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1. INTRODUCTION

Among many algebraic structures, algebras of logic form important class of algebras.
Examples of these are BCK-algebras [1], BCI-algebras [2], BCH-algebras [3], B-algebras
[4], KU-algebras [5], SU-algebras [6], UP-algebras [7] and others. They are strongly
connected with logic. For example, BCIl-algebras introduced by Iséki [2] in 1966 have
connections with BCI-logic being the BCI-system in combinatory logic which has appli-
cation in the language of functional programming. BCK and BClI-algebras are two classes
of logical algebras. They were introduced by Imai and Iséki [1, 2] in 1966 and have been
extensively investigated by many researchers. It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. The above-mentioned section has been
derived from [8].
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The type of the logical algebra, a UP-algebra was introduced by Iampan [7], and it
is known that the class of KU-algebras is a proper subclass of the class of UP-algebras.
Later Somjanta et al. [9] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-
filters of UP-algebras. Guntasow et al. [10] studied fuzzy translations of a fuzzy set in
UP-algebras. Kesorn et al. [11] studied intuitionistic fuzzy sets in UP-algebras. Kaijae
et al. [12] studied anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras of UP-algebras.
Tanamoon et al. [13] studied Q-fuzzy sets in UP-algebras. Sripaeng et al. [14] studied anti
Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. Dokkhamdang et al.
[15] studied generalized fuzzy sets in UP-algebras. Songsaeng and Iampan [16, 17] studied
N-fuzzy UP-algebras and fuzzy proper UP-filters of UP-algebras. Senapati et al. [18, 19]
studies cubic sets and interval-valued intuitionistic fuzzy structures in UP-algebras.

A fuzzy set f in a nonempty set S is a function from S to the closed interval [0, 1].
The concept of a fuzzy set in a nonempty set was first considered by Zadeh [20]. The
fuzzy set theories developed by Zadeh and others have found many applications in the do-
main of mathematics and elsewhere. Zadeh [21] introduced interval-value fuzzy sets. An
interval-valued fuzzy set is defined by an interval-valued membership function. The con-
cept of neutrosophic sets was introduced by Smarandache [22] in 1999. Wang et al. [23]
introduced the concept of interval-valued neutrosophic sets in 2005. The interval-valued
neutrosophic set is an instance of neutrosophic set which can be used in real scientific
and engineering applications. Jun et al. [24] introduced the notion of interval-valued neu-
trosophic sets with applications in BCK/BCl-algebra, they also introduced the notion of
interval-valued neutrosophic length of an interval-valued neutrosophic set, and investigate
their properties and relations. In 2018-2019, Muhiuddin et al. [25-30] applied the notion
of neutrosophic sets to semigroups, BCK/BCl-algebras. The concept of neutrosophic A/-
structures and their applications in semigroups was introduced by Khan et al. [31] in
2017. Jun et al. [32] applied the concept of neutrosophic A-structures to BCK/BCI-
algebras in 2017. Songsaeng and Iampan [33] applied the concept of neutrosophic set to
UP-algebras in 2019.

A cubic set in a nonempty set is a structure using an interval-value fuzzy set and a
fuzzy set was introduced by Jun et al. [34] in 2012. People find that cubic sets have
board applications in computer science and soft engineering. Jun et al. [35] applied the
concept of cubic sets to a subgroup in 2011. Senapati [36] introduced the concept of cubic
subalgebras and cubic closed ideals of B-algebras in 2015. Senapati et al. [18] introduced
the concept of cubic set structure applied in UP-algebras in 2018.

A neutrosophic cubic set which is the generalized form of fuzzy sets, cubic sets and
neutrosophic sets and introduced by Jun et al. [37] in 2017. The concept of truth-internals
(indeterminacy-internals, falsity-internals) and truth-externals (indeterminacy-externals,
falsity-externals) were introduced and related properties were investigated. Igbal et al.
[38] introduced the concept of neutrosophic cubic subalgebras and neutrosophic cubic
closed ideals of B-algebras in 2016. Relation among neutrosophic cubic algebra with
neutrosophic cubic ideals and neutrosophic closed ideals of B-algebras were studied and
some related properties were investigated.

From literature review, we applied the concept of neutrosophic cubic sets to UP-
algebras and we introduce the concepts of neutrosophic cubic UP-subalgebras, neutro-
sophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals,
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and neutrosophic cubic strong UP-ideals of UP-algebras. Moreover, we discuss the re-
lations between neutrosophic cubic UP-subalgebras (resp., neutrosophic cubic near UP-
filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals and neutrosophic cubic
strong UP-ideals) and their level subsets by means of interval-valued neutrosophic sets
and neutrosophic sets.

2. Basic CONCEPTS AND PRELIMINARY NOTES ON UP-ALGEBRAS

Before we begin our study, we will give the definition and useful properties of UP-
algebras.

Definition 2.1 ([7]). An algebra X = (X, -,0) of type (2,0) is called a UP-algebra, where
X is a nonempty set, - is a binary operation on X, and 0 is a fixed element of X (i.e., a
nullary operation) if it satisfies the following axioms:

(UP-1): (Vz,y,2 € X)((y-2) - ((z - y) - (z- 2)) = 0),
(UP-2): (Vz e X)(0 -z ==x),

(UP-3): (Vz € X)(z-0=0), and

(UP-4): (Vz,ye X)(z-y=0,y-z=0=2=y).

