, [37]). For
more discussion in this direction, we refer to [39], [40] and the references therein.

For sake of completeness, we give the following definition.

Definition 2.8. Suppose G = (V (G), E(G)) is a directed graph such that V (G) = C.
A mapping T : C → C is said to be G-demiclosed at 0 if for any sequence {xn} ⊆ C,
(xn, xn+1) ∈ E(G), {xn} ∆-converges to x and Txn → 0, then Tx = 0.

Suppose (X, d) is a metric space. A geodesic path joining x ∈ X to y ∈ X, or a
geodesic from x to y is a map c from a closed interval [0, `] ⊆ R to X such that c(0) = x,
c(`) = y, and d(c(t), c(t′)) = |t − t′| for each t, t′ ∈ [0, `]. In particular, c is an isometry
and d(x, y) = `. The image α of c is known as a geodesic (or metric) segment joining
x and y. When it is unique, the geodesic segment is denoted by [x, y]. The space (X, d)
is said to be a geodesic space if every two points of X are joined by a geodesic segment,
and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for
each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every geodesic segment
joining any two of its points.

Remark 2.9 ([41]). Let X be a geodesic space. If each pair of geodesics c1 : [0, a1] →
X and c2 : [0, a2] → X with c1(0) = c2(0) satisfy the inequality d(c1(ta1), c2(ta2)) ≤
td(c1(a1), c2(a2)) for all t ∈ [0, 1], then one says that the metric on X is convex. It is easy
to see that the metric on a CAT(0) space is convex. In general having a convex metric is
a weaker property than being CAT (0). There are, however, several important classes of
spaces in which convexity of the metric is equivalent to the CAT(0) condition, including
Riemannian manifolds and Mk-polyhedral complexes.

Some basic properties of ∆-convergence are as follows:

Proposition 2.10 ([37]). Let X be a complete CAT(0) space.
(i) If a sequence {xn} in X ∆-converges to x ∈ X, then

x ∈
∞⋂
k=1

conv{xk, xk+1, · · · },

where conv(A) =
⋂
{B : B ⊇ A and B is closed and convex}.

(ii) Every bounded sequence in X has a ∆-convergent subsequence.
(iii) If C is a closed convex subset of X and {xn} is a bounded sequence in C, then the
asymptotic center of {xn} is in C.

Proposition 2.11 ([41]). If X is a CAT(0) space, then the distance function d : X ×
X → R is convex, i.e. given any pair of geodesics c : [0, 1] → X, and c′ : [0, 1] → X,
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parameterized proportional to arc length, the following inequality holds for all t ∈ [0, 1] :

d(c(t), c′(t)) ≤ (1− t)d(c(0), c′(0)) + td(c(1), c′(1)).

The following property, called Property E will be needed in this paper.

Definition 2.12. Suppose X is a convex metric space and C is a nonempty subset of X.
Let G = (V (G), E(G)) be a directed graph such that V (G) = C. Then C is said to have
Property E if for each sequence {xn} in C with (xn, xn+1) ∈ E(G) for all n ∈ N which
∆-converges to x ∈ C, there is a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G)

for each k ∈ N.

Remark 2.13. The concept of Property E in Definition 2.8 above is the analogue of the
concept of Property G (see, [42]) in the setting of convex metric spaces.

Next, we prove the following lemmas which will be useful in this study.

Lemma 2.14. Let X be a convex metric space and {xn} a sequence in X. Let u, v ∈ X
be such that limn→∞ d(xn, u) and limn→∞ d(xn, v) exist. Suppose that {xnk

} and {xmk
}

are subsequences of {xn} which ∆-converge to u and v, respectively, then u = v.

Proof. By the definition of ∆-convergence, it follows that ∆-limk→∞ xnk
= u and ∆-

limk→∞ xmk
= v. We claim that u = v. Suppose that u 6= v, then we have

limn→∞ d(xn, u) = limk→∞ d(xnk
, u)

< limk→∞ d(xnk
, v)

= limn→∞ d(xn, v)
= limk→∞ d(xmk

, v)
< limk→∞ d(xmk

, u)
= limn→∞ d(xn, u),

a contradiction. Thus, u = v.

Remark 2.15. Lemma 2.1 is the analogue of ([43], Lemma 2.7) in the framework of
convex metric spaces.

Lemma 2.16. Let X be a convex metric space and C a nonempty closed subset of X
having Property E. Let G = (V (G), E(G)) be a directed graph with V (G) = C and
T : C → C a G-nonexpansive mapping. Then I − T is demiclosed at zero.

Proof. Suppose {xn} is a sequence in C which ∆-converges to x ∈ C with (xn, xn+1) ∈
E(G) for all n ∈ N and (I − T )xn → 0. Since C has Property E, it there exists a
subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all k ∈ N. Since (I −T )xn → 0,

we obtain that

lim
n→∞

d(xnk
, Txnk

) = 0.

If x 6= Tx, then by the fact that x is the unique asymptotic center of every subsequence
{xnk

} of {xn}, we have

lim supn→∞ d(xnk
, x) < lim supn→∞ d(xnk

, Tx)
≤ lim supn→∞ (d(xnk

, Txnk
) + d(Txnk

, Tx))
≤ lim supn→∞ d(xnk

, x).

a contradiction and hence (I − T )x = 0.