From [7], we know that the concept of UP-algebras is a generalization of KU-algebras

(see [9]).

Example 2.2 ([39]). Let X be a universal set and let Q € P(X), where P(X) means the
power set of X. Let Po(X) = {A € P(X) | 2 C A}. Define a binary operation - on Pq(X)
by putting A- B = BN (A°UQ) for all A, B € Po(X), where A® means the complement
of a subset A. Then (Pq(X),-, ) is a UP-algebra and we shall call it the generalized
power UP-algebra of type 1 with respect to Q. Let P*(X) = {A € P(X) | A C Q}. Define
a binary operation * on P(X) by putting A+ B = BU (A N Q) for all A, B € P*(X).
Then (P%(X), ,Q) is a UP-algebra and we shall call it the generalized power UP-algebra
of type 2 with respect to Q. In particular, (P(X),-,0) is a UP-algebra and we shall call it
the power UP-algebra of type 1, and (P(X), x, X) is a UP-algebra and we shall call it the
power UP-algebra of type 2.

Example 2.3 ([15]). Let INg be the set of all natural numbers with zero. Define two
binary operations o and e on INy by

(Vx7yeIN0)(xoy:{g 1f1’<y7 )

otherwise

and

otherwise

(V:c,yG]NO)(xoy—{g ifz>yorz=0, )

Then (INg, 0,0) and (INp, e, 0) are UP-algebras.

For more examples of UP-algebras, see [18, 19, 39—14].
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In a UP-algebra X = (X, -,0), the following assertions are valid (see [7, 42]).
(V€ X)(z-z=0), (2.1)
Vz,y,z€e X)(z-y=0,y-2=0=z-2=0), (2.2)
(Vz,y,ze X)(z-y=0=(z-2) - (2-y) =0), (2.3)
(V25,7 € X)(@-y=0= (y-2)  (z-2) = 0), (2.4)
(Ve,y € X)(x- (y-z) =0), (2.5)
(Vo,y e X)((y-2)- v =0 z=y- ), (2.6)
(Vz,y € X)(z - (y-y) = 0), (2.7)
(Va,2,y,2 € X)((z- (y-2)) - (x-((a-y)-(a-2))) =0), (2.8)
(Va,2,y,2 € X)((((a-z) - (a-y))-2) - ((x-y) - 2) = 0), (2.9)
(Vz,y,2 € X)(((x-y) - 2) - (y-2) =0), (2.10)
(Ve,y,z€ X)(z-y=0=z-(2-y) =0), (2.11)
(Va,y,2 € X)(((z - y) - 2) - (&~ (y - 2)) = 0), and (2.12)
Va,z,y,z€ X)(((x-y)-2) - (y- (a-2)) =0). (2.13)
From [7], the binary relation < on a UP-algebra X = (X, -,0) defined as follows:
(Vz,ye X)(z <y a-y=0).
In UP-algebras, 5 types of special subsets are defined as follows.
Definition 2.4 ([7, 9, 10, 45]). A nonempty subset S of a UP-algebra X = (X,-,0) is
called
(1) a UP-subalgebra of X if (Vx,y € S)(x -y € S).
(2) a near UP-filter of X if
(i) the constant 0 of X is in S, and
(ii) (Vz,ye X)(ye S=x-y€Sf).
(3) a UP-filter of X if
(i) the constant 0 of X is in S, and
(ii)) (Ve,ye X)(z-yeS,xeS=yeS9).
(4) a UP-ideal of X if
(i) the constant 0 of X is in S, and
(ii)) Vo,y,z€ X)(z-(y-2) € S,yeS=>x-2€59).
(5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if
(i) the constant 0 of X is in S, and
(i) Vz,y,z€ X)((2-y)-(z-z) e S,ye S=z€9).
Guntasow et al. [10] and Tampan [15] proved that the concept of UP-subalgebras

is a generalization of near UP-filters, near UP-filters is a generalization of UP-filters,
UP-filters is a generalization of UP-ideals, and UP-ideals is a generalization of strong
UP-ideals. Furthermore, they proved that the only strong UP-ideal of a UP-algebra X is

X.

In 1965, the concept of a fuzzy set in a nonempty set was first considered by Zadeh

[20] as the following definition.

Definition 2.5. A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy subset of X)
is defined to be a function A : X — [0,1], where [0,1] is the unit segment of the real
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line. Denote by [0, 1] the collection of all fuzzy sets in X. Define a binary relation < on
[0,1]% as follows:

(YA, p € [0, %) (A < p & (Vo € X)(A(2) < p(2))). (2.14)

Definition 2.6 ([9]). Let A be a fuzzy set in a nonempty set X. The complement of A,
denoted by A, is defined by

(Vz € X)(\C(z) =1 — A(z)). (2.15)

Definition 2.7 ([46]). Let {)\; | ¢ € J} be a family of fuzzy sets in a nonempty set X. We
define the join and the meet of {\; | i € J}, denoted by V;csA; and Aje s A;, respectively,
as follows:

(Ve € X)((Vieshi)(z) = ?el}z){)\i(x)})’ (2.16)
(Ve € X)((AiesAi)(@) = inf{Ai(2)}). (2.17)

In particular, if A and p be fuzzy sets in X, we have the join and meet of A and u as
follows:

(Ve € X)((AV p)(z) = max{A(z), u(x)}), (2.18)
(va € X)((A A p)(@) = minfA(2), u()}), (2.19)
respectively.

An interval number we mean a close subinterval @ = [a~,a™] of [0,1], where 0 < a~ <
a™ < 1. The interval number @ = [a~,a™] with ¢~ = a™ is denoted by a. Denote by
[[0,1]] the set of all interval numbers.

Definition 2.8 ([37]). Let {a; | ¢ € J} be a family of interval numbers. We define the
refined infimum and the refined supremum of {a; | i € J}, denoted by rinf;c sa;, and
rsup,¢ ya;, respectively, as follows:

. X ~ — . _ . +
rinfies{a;} = [inf{a;"}, inf{a;"}], (2:20)
rsup;c y{a; } = [sup{a; },sup{a; }. (2.21)
ieJ ieJ
In particular, if @, and as are interval numbers, we define the refined minimum and the

refined mazimum of a; and as, denoted by rmin{a;, as} and rmax{a;,as}, respectively,
as follows:

rmin{ay,ds} = [min{ay ,a; },min{a;, a3}, (2.22)

rmax{dy, s} = [max{a],a; }, max{a;,ad }]. (2.23)
Definition 2.9 ([37]). Let a@; and ay be interval numbers. We define the symbols “=7,
“<” “="in case of a; and as as follows:

@y = as & ay >ay and af > aj, (2.24)
and similarly we may have a1 < @2 and a; = as. To say a1 > as (resp., 1 < a2) we mean
C~l1 t ag and C~l1 7’5 ELQ (resp., C~L1 j &2 and C~L1 75 ZIQ)

Definition 2.10 ([21]). Let a be an interval number. The complement of a, denoted by
a“, is defined by the interval number

a“=[1-a",1-a"]. (2.25)
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In the [[0,1]], the following assertions are valid (see [47]).

(va € [[0,1]])((@“)“ = a), (2.26)
(Va € [[0,1]])(rmax{a,a} = a and rmin{a,a} = a), (2.27)
(Vaq,aq € [[0,1]])(rmax{ay, az} =rmax{as, @1 } and rmin{ay, as} =rmin{as, a, }),

(2.28)
(Vaq, as € [[0,1]]) tmax{ai, a2} = @1 and @y = rmin{a;, as}), (2.29)
(Yar, az € [[0,1]]))(a1 = a2 & af =< ag), (2.30)
(Vaq, ag, as, aq € [[0,1]])(a1 = ao,as = ag = rmin{ay, az} = rmin{as, aq}),

2.31)
(Vaq, as, as € [[0,1]])(G1 = ag,as = as < rminf{ay, as} = as), (2.32)
(Vai, ag, ag, aq € [[0,1]])(@1 = ag,as = a4 = rmax{as, as} = rmax{as, a4}),

(2.33)
(Vaq,aq, as € [[0,1]])(az = a1, a2 = az < az = rmax{ay,as}), (2.34)
(Vaq,aq € [[0,1]])(a1 = a2 < rmin{ay, as} = az), (2.35)
(Vay, ae € [[0,1]]) (a1 = a2 < rmax{ai,as} = a1), (2.36)
(Vay, az € [[0,1]])(rmin{a%,a$'} = rmax{a;,a»}), (2.37)
(Vai, as € [[0,1]]) (rmax{a{’, a$’} = rmin{a;, a2 }°), (2.38)
(Vay, ag,as € [[0,1]])(@1 < rmax{dy,as} < af = rmin{ag, a$'’}), (2.39)
(Vay, dg, as € [[0,1]])(a1 = rmax{ds, ds} < af < rmin{ay,as’}), (2.40)
(Vaq, dg, az € [[0,1]])(a1 < rmin{ay,as} < af > rmax{ay,as’}), and (2.41)
(Vay, ag,as € [[0,1]])(@; = rmin{as, as} < af < rmax{a$,as'}). (2.42)

In 1975, the concept of an interval-valued fuzzy set in a nonempty set was first intro-
duced by Zadeh [20] as the following definition.

Definition 2.11. An interval-valued fuzzy set (briefly, IVFS) in a nonempty set X is
an arbitrary function A : X — [[0,1]]. Let IVFS(X) stands for the set of all IVFS in
X. For every A € IVFS(X) and z € X, A(z) = [A~(z), AT (2)] is called the degree of
membership of an element x to A, where A=, AT are fuzzy sets in X which are called
a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote
A=[A",AT].

Definition 2.12 ([37]). Let A and B be interval-valued fuzzy sets in a nonempty set X.
We define the symbols “C”, “D”, “=" in case of A and B as follows:

ACB<& (Vo e X)(A(z) <X B(x)), (2.43)
and similarly we may have A O B and A = B.