1482 Thai J. Math. Vol. 18 (2020) /G. A. Okeke and M. Abbas

Remark 2.17. Lemma 2.2 is the analogue of ([42], Proposition 3.5) in the setting of
convex metric spaces.

Lemma 2.18. Let {xn}∞n=1 be a bounded sequence in a complete CAT(0) space X. If
for any ∆-convergent subsequence {xnj

}∞j=1 of {xn}, both {xnj
}∞j=1 and {xnj+1

}∞j=1 ∆-
converges to the same point in X, then the sequence {xn}∞n=1 is ∆-convergent.

Proof. Since {xn}∞n=1 is a bounded sequence, it follows that the closed convex hull
conv({xn}∞n=1) of {xn}∞n=1 is a bounded closed convex subset of X. By Proposition 2.1,
we have conv({xn}∞n=1) of {xn}∞n=1 is a bounded closed convex subset of X, which is
∆-convergent in X. Hence, there exists a subsequence {xnj}∞j=1 of {xn}∞n=1 which ∆-
converges to x ∈ conv({xn}∞n=1). We can write

{xn}∞n=n1
=

∞⋃
i=0

{xnj+i
}∞j=1.

We next prove by induction that for all positive integer m, that ∪mi=0{xnj+1
}∞j=1 ∆-

converges to x. Using the hypothesis that {xnj
} and {xnj+1

} ∆-converges to x. It follows

that ∪∞i=0{xnj+i+1
}∞j=1 ∆-converges to x. This means that ∪m+1

i=1 {xnj+i
}∞j=1 ∆-converges

to x. Therefore, we have

{xnj
}∞j=1

⋃(
m+1⋃
i=1

{xnj+i
}∞j=1

)
=

m+1⋃
i=0

{xnj+i
}∞j=1

∆-converges to x. Hence, for any positive integer m, ∪mi=0{xnj+i
}∞j=1 ∆-converges to x.

On taking limit as m→∞, the sequence {xn}∞n=n1
∆-converges to x.

Remark 2.19. Lemma 2.3 is the analogue of ([44], Lemma 3.1) in the setting of CAT(0)
spaces.

The following lemmas will also be needed in this paper.

Lemma 2.20 ([36]). Let X be a uniformly convex metric space with continuous convex
structure W. Let x ∈ X and {an} be a sequence in [b, c] for some b, c ∈ (0, 1). If {un} and
{vn} are sequences in X such that lim supn→∞ d(un, x) ≤ r, lim supn→∞ d(vn, x) ≤ r and
limn→∞ d(W (un, vn, an), x) = r for some r ≥ 0, then limn→∞ d(un, vn) = 0.

Lemma 2.21 ([45]). Let {an} and {tn} be two sequences of nonnegative real numbers
satisfying the inequality:

an+1 ≤ an + tn,

for each n ≥ 1. If
∑∞
n=1 tn <∞, then limn→∞ an exists.

3. Main Results

Proposition 3.1. Let C be a closed subset of a convex metric space X endowed with a
directed graph G such that V (G) = C. Suppose E(G) is convex and G is transitive. Let
Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive mappings such that F = F (T1)∩F (T2)∩
F (T3) 6= ∅. For an arbitrary x0 ∈ C, define the sequence {xn} as in (2.8). Let p0 ∈ F be
such that (x0, p0), (p0, x0) are in E(G). Then (xn, p0), (wn, p0), (vn, p0), (p0, xn), (p0, wn),
(p0, vn), (xn, vn), (xn, wn) and (xn, xn+1) are in E(G).
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Proof. We shall prove this result by induction as follows. Using the fact that T3 is edge-
preserving and (x0, p0) ∈ E(G), it follows that (T3x0, p0) ∈ E(G) so that (w0, p0) ∈ E(G),
by the fact that E(G) is convex. Similarly, by edge-preserving of T2 and (w0, p0) ∈ E(G),
we have (T2w0, p0) ∈ E(G), so that (v0, p0) ∈ E(G). Moreover, since T1 is edge-preseving
and (v0, p0) ∈ E(G), we obtain (T1v0, p0) ∈ E(G). Using the convexity of E(G) and
the fact that (T1v0, p0), (T2w0, p0) ∈ E(G), we obtain (x1, p0) ∈ E(G). Hence, by edge-
preserving of T3, we have (T3x1, p0) ∈ E(G). Again, by the convexity of E(G) and
(T3x1, p0), (x1, p0) ∈ E(G), we obtain (w1, p0) ∈ E(G). Similarly, using the convex-
ity of E(G) and the fact that (T3x1, p0), (x1, p0) ∈ E(G), we obtain (w1, p0) ∈ E(G).
Hence, since T2 is edge-preserving, (T2w1, p0) ∈ E(G). Using the convexity of E(G) and
(T2w1, p0), (w1, p0) ∈ E(G), we have (v1, p0) ∈ E(G). Therefore, (T1v1, p0) ∈ E(G).

Next, suppose that (xk, p0) ∈ E(G). Since T3 is edge-preserving, we have (T3xk, p0) ∈
E(G). Hence, (wk, p0) ∈ E(G), since E(G) is convex. Hence by the fact that T2 is edge-
preserving and (wk, p0) ∈ E(G), we obtain (T2wk, p0) ∈ E(G), then (vk, p0) ∈ E(G), by
convexity of E(G). Since T1 is edge-preserving, we obtain (T1vk, p0) ∈ E(G). Using the
convexity of E(G), we obtain (xk+1, p0) ∈ E(G). Therefore, by edge-preserving of T3, we
have (T3xk+1, p0) ∈ E(G), so that (wk+1, p0) ∈ E(G), since E(G) is convex. Similarly,
by edge-preserving of T2, we get (T2wk+1, p0) ∈ E(G), so that (vk+1, p0) ∈ E(G), since
E(G) is convex. Hence, (xn, p0), (wn, p0), (vn, p0) ∈ E(G) for each n ≥ 1. Using the fact
that T3 is edge-preserving and (p0, x0) ∈ E(G), we obtain (p0, T3x0) ∈ E(G), so that
(p0, w0) ∈ E(G). Similarly, since T2 is edge-preserving and (p0, w0) ∈ E(G), we obtain
(p0, T2x0) ∈ E(G), so that (p0, v0) ∈ E(G). Therefore, by a similar argument we can
prove that (p0, xn), (p0, wn), (p0, vn) ∈ E(G) for each n ≥ 1 using the assumption that
(p0, x0) ∈ E(G), (p0, w0) ∈ E(G), and (p0, v0) ∈ E(G). Using the transitivity of G, we
obtain (xn, vn), (xn, wn), (xn, xn+1) ∈ E(G).

Next, we obtain the following results.

Proposition 3.2. Let C be a closed subset of a convex metric space X endowed with a
directed graph G such that V (G) = C. Suppose E(G) is convex and G is transitive. Let
Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive mappings such that F = F (T1)∩F (T2)∩
F (T3) 6= ∅. For an arbitrary s0 ∈ C, define the sequence {sn} as in (2.7). Let p0 ∈ F be
such that (s0, p0), (p0, s0) are in E(G). Then (sn, p0), (un, p0), (vn, p0), (p0, sn), (p0, un),
(p0, vn), (sn, vn), (sn, un) and (sn, sn+1) are in E(G).

Proof. The proof of Proposition 3.2 follows on the similar lines as in the proof of Propo-
sition 3.1.

Lemma 3.3. Let C be a closed subset of a uniformly convex metric space X endowed
with a directed graph G such that V (G) = C. Suppose E(G) is convex and G is transitive.
Let Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive mappings such that F = F (T1) ∩
F (T2) ∩ F (T3) 6= ∅. For arbitrary x0 ∈ C and p0 ∈ F, define the sequence {xn} as in
(2.8). Let {αn}, {βn} and {γn} be real sequences in [δ, 1 − δ] for some δ ∈ (0, 1) and
(x0, p0), (p0, x0) ∈ E(G). Then
(i) limn→∞ d(xn, p0) exists;
(ii) limn→∞ d(xn, T1xn) = limn→∞ d(xn, T2xn) = limn→∞ d(xn, T3xn) = 0.

Proof. (i) Suppose p0 ∈ F, it follows from Proposition 3.1 that (xn, p0), (vn, p0), (wn, p0),
(xn, vn), (xn, wn) ∈ E(G). Since Ti is G-nonexpansive for each i = 1, 2, 3, by (2.8), we
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obtain that

d(wn, p0) = d(W (T3xn, xn, γn), p0)
≤ γnd(T3xn, p0) + (1− γn)d(xn, p0)
≤ γnd(xn, p0) + (1− γn)d(xn, p0)
= d(xn, p0).

(3.1)

d(vn, p0) = d(W (T2wn, T3xn, βn), p0)
≤ βnd(T2wn, p0) + (1− βn)d(T3xn, p0)
≤ βnd(wn, p0) + (1− βn)d(xn, p0).

(3.2)

Using (3.1) in (3.2), we get that

d(vn, p0) ≤ βnd(xn, p0) + (1− βn)d(xn, p0)
= d(xn, p0).

(3.3)

Also,

d(xn+1, p0) = d(W (T1wn, T2vn, αn), p0)
≤ αnd(T1wn, p0) + (1− αn)d(T2vn, p0)
≤ αnd(wn, p0) + (1− αn)d(vn, p0).

(3.4)

Using (3.1) and (3.3) in (3.4), we get

d(xn+1, p0) ≤ αnd(xn, p0) + (1− αn)d(xn, p0)
= d(xn, p0).

(3.5)

Hence, by Lemma 2.5, limn→∞ d(xn, p0) exists. In particular, {xn} is bounded.
(ii) Suppose that limn→∞ d(xn, p0) = k, if k = 0, then by G-nonexpansiveness of Ti for
each i = 1, 2, 3, we obtain

d(xn, Tixn) ≤ d(xn, p0) + d(p0, Tixn)
≤ d(xn, p0) + d(p0, xn).