Definition 2.13 ([21]). Let A be an interval-valued fuzzy set in a nonempty set X. The
complement of A, denoted by A, is defined as follows: A%(z) = A(x)® for all x € X,
that is,

(Vo € X)(A%(z) = [1 — At (x),1 — A~ (z)]). (2.44)
We note that A (z) =1 — AT (z) and AC (2) =1 — A~ (z) for all z € X.
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Definition 2.14 ([21]). Let {A; | i € J} be a family of interval-valued fuzzy sets in a
nonempty set X. We define the intersection and the union of {A; | i € J}, denoted by
NicgA; and U;e 7 A;, respectively, as follows:

(Vl‘ S X)((ﬂieJAi)(l‘> = rinfieJ{Ai(as)}), (245)
(Vz € X)((UiesAi)(z) = rsup,ec ;{Ai(7)}). (2.46)
We note that
(Vo € X)((Nies i)™ (2) = (Nies A7 )(x) = Inf{A; (2)})

ied
and
(%2 € X)((Mies A ¥ () = (Nies AT )(x) = LA (2))).
Similarly,
(Vz € X)((ViesAi)™ (z) = (Vies4; )(z) = 31619{14[ ()})
and

(Vz € X)((UiesAi)*(2) = (Vies AT ) (z) = sgy{Aj(m)}).
K3
In particular, if A; and A5 are interval-valued fuzzy sets in X, we have the intersection
and the union of 4; and Ay as follows:

(Ve € X)((A1 N A2)(x) = rmin{A;(x), Az(x)}), (2.47)

(Vo € X)((A1 U A2)(x) = rmax{A;(x), A2(x)}). (2.48)

In 1999, the concept of a neutrosophic set in a nonempty set was first considered by
Smarandache [22] as the following definition.

Definition 2.15. A neutrosophic set (briefly, NS) in a nonempty set X is a structure of
the form:

A= {(z, \r(x), \1(z), \p(2)) | z € X}, (2.49)

where Ay : X — [0,1] is a truth membership function, Ar : X — [0,1] is an indeterminate
membership function, and Ap : X — [0,1] is a false membership function. For our
convenience, we will denote a NS as A = (X, Ay, A1, Ap) = (X, A1 p) = {(z, Mr(2),
Ar(2), Ap(2)) | o € X},

Definition 2.16 ([22]). Let A be a NS in a nonempty set X. The NS A® = (X, A\, \¢, \%)
in X is called the complement of A in X.

In 2019, the concepts of a special neutrosophic UP-subalgebra, a special neutrosophic
near UP-filter, a special neutrosophic UP-filter, a special neutrosophic UP-ideal, and a
special neutrosophic strong UP-ideal of a UP-algebra were first considered by Songsaeng
and Tampan [18] as the following definition.

Definition 2.17. A NS A = (X, Ap, A;, Ap) in a UP-algebra X = (X, -,0) is called
(1) a special neutrosophic UP-subalgebra of X if
(Ve,y € X)(Ar(x - y) < max{Ar(z), A\r(v)}), (2.50)
(Va,y € X)(Ar(z - y) = min{A;r(z), A1(y)}), (2.51)
(Va,y € X)(Ap(z - y) <max{Ap(z), A\r(y)}). (2.52)
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(2) a special neutrosophic near UP-filter of X if

(Vz € X)(Ar(0) < Ap(2)), (2.53)
(Vo € X)(Ar(0) > Af(x)), (2.54)
(Vo € X)(Ar(0) < Ap(z)), (2.55)
(Va,y € X)(Ar(z - y) < Ar(y)), (2.56)
(Vz,y € X)(Ar(z-y) = Ar(y)), (2.57)
(Va,y € X)(Ar(z-y) < Ar(y)). (2.58)
(3) a special neutrosophic UP-filter of X if it satisfies the following conditions:
(2.53), (2.54), (2.55), and
(Ve,y € X)(Ar(y) < max{Ar(z-y), \r(x)}), (2.59)
(Ve,y € X)(Ar(y) > min{A;(z - y), Ar(x)}), (2.60)
(Vo,y € X)(Ar(y) < max{Ar(z-y), A\r(z)}). (2.61)
(4) a special neutrosophic UP-ideal of X if it satisfies the following conditions:
(2.53), (2.54), (2.55), and
(Vz,y,z € X)(Ar(z - 2) <max{Ar(z- (y-2)), \r(y)}), (2.62)
(Ve,y,z € X)(Ar(z - 2) > min{A\;(z- (v - 2)), \1(y)}), (2.63)
(Va,y,z € X)(Ap(z - 2) <max{Ap(z- (y-2)), Ar(y)}). (2.64)

(5) a special neutrosophic strong UP-ideal of X if it satisfies the following condi-
tions: (2.53), (2.54), (2.55), and

(Va,y, 2 € X)(Ar(z) < max{Ar((z-y) - (z-2)), Ar(y)}), (2.65)

(Va,y, 2 € X)(Ar(z) =2 min{Ar((z-y) - (2 - 2)), Ar(y)}), (2.66)

(Va,y,z € X)(Ap(z) < max{Ar((z-y) - (2 7)), Ar(y)}). (2.67)

In 2005, the concept of an interval neutrosophic set in a nonempty set was first con-
sidered by Wang et al. [23] as the following definition.