(3.6)

Hence, the results follows. Assume that k > 0, from (3.1) we have by taking lim sup on
the both sides, we have

lim sup
n→∞

d(wn, p0) ≤ lim sup
n→∞

d(xn, p0) = k. (3.7)

Therefore, by G-nonexpansiveness of T1, we have d(T1wn, p0) ≤ d(wn, p0). By taking
lim sup of both sides of (3.7), we get

lim sup
n→∞

d(T1wn, p0) ≤ k. (3.8)

Next, taking lim sup on both sides of (3.3), we get

lim sup
n→∞

d(vn, p0) ≤ lim sup
n→∞

d(xn, p0) = k. (3.9)

By G-nonexpansiveness of T2, we have d(T2vn, p0) ≤ d(vn, p0). Taking lim sup of both
sides using (3.9), we get

lim sup
n→∞

d(T2vn, p0) ≤ k. (3.10)

Similarly, by (3.7) we have
lim sup
n→∞

d(T2wn, p0) ≤ k. (3.11)

Since limn→∞ d(xn+1, p0) = k. On taking limit as n→∞ in (3.4), we have

lim
n→∞

d(W (T1wn, T2vn, αn), p0) = k. (3.12)
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By (3.8), (3.10), (3.12) and Lemma 2.4, we have:

lim
n→∞

d(T1wn, T2vn) = 0. (3.13)

Using (3.4), d(xn+1, p0) ≤ αnd(wn, p0) + (1− αn)d(vn, p0), we have

lim inf
n→∞

[αnd(wn, p0) + (1− αn)d(vn, p0)] ≥ k. (3.14)

Using (3.7), (3.9) and (3.14), we get

lim
n→∞

[αnd(wn, p0) + (1− αn)d(vn, p0)] = k. (3.15)

Using (3.1), (3.3) and (3.15), we have

lim
n→∞

d(W (T3xn, xn, γn), p0) = k. (3.16)

As lim supn→∞ d(T3xn, p0) ≤ lim supn→∞ d(xn, p0) = k, by (3.16) and Lemma 2.4, we
have:

lim
n→∞

d(T3xn, xn) = 0. (3.17)

Also,

d(xn+1, p0) = d(W (T1wn, T2vn, αn), p0)
≤ αnd(T1wn, p0) + (1− αn)d(T2vn, p0)
≤ αnd(T1wn, T2vn) + αnd(T2vn, p0) + (1− αn)d(T2vn, p0)
= αnd(T1wn, T2vn) + d(T2vn, p0). (3.18)

Taking lim inf of both sides using inequality (3.13) and (3.18), we get

k ≤ lim inf
n→∞

d(T2vn, p0). (3.19)

Using (3.10) and (3.19), we obtain limn→∞ d(T2vn, p0) = k. Moreover, we have

d(T2vn, p0) ≤ d(T2vn, T1wn) + d(T1wn, p0)
≤ d(T2vn, T1wn) + d(wn, p0). (3.20)

This implies that

k ≤ lim inf
n→∞

d(wn, p0). (3.21)

From (3.7) and (3.21), we get

lim
n→∞

d(wn, p0) = k. (3.22)

Similarly,

lim
n→∞

d(vn, p0) = k. (3.23)

Using (3.2), (3.22) and (3.23), we have

lim
n→∞

d(vn, p0) = lim
n→∞

d(W (T2wn, T3xn, βn), p0) = k. (3.24)

By (3.11), (3.22), (3.24) and Lemma 2.4, we have

lim
n→∞

d(T2wn, T3xn) = 0. (3.25)

Now we have

d(wn, xn) = d(W (T3xn, xn, γn), xn)
≤ γnd(T3xn, xn) + (1− γn)d(xn, xn) −→ 0 as n→∞. (3.26)
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Next, we have

d(wn, T3xn) = d(W (T3xn, xn, γn), T3xn)
≤ γnd(T3xn, T3xn) + (1− γn)d(xn, T3xn) −→ 0 as n→∞. (3.27)

Using (3.27), we have

d(vn, wn) = d(W (T2wn, T3xn, βn), wn)
≤ βnd(T2wn, wn) + (1− βn)d(T3xn, wn) −→ 0 as n→∞. (3.28)

Using (3.26) and G-nonexpansiveness of T2, we get

d(T2xn, xn) = d(T2xn, T2wn) + d(T2wn, xn)
≤ d(xn, wn) + d(T2wn, xn)
≤ d(xn, wn) + d(T2wn, wn) + d(wn, xn) −→ 0 as n→∞. (3.29)

Next, we have

d(T1xn, xn) = d(T1xn, wn) + d(wn, xn)
≤ d(T1xn, T1wn) + d(T1wn, wn) + d(wn, xn)
≤ d(xn, wn) + d(T1wn, wn) + d(wn, xn) −→ 0 as n→∞. (3.30)

Hence, we obtain

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0. (3.31)

The proof of Lemma 3.1 is completed.

Lemma 3.4. Let C be a closed subset of a uniformly convex metric space X endowed
with a directed graph G such that V (G) = C. Suppose E(G) is convex and G is transitive.
Let Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive mappings such that F = F (T1) ∩
F (T2) ∩ F (T3) 6= ∅. For arbitrary s0 ∈ C and p0 ∈ F, define the sequence {sn} as in
(2.7). Let {αn} and {βn} be real sequences in [δ, 1 − δ] for some δ ∈ (0, 1) and (s0, p0),
(p0, s0) ∈ E(G). Then
(i) limn→∞ d(sn, p0) exists;
(ii) limn→∞ d(sn, T1sn) = limn→∞ d(sn, T2sn) = limn→∞ d(sn, T3sn) = 0.

Proof. The proof follows on the similar lines as in the proof of Lemma 3.1.

Next, we prove the following ∆-convergence results in CAT(0) spaces.

Theorem 3.5. Let C be a closed convex subset of a complete CAT(0) space X endowed
with a directed graph G such that V (G) = C and C has Property E. Suppose E(G) is
convex and G is transitive. Let Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive mappings
such that F = F (T1) ∩ F (T2) ∩ F (T3) 6= ∅. For arbitrary x0 ∈ C and p0 ∈ F, define the
sequence {xn} as in (2.8). Let {αn}, {βn} and {γn} be real sequences in [δ, 1 − δ] for
some δ ∈ (0, 1) and (x0, p0), (p0, x0) ∈ E(G). Then {xn} ∆-converges to a common fixed
point of T1, T2 and T3.

Proof. By Lemma 3.1 (ii), we get

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0.

It follows from Lemma 3.1 (i) that limn→∞ d(xn, p) exists for each p ∈ F. Hence, {xn} is
bounded. We first show that w∆(xn) ⊆ F. Suppose that u ∈ w∆(xn), then there exists a
subsequence {un} of {xn} such that A({un}) = {u}. By Proposition 2.1 (ii), there exists
a subsequence {vn} of {un} such that ∆-limn vn = v for some v ∈ C. Using Proposition
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2.1 (ii), we have v ∈ F. By Lemma 3.1, we get that limn→∞ d(xn, v) exists. Therefore by
Lemma 2.1, we have u = v. Hence, u = v ∈ F so that w∆(xn) ⊆ F. To prove that {xn}
∆-converges to the common fixed point of Ti (i = 1, 2, 3), we show that w∆(xn) consists
of exactly one point. Suppose {un} is a subsequence of {xn}. Since C has Property E.
Then by Proposition 2.1, there exists a subsequence {vn} of {un} such that ∆-limn vn = v
for some v ∈ C. Suppose A({un}) = {u} and A({xn}) = {x}. We have already proved
that u = v ∈ F. Therefore, by the uniqueness of asymptotic centers and Lemma 2.1,
x = v ∈ F. Hence, w∆(xn) = {x}.

Theorem 3.6. Let C be a nonempty closed convex subset of a complete CAT(0) space
X endowed with a directed graph G such that V (G) = C and C has Property E. Suppose
E(G) is convex and G is transitive. Let Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive
mappings such that F = F (T1) ∩ F (T2) ∩ F (T3) 6= ∅. For arbitrary x0 ∈ C and p0 ∈ F,
define the sequence {xn} as in (2.8). Let {αn}, {βn} and {γn} be real sequences in [δ, 1−δ]
for some δ ∈ (0, 1) and (x0, p0), (p0, x0) ∈ E(G). Suppose F is dominated by x0 and F
dominates x0. Then {xn} ∆-converges to a common fixed point of T1, T2 and T3.

Proof. Suppose p0 ∈ F is such that (x0, p0), (p0, x0) are in E(G). By Lemma 3.1 (i), we
have limn→∞ d(xn, p0) exists, so the sequence {xn} is bounded in C. Since C has Property
E. We first show that w∆(xn) ⊆ F. If u ∈ w∆(xn), then there exists a subsequence {unk

}
of {xnk

} such that A({unk
}) = {u}. Hence, by Proposition 2.1, there exists a subsequence

{xnk
} of {xn} such that A({xnk

}) = {x∗} ∈ C. Using Proposition 2.1 (ii), we have that
u ∈ F. By Lemma 3.1, we have that limn→∞ d(xn, u) exists. Therefore by Lemma 2.1,
we have that u = x∗. Hence, u = x∗ ∈ F so that w∆(xn) ⊆ F.

Using Lemma 3.1 (ii), we get that

lim
k→∞

d(xnk
, T1xnk

) = lim
k→∞

d(xnk
, T2xnk

) = lim
k→∞

d(xnk
, T3xnk

) = 0. (3.32)

Moreover, we have

d(T1wn, wn) ≤ d(T1wn, T2vn) + d(T2vn, vn) + d(vn, wn). (3.33)

Using (3.13) and (3.28) in (3.33), we get

lim
n→∞

d(T1wn, wn) = 0. (3.34)

Hence, by Lemma 2.2, we have I − T1, I − T2 and I − T3 are G-demiclosed at 0. So,
x∗ ∈ F.

To prove that {xn} ∆-converges to the common fixed point of Ti (i = 1, 2, 3), we show
that w∆(xn) consists of exactly one point. Suppose {xnk

} is a subsequence of {xn}. Since
C has Property E, by Proposition 2.1, there exists a subsequence {unk

} of {xnk
} such

that ∆-limn unk
= u for some u ∈ C. Suppose A({unk

}) = {u} and A({xnk
}) = {x∗}. We

have already proved that u = x∗ ∈ F. Therefore, by the uniqueness of asymptotic centers
and Lemma 2.1, we have x∗ = u ∈ F. Hence, we obtain that w∆(xn) = {x∗}. The proof
of Theorem 3.2 is completed.