Definition 2.18. An interval-valued neutrosophic set (briefly, IVNS) in a nonempty set
X is a structure of the form:

A= {(z,Ar(x),Ar(x), Ar(x)) |z € X}, (2.68)

where A1, Ay and A are interval-valued fuzzy sets in X, which are called an interval truth
membership function, an interval indeterminacy membership function and an interval
falsity membership function, respectively. For our convenience, we will denote a IVNS as

A= (X,AT7A[,AF) = (X, AT,I,F) = {(w,AT(x),AI(x),AF(x)) | T € X}

Definition 2.19 ([23]). Let A = (X, Ay, A1, Ar) be an IVNS in a nonempty set X. The
IVNS A® = (X, AZ, AY AQ) in X is called the complement of A in X.

In 2019, the concepts of an interval-valued neutrosophic UP-subalgebra, an interval-
valued neutrosophic near UP-filter, an interval-valued neutrosophic UP-filter, an interval-
valued neutrosophic UP-ideal, and an interval-valued neutrosophic strong UP-ideal of a
UP-algebra were first considered by Songsaeng and Tampan [19] as the following definition.

Definition 2.20. An IVNS A = (X, Ap, A;, Ar) in a UP-algebra X = (X, -,0) is called
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(1) an interval-valued neutrosophic UP-subalgebra of X if

(Va,y € X)(Ar(z - y) = rmin{Ar(z), Ar(y)}), (2.69)
(Vo,y € X)(Ar(x -y) 2 rmax{Ar(z), Ar(y)}), (2.70)
(Ve,y € X)(Ap(x -y) = rmin{Ap(z), Ar(y)}). (2.71)

(2) an interval-valued neutrosophic near UP-filter of X if

(Vz € X)(Ar(0) = Ar(x)), (2.72)
(Vo € X)(A;(0) = Ar(z)), (2.73)
(Vo € X)(Ap(0) = Ap(z)). (2.74)
(Vo,y € X)(Ar(z - y) = Ar(y)), (2.75)
(Vz,y € X)(Ar(z-y) = Ar(y)), (2.76)
(Vz,y € X)(Ar(z-y) = Ar(y))- (2.77)

(3) an interval-valued neutrosophic UP-filter of X if it holds the following condi-
tions: (2.72), (2.73), (2.74), and

(Vz,y € X)(Ar(y) = rmin{Ar(z - y), Ar(z)}), (2.78)
(Ve,y € X)(Ar(y) < rmax{A;(z-y), Ar(x)}), (2.79)
(Va,y € X)(Ap(y) = mmin{Ap(z - y), Ap(z)}). (2.80)

(4) an interval-valued neutrosophic UP-ideal of X if it holds the following condi-
tions: (2.72), (2.73), (2.74), and

(Va,y,2 € X)(Ar(z - z) = min{Ar(z - (y - 2)), Ar(y)}), (2.81)
(Vo,y,z € X)(Ar(z - z) < tmax{Ar(z - (y-2)), Ar(y)}), (2.82)
(Ve,y,z € X)(Ar(z - 2) = rmin{Ap(x - (y- 2)), Ar(y)}). (2.83)

(5) an interval-valued neutrosophic strong UP-ideal of X if it holds the following
conditions: (2.72), (2.73), (2.74), and

(Ve,y,z € X)(Ar(x) = rmin{Ar((z -y) - (z- ), Ar(y)}), (2.84)
(Va,y, 2 € X)(Ar(z) 2 rmax{A;((z-y) - (z - 2)), A1(y)}), (2.85)
(Va,y,z € X)(Ap(x) = rmin{Ap((z-y) - (z-z)), Ar(y)}). (2.86)

In 2012, the concept of a cubic set in a nonempty set was first considered by Jun et al.
[34] as the following definition.

Definition 2.21. A cubic set (briefly, CS) in a nonempty set X is a structure of the
form:

C = {(z,A(z), M) | x € X}, (2.87)

where A is an interval-valued fuzzy set in X and A is a fuzzy set in X. For our convenience,
we will denote a CS as C = (X, A, \) = {(z, A(x), \(z)) | z € X }.
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3. NEUTROSOPHIC CUBIC SETS IN UP-ALGEBRAS

In 2017, Jun et al. [37] introduced the concept of a neutrosophic cubic set in a nonempty
set which extend the concept of a cubic sets to a neutrosophic set as the following defini-
tion.

Definition 3.1. A neutrosophic cubic set (briefly, NCS) in a nonempty set X is a pair
o = (A,A), where A = (X, Ar, A;, Ap) is an interval-valued neutrosophic set in X
and A = (X, \p, A1, Ar) is a neutrosophic set in X. For simplicity, we denote & =
(Ar1,p, Ar1r). A NCS & = (A,A) in a nonempty set X is said to be constant if
Ar, A1, Ap, A, A1, and A are constant functions. The complement of a NCS &7 = (A, A)
is defined to be the NCS &7/¢ = (A, A©).

Now, we introduce the concepts of neutrosophic cubic UP-subalgebras, neutrosophic
cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, and
neutrosophic cubic strong UP-ideals of UP-algebras, provide the necessary examples,
investigate their properties, and prove their generalizations.

In what follows, let X denote a UP-algebra (X, -,0) unless otherwise specified.

Definition 3.2. A NCS & = (A,A) in X is called a neutrosophic cubic UP-subalgebra
of X if it holds the following conditions:

Ar(z - y) = rmin{Ar(z), Ar(y)}
(Ve,y € X) | Ar(z-y) 2 rmax{As(x), Ar(y)} (S1)
Ap(z-y) = rmin{Ap(z), Ar(y)}
and
Ar(z - y) < max{Ar(z), Ar(y)}
(Vo,y € X) [ Ar(z-y) = min{Ar(2), \1(y)} (52)

Ap(z-y) < max{Ap(z), Ar(y)}
Proposition 3.3. If & = (A, A) is a neutrosophic cubic UP-subalgebra of X, then
Ar(0) = Ap(x)

(Vz e X) | Ar(0) <X Af(x) (P1)
Ap(0) = Ap(z)
and
Ar(0) < Ar(w)
(Ve e X) [ Ar(0) > Ar(x) (P2)
Ar(0) < Ap(x)
Proof. Let o/ = (A, A) be a neutrosophic cubic UP-subalgebra of X. By (2.1) and (2.27),
we have
Ar(0) = Ap(z - z) = rmin{Ar(x), Ar(x)} = Ap(z)
Ar(0) = Aj(x - ) K rmax{A;(z), Ar(x)} = Ar(x)
Ap(0) = Ap(z - z) = rmin{Ar(x), Ar(2)} = Ap(z)
V2 €0 Ar(0) = Ar(e - 2) < max{Ar(@), A ()} = Mo ()
A1(0) = AI(I -x) = min{ A7 (2), Ar(z)} = Ar(x)
A (0) = Ap(e - 2) < max{Ar(e), Ar (@)} = Ap(a)
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Example 3.4. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

-0 1 2 3 4
0j0 1 2 3 4
110 0 1 3 4
210 0 0 3 4
3/0 0 0 0 4
410 0 0 0 O

We define a NCS o7 = (A, A) in X with the tabular representation as follows:
X A(x) A(z)
0 ([, 1],10,0.3],[0.7,1]) (0,1,0)
1 ([0.6,0.7],[0.4,0.5],[0.4,0.5]) (0.3,0.2,0.4)
2 ([0.4,0.8],[0.1,0.4],[0.5,0.7])  (0.5,0.6,0.2)
3 ([0.3,0.4],[0.8,0.9],[0.2,0.3]) (0.7,0.8,0.7)
4 ([0.7,0.8,[0.2,0.4],[0.6,0.7)) (0.5,0.4,0.8)

Then o7 = (A, A) is a neutrosophic cubic UP-subalgebra of X.

Definition 3.5. A NCS & = (A, A) in X is called a neutrosophic cubic near UP-filter
of X if it holds the following conditions: (P1), (P2), and

Ar(z - y) = Ar(y)
(Va,y € X) | Ar(z-y) 2 Ar(y) (N1)
Ap(z-y) = Ar(y)

and

<
=
3
—~
<
=

)\T(I .
(Vz,y € X) | Ar( (N2)

NS
IA IV IA
> > >

~

<

S~—"

)\F(x

Example 3.6. Let X = {0, 1,2, 3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

NP
B!

—~
=

10 1 2 3 4

0j0 1 2 3 4

110 0 1 2 4

20 0 0 1 4

3/0 0 0 0 4

410 1 2 3 0
We define a NCS o7 = (A, A) in X with the tabular representation as follows:

X A(z) Ax)

0 ([0.9,1],1]0,0.1], [1,1]) (0,0.9,0.1)

1 (]0.6,0.8],[0.1,0.3],[0.6,0.8]) (0.3,0.8,0.2)

2 ([0.5,0.6],[0.3,0.4],[0.5,0.7]) (0.5,0.7,0.6)

3 ([0.4,0.6],]0.5,0.6],[0.4,0.6]) (0.6,0.3,0.7)

4 ([0.1,0.7),[0.8,0.9],0.1,0.3]) (0.2,0.4,0.5)
Then o7 = (A, A) is a neutrosophic cubic near UP-filter of X.
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Definition 3.7. A NCS & = (A,A) in X is called a neutrosophic cubic UP-filter of X
if it holds the following conditions: (P1), (P

2)
Ar(y) = rmin{Ap(z - y;
)

(Vz,y € X) (AI( ) < rmax{A;(z -y
Ap(y) = rmin{Ap(z - y),

T( )}
)

A
Ar(z)} ) (F1)
Ap(2)}

Ar(y) < max{Ar(z - y), Ar(z)}
(Vz,y € X) | Ar(y) > min{A;(z-y), A\r(z)} |- (F2)
Ar(y) < max{Ap(z-y), A\p(x)}