Next, we prove the following strong convergence theorems for our proposed iteration
(2.8) for three G-nonexpansive mappings in uniformly convex metric spaces endowed with
a directed graph.

Theorem 3.7. Let C be a nonempty closed convex subset of a uniformly convex metric
space X endowed with a directed graph G such that V (G) = C. Suppose E(G) is convex
and G is transitive. Let Ti : C → C, (i = 1, 2, 3) be three G-nonexpansive mappings
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such that Ti satisfies condition (C) and F = F (T1) ∩ F (T2) ∩ F (T3) 6= ∅. For arbitrary
x0 ∈ C and p ∈ F, define the sequence {xn} as in (2.8). Let {αn}, {βn} and {γn} be real
sequences in [δ, 1− δ] for some δ ∈ (0, 1). Suppose F is dominated by x0 and F dominates
x0. Then {xn} converges strongly to a common fixed point of T1, T2 and T3.

Proof. By Lemma 3.1 (i), limn→∞ d(xn, p) exists. Hence, limn→∞ d(xn, F ) exists for each
p ∈ F. Moreover, by Lemma 3.1 (ii), we have

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0.

Hence, from condition (C) we have limn→∞ f(d(xn, F )) = 0. Since f : [0,∞) → [0,∞)
is a nondecreasing function satisfying f(0) = 0, f(r) > 0 for each r ∈ (0,∞), it follows
that limn→∞ d(xn, F ) = 0. Therefore, there exists a subsequence {xnk

} of {xn} and a
sequence {yk} ⊂ F such that d(xnk

, yk) ≤ 1
2k . If we put nk+1 = nk+j for some j ≥ 1,

then we have

d(xnk+1
, yk) ≤ d(xnk+j−1

, yk) ≤ d(xnk
, yk) ≤ 1

2k
.

Hence we have d(yk+1, yk) ≤ 3
2k+1 , so {yk} is a Cauchy sequence. Assume that yk →

p0 ∈ C as k → ∞. Since F is closed, we have p0 ∈ F. Therefore, {xnk
} → p0 ∈ C as

k → ∞. Using the fact that limn→∞ d(xn, p0) exists, it follows that xn → p0. The proof
of Theorem 3.3 is completed.

Theorem 3.8. Let C be a nonempty closed convex subset of a uniformly convex metric
space X endowed with a directed graph G such that V (G) = C and C has property G.
Suppose E(G) is convex and G is transitive. Let Ti : C → C, (i = 1, 2, 3) be three G-
nonexpansive mappings such that F = F (T1) ∩ F (T2) ∩ F (T3) 6= ∅. For arbitrary x0 ∈ C
and p ∈ F, define the sequence {xn} as in (2.8). Let {αn}, {βn} and {γn} be real sequences
in [δ, 1 − δ] for some δ ∈ (0, 1). Suppose F is dominated by x0 and F dominates x0. If
one of Ti is semi-compact, then {xn} converges strongly to a common fixed point of T1, T2

and T3.

Proof. By Lemma 3.1 , the sequence {xn} is bounded and

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0.

Since one of T1, T2 and T3 is semi-compact, it follows that there exists a subsequence {xnk
}

of {xn} such that xnk
→ p ∈ C as k →∞. As C has property G, by transitivity of graph G,

we have (xnk
, p) ∈ E(G).Observe that for all i ∈ {1, 2, 3} we have limk→∞ d(xnk

, Tixnk
) =

0. Hence, we have

d(p, Tip) ≤ d(p, xnk
) + d(xnk

, Tixnk
) + d(Tixnk

, Tip)
≤ d(p, xnk

) + d(xnk
, Tixnk

) + d(xnk
, p) −→ 0 as k →∞.

Therefore, p ∈ F.Hence, limn→∞ d(xn, F ) exists by Theorem 3.3. Observe that d(xnk
, F ) ≤

d(xnk
, p) → 0 as k → ∞. Hence, limn→∞ d(xn, F ) = 0. Following arguments similar to

those given in the proof of Theorem 3.3, we have {xn} converges strongly to a common
fixed point of T1, T2 and T3. The proof of Theorem 3.4 is completed.

Next, we obtain the following results.
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Theorem 3.9. Let C be a nonempty closed convex subset of a uniformly convex metric
space X endowed with a directed graph G such that V (G) = C and C has property G.
Suppose E(G) is convex and G is transitive. Let Ti : C → C, (i = 1, 2, 3) be three G-
nonexpansive mappings such that F = F (T1) ∩ F (T2) ∩ F (T3) 6= ∅. For arbitrary s0 ∈ C
and p ∈ F, define the sequence {sn} as in (2.7). Let {αn} and {βn} be real sequences in
[δ, 1− δ] for some δ ∈ (0, 1). Suppose F is dominated by s0 and F dominates s0. If one of
Ti is semi-compact, then {sn} converges strongly to a common fixed point of T1, T2 and
T3.

Proof. The proof follows on the similar lines as in the proof of Theorem 3.4.

4. Numerical Examples

In this section, we provide a number of numerical illustrations to support our results.
We compare the speed of convergence of various iterative schemes discussed in this paper,
viz a viz: the modified Mann iterative scheme {un} in (2.4), the modified Ishikawa itera-
tive scheme {pn} in (2.5), the modified Noor iterative scheme {vn} in (2.6), the modified
Picard-Ishikawa hybrid iterative scheme {sn} in (2.7) and the modified Abbas-Nazir iter-
ation {xn} in (2.8). We show that the proposed modified Picard-Ishikawa hybrid scheme
{sn} and the modified Abbas-Nazir iterative scheme {xn} converge faster than all of the
modified Mann iterative scheme {un}, the modified Ishikawa iterative scheme {pn} and
the modified Noor iterative scheme {vn}. All the codes were written in Matlab (R2010a)
and run on PC with Intel(R) Core(TM) i3-4030U CPU @ 1.90 GHz.

We begin with the following example.

Example 4.1. Let X = [0, 10] and the graph G0 given by E(G0) := X×X. Let d(x, y) =
|x−y|, ∀x, y ∈ R and W (x, y, λ) = λx+(1−λ)y, ∀x, y ∈ R and λ ∈ [0, 1]. Let Ti : X → X
(i = 1, 2, 3) be mappings such that Tix = x

2 . Clearly, Ti is G0-contraction for each i =
1, 2, 3, see ([3], Example 2.2) and the common fixed point F (T1) = F (T2) = F (T3) = {0}.
Suppose the first iteration u0 = p0 = v0 = s0 = x0 = 7 and the number of iterations for
each iterative scheme is n = 100. Choose αn = n

7n+1 , βn = 1
17n+1 and γn = 1

2n+3 . We
present the numerical results of this example in Table 1 and Figure 1 below.

Step Abbas-Nazir Picard-Ishikawa Noor Ishikawa Mann
0 7.0000 7.0000 7.0000 7.0000 7.0000
1 1.9165 3.2630 6.5250 6.5260 6.5625
2 0.5330 1.5178 6.0700 6.0712 6.1250
3 0.1493 0.7055 5.6431 5.6443 5.7074
4 0.0420 0.3279 5.2445 5.2458 5.3138
5 0.0118 0.1523 4.8733 4.8745 4.9448
6 0.0033 0.0708 4.5278 4.5289 4.5998
7 9.4590e-04 0.0329 4.2064 4.2075 4.2778
8 2.6788e-04 0.0153 3.9076 3.9086 3.9776
...

...
...

...
...

...

Table 1. Rate of convergence among various iterations
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Figure 1. Error versus iteration number (n)

The following example in ([5], Example 4) for G-nonexpansive mappings, which is not
nonexpansive. We compare the rate of convergence of various iterative processes for this
example in the framework of convex metric spaces.

Example 4.2. Suppose X = R and C = [0, 2]. Suppose that (x, y) ∈ E(G) if and only
if 0.4 ≤ x, y ≤ 1.6 or x = y, where x, y ∈ R. Let d(x, y) = |x − y|, ∀x, y ∈ R and
W (x, y, λ) = λx+ (1− λ)y, ∀x, y ∈ R and λ ∈ [0, 1]. Define Ti : C → C (i = 1, 2, 3) by

T1x = sin(
π

2
) cos(tan(x− 1)),

T2x =
lnx

3
+ 1,

T3x =
2

3
arcsin(x− 1) + 1,

for each x ∈ C. Note that each Ti, (i = 1, 2, 3) is G-nonexpansive with F (T1) = F (T2) =
F (T3) = {1}. However, Ti is not nonexpansive, since for x = 1.6, y = 1.8, u = 0.1, v = 0.6,
p = 1.95 and q = 1.45, we have

|T1x− T1y| > 0.21 > |x− y|,

|T2u− T2v| > 0.58 > |u− v|,
|T3p− T3q| > 0.50 = |p− q|.

We consider the following cases for our numerical experiments:
Case I Suppose the first iteration u0 = p0 = v0 = s0 = x0 = 1.5 and the number of
iterations for each iterative scheme is n = 100. Choose αn = n

17n+2 , βn = 1
5n+3 and

γn = 1
11n+4 . We present the numerical results of Case I in Table 2 and Figure 2 below.

Case II Suppose the first iteration u0 = p0 = v0 = s0 = x0 = 0.5 and the number
of iterations for each iterative scheme is n = 100. Choose αn = n

17n+2 , βn = 1
5n+3 and

γn = 1
11n+4 . We present the numerical results of Case II in Table 3 and Figure 3 below.
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Step Abbas-Nazir Picard-Ishikawa Noor Ishikawa Mann

0 1.5000 1.5000 1.5000 1.5000 1.5000
1 1.0837 0.9397 1.3279 1.1276 0.8545
2 1.0162 0.9986 1.0515 1.0378 0.9893
3 1.0032 0.9999 1.0101 1.0117 0.9999
4 1.0007 1.0000 1.0020 1.0036 1.0000
5 1.0001 1.0000 1.0004 1.0011 1.0000
6 1.0000 1.0000 1.0001 1.0004 1.0000
7 1.0000 1.0000 1.0000 1.0001 1.0000
8 1.0000 1.0000 1.0000 1.0000 1.0000
...