Example 3.8. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a binary
operation - defined by the following Cayley table:

and

10 1 2 3 4
0j{0 1 2 3 4
110 0 2 3 4
2/0 0 0 3 3
3/0 1 2 0 3
410 1 2 0 0

We define a NCS o7 = (A, A) in X with the tabular representation as follows:
X A(x) Ax)
0 ([0.9,1],1[0,0.1],[0.8,0.9]) (0,1,0.1)
1 ([0.5,0.8],[0.2,0.3],[0.6,0.7]) (0.2,0.7,0.2)
2 ([0.3,0.7],[0.4,0.5],[0.5,0.6]) (0.5,0.5,0.9)
3 ([0.1,0.4],[0.7,0.9],[0.2,0.4]) (0.7,0.4,0.3)
4 ([0.1,0.4],(0.7,0.9],[0.2,0.4]) (0.7,0.4,0.3)

Then o/ = (A, A) is a neutrosophic cubic UP-filter of X.

Definition 3.9. A NCS & = (A, A) in X is called a neutrosophic cubic UP-ideal of X
if it holds the following conditions: (P1), (P2), and

2)
Ar(z - 2) = rmin{Ap(z - ( 2)), Az (y)}

(Va,y,z € X) | As(z-2) 2 rmax{A;(z - (y-2)), Ar(y)} (1)
Ap(z-z) = rmin{Ap(z - (1/ Z)%AF(y)}

and

Ar(x - z) <max{Ar(z - (y-2)), )\T(y)})
(12)

(VZL',y,ZGX) )\](3?2) zmln{A](J](yZ)),A](y)}

Ar(z-z) <max{Ap(z- (y-2)),Ar(y)}

Example 3.10. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a
binary operation - defined by the following Cayley table:

01 2 3 4
0/0 1 2 3 4
110 0 2 3 4
2/0 0 0 0 4
3/0 0 2 0 4
410 0 0 0 O
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We define a NCS & = (A, A) in X with the tabular representation as follows:

X A(z) A(x)

0 ([0.9,1],[0.1,0.3,[08,09) _ (0,1,0)

1 ([0.7,0.9],[0.3,0.5],[0.5,0.9]) (0.3,0.6,0.2)
2 ([0.6,0.8],[0.4,0.7),[0.4,0.6]) (0.5,0.5,0.7)
3 ([0.6,0.9],0.3,0.6], [0.5,0.8]) (0.4,0.6,0.4)
4 ([0.3,0.5],]0.5,0.9],[0.4,0.5]) (0.6,0.2,0.9)

Then &7 = (A, A) is a neutrosophic cubic UP-ideal of X.

Definition 3.11. A NCS & = (A, A) in X is called a neutrosophic cubic strong UP-ideal
of X if it holds the following conditions: (P1), (P2), and

Ap(z) = rmin{ Az ((z - y) - (2 - 2)), Ar(y) }
(Va,y,z € X) | Ar(z) 2 rmax{A;((z-y)- EZ ﬂf))wjz(y)} (B1)

Ap(z) = min{Ar((z-y) - (z- 2)), Ar(y)}
and

Ar(z) < max{Ar((z-y) - (z-2)), Ar(y)}
(Vo,y,2 € X) | Ar(@) 2 min{Ar((z-y) - (z-2)), Ar(y)} |- (B2)
Ar(z) < max{Ap((z-y) - (z- ), Ar(y)}
Example 3.12. Let X = {0,1,2,3,4} be a UP-algebra with a fixed element 0 and a
binary operation - defined by the following Cayley table:

10 1 2 3 4

0j{0 1 2 3 4

110 0 2 3 4

20 1 0 3 4

3/0 1 0 0 4

410 1.0 3 0

We define a NCS & = (A, A) in X with the tabular representation as follows:

X A(z) A(x)

0 ([0.5,0.7],[0.3,0.9],[0.4,0.5]) (0.5,0.4,0.7)
1 ([0.5,0.7],[0.3,0.9],[0.4,0.5]) (0.5,0.4,0.7)
2 ([0.5,0.7],[0.3,0.9],[0.4,0.5]) (0.5,0.4,0.7)
3 ([0.5,0.7],[0.3,0.9],[0.4,0.5]) (0.5,0.4,0.7)
4 (]0.5,0.7],10.3,0.9],[0.4,0.5]) (0.5,0.4,0.7)

Then & = (A, A) is a neutrosophic cubic strong UP-ideal of X.

Theorem 3.13. A NCS o = (A, A) in X is a neutrosophic cubic UP-subalgebra (resp.,
neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-
ideal, neutrosophic cubic strong UP-ideal) of X if and only if the IVNS A is an interval-
valued neutrosophic UP-subalgebra (resp., interval-valued neutrosophic mear UP-filter,
interval-valued neutrosophic UP-filter, interval-valued neutrosophic UP-ideal, interval-
valued neutrosophic strong UP-ideal) of X and the NS A is a special neutrosophic UP-
subalgebra (resp., special neutrosophic near UP-filter, special neutrosophic UP-filter, spe-
cial neutrosophic UP-ideal, special neutrosophic strong UP-ideal) of X .