...
...

...
...

...

Table 2. Rate of convergence among various iterations
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Figure 2. Error versus iteration number (n)

Step Abbas-Nazir Picard-Ishikawa Noor Ishikawa Mann

0 0.5000 0.5000 0.5000 0.5000 0.5000
1 0.8732 0.9388 0.6664 0.7797 0.8545
2 0.9734 0.9967 0.9186 0.9216 0.9893
3 0.9946 0.9999 0.9832 0.9743 0.9999
4 0.9989 1.0000 0.9966 0.9918 1.0000
5 0.9998 1.0000 0.9993 0.9974 1.0000
6 1.0000 1.0000 0.9999 0.9992 1.0000
7 1.0000 1.0000 1.0000 0.9997 1.0000
8 1.0000 1.0000 1.0000 0.9999 1.0000
...

...
...

...
...

...

Table 3. Rate of convergence among various iterations



1492 Thai J. Math. Vol. 18 (2020) /G. A. Okeke and M. Abbas

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

iteration number (n)

e
rr

o
r

 

 

Abbas−Nazir

Picard−Ishikawa

Mann

Ishikawa

Noor

Figure 3. Error versus iteration number (n)

The next example in ([46], Example 1) is used for our next numerical experiments as
follows:

Example 4.3. Let X = R, C = [0, 2] and G = (V (G), E(G)) be a directed graph defined
by V (G) = C and (x, y) ∈ E(G) if and only if 0.50 ≤ x ≤ y ≤ 1.70. Let d(x, y) = |x− y|,
∀x, y ∈ R and W (x, y, λ) = λx + (1 − λ)y, ∀x, y ∈ R and λ ∈ [0, 1]. Define mappings
T1, T2, T3 : C → C by

T1x =
2

3
arcsin(x− 1) + 1,

T2x =
1

3
tan(x− 1) + 1,

T3x =
√
x,

for each x ∈ C. Note that T1, T2 and T3 are G-nonexpansive. However, T1, T2 and T3 are
not nonexpansive since

|T1x− T1y| > 0.50 = |x− y|,
|T2u− T2v| > 0.07 = |u− v|

and
|T3p− T3q| > 0.45 = |p− q|,

when x = 1.95, y = 1.45, u = 0.08, v = 0.01, p = 0.5 and q = 0.05.

Suppose the first iteration u0 = p0 = v0 = s0 = x0 = 1.50 and the number of iterations
for each iterative scheme is n = 100. Choose αn = n

17n+2 , βn = 1
5n+3 and γn = 1

11n+4 .
We present the numerical results of this example in Table 4 and Figure 4 below.
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Step Abbas-Nazir Picard-Ishikawa Noor Ishikawa Mann
0 1.5000 1.5000 1.5000 1.5000 1.5000
1 1.0740 1.1458 1.2202 1.1789 1.3491
2 1.0122 1.0452 1.1025 1.0592 1.2377
3 1.0021 1.0144 1.0490 1.0194 1.1600
4 1.0004 1.0046 1.0237 1.0063 1.1071
5 1.0001 1.0015 1.0116 1.0021 1.0716
6 1.0000 1.0005 1.0056 1.0007 1.0477
7 1.0000 1.0002 1.0028 1.0002 1.0318
8 1.0000 1.0000 1.0014 1.0001 1.0212
...

...
...

...
...

...

Table 4. Rate of convergence among various iterations
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Figure 4. Error versus iteration number (n)

Remark 4.4. Clearly, from Table 1 and Figure 1 of Example 4.1, we see that the modified
Abbas-Nazir iteration {xn} converges faster than all of modified Picard-Ishikawa iteration
{sn}, modified Mann iteration {un}, modified Ishikawa iteration {pn} and the modified
Noor iteration {vn} to the common fixed point F (T1) = F (T2) = F (T3) = {0}. Similarly,
{sn} converges faster than all of {un}, {pn} and {vn}. From Table 2 and Figure 2 of
Example 4.2, we see that {sn} and {un} have the same rate of convergence, and also
converges faster than all of {xn}, {vn} and {pn} to the common fixed point F (T1) =
F (T2) = F (T3) = {1}. We also have the same conclusion from Table 3 and Figure 3.
From Table 4 and Figure 4 of Example 4.3, we see that {xn} converges faster than all of
{sn}, {vn}, {pn} and {un} to the common fixed point F (T1) = F (T2) = F (T3) = {1}.
Similarly, {sn} converges faster than all of {vn}, {pn} and {un}.
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Concluding Remarks

In this paper, we extended and unified several known results in the framework of
normed spaces endowed with graphs to the setting of CAT(0) spaces endowed with graphs
and convex metric spaces endowed with graphs, including the results of [3, 5, 42] and [46].

Open Problems

Is it possible to extend the results of Theorem 3.1 and Theorem 3.2 from the setting
of CAT(0) spaces endowed with graphs to the setting of convex metric spaces endowed
with graphs?
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