Proof. 1t is straightforward by Definitions 2.17 and 2.20. (]
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Theorem 3.14. A NCS o/ = (A, ) in X is constant if and only if it is a neutrosophic
cubic strong UP-ideal of X .

Proof. Assume that &/ = (A, A) is a constant neutrosophic cubic set in X. Then Ar(x) =
AT(O),AI(LE) = A[(O),AF(I) = AF(O),)\T(Z’) = )\T(O),)\](I) = /\](O), and )\F( ) =
Ar(0) for all x € X. Then for all z € X, Ap(0) = Ap(z),A;(0) = Ar(z), Ap(0) =
Ap(x), Ar(0) < Ap(x), Ar(0) > Ar(z), and Ap(0) < Ap(z), and for all z,y,z € X,

rmin{Ar((z - y) - (2 - z)), Ar(y)} = rmin{A7(0), Ar(0)}
= Ar(0) ((2.27))
= Ar(z),
rmax{A;((z - y) - (2 2)), Ar(y)} = rmax{A;(0), Ar(0)}
= A;(0) ((2.27))
= Ar(z),
rmin{Ap((z-y) - (z-2)), Ap(y)} = rmin{Ap(0), Ar(0)}
= Ar(0) ((2.27))
= Ap(z),
max{Ar((z-y) - (- 2)), Ar(y)} = max{Azr(0), \r(0)}
= Ar(0)
= Ar(z),
min{A7((z - y) - (2 - @), A\r(y)} = min{A;(0), A7(0)}
= A1(0)
= Ar(z),
max{Ar((z-y) (2 2)), A\r(y)} = max{Ar(0), Ar(0)}
= Ar(0)
= Ap(x).

Hence, & = (A, A) is a neutrosophic cubic strong UP-ideal of X.
Conversely, assume that &/ = (A, A) is a neutrosophic cubic strong UP-ideal of X.
Then for all z € X,

Ar(z) = rmin{Ar((z-0) - (x - x)), Ar(0)}

((
= min{A7(0- (z - z)), Ar(0)} ((UP-3))
= rmin{Ar(z - z), Ar(0)} ((UP-2))
= rmin{Ar(0), Ar(0)} ((2.1))
= Ar(0) ((2.27))

= AT(x)v
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Ar(z) < rmax{A;((z-0) - (z-z)),Ar(0)}
=rmax{A;(0- (z-z)),A;(0)} ((UP-3))
=rmax{A;(z-x),A;(0)} ((UP-2))
= rmax{Az(0), A7 (0)} ((2.1))
= A;(0) ((2:27))
= Af(z),

Ap(z) = rmin{Ap((x-0) - (z - z)), Ar(0)}
=rmin{Ap(0- (z-z)), Ar(0)} ((UP-3))
=rmin{Ap(z-z), Ap(0)} ((UP-2))
= rmin{Ar(0), Ar(0)} ((2.1))
= Ar(0) ((2:27))
= Ap(z),

Ar(z) < max{Ar((xz-0)- (z-z)),\r(0)}
= max{Ar(0- (z-x)),A\r(0)} ((UP-3))
= max{Ar(z - x),\r(0)} ((UP-2))
= max{Ar(0), Ar(0)} ((2.1))
= Ar(0)
< Ar(z),

Ar(z) > min{A;((z-0) - (z - x)), \;(0)}
=min{A;(0- (z - 2)), A1(0)} ((UP-3))
= min{A7(z - z),A7(0)} ((UP-2))
= min{A;(0), A;(0)} ((2.1))
= A1(0)
> Ai(z),

Arp(z) <max{Ap((z-0)-(z-2)),A\r(0)}
= max{Ap(0- (z-x)), Ar(0)} ((UP-3))
=max{Ap(z - x), Ap(0)} ((UP-2))
= max{Ap(0),Ar(0)} ((2.1))
= Ar(0)
< Ap(x).

Thus AT(O) = AT(JZ),A[(O) = A](:L’),AF( ) = A ( ) )\T(O) = )\T(JZ),)\[(O) = )\[(SC),
and Ap(0) = Ap(x) for all x € X. Hence, & = (A, A) is constant. L]

Theorem 3.15. FEvery neutrosophic cubic strong UP-ideal of X is a neutrosophic cubic
UP-ideal.

Proof. Assume that &/ = (A, A) is a neutrosophic cubic strong UP-ideal of X. Then for all
z € X, Ar(0) = Ar(z), Ar(0) 2 Ar(2), Ap(0) = Ap(z), Ar(0) < Ar(x), Ar(0) = Ar(z),
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and Ap(0) < Ap(x). Let z,y,z € X. Then

Ar(z-z) = Ar(y) > min{\(z - (y-2)), A\ ,
Ap(z-z) = Ap(y) < max{Ap(z - (y-2)),Ar(y)}.
Hence, &/ = (A, A) is a neutrosophic cubic UP-ideal of X. ]
The following example show that the converse of Theorem 3.15 is not true.

Example 3.16. From Example 3.10, we have &/ = (A, A) is a neutrosophic cubic UP-
ideal of X. Since Ap(3) = 0.6 > 0.3 = max{Ar((2:0)-(2-3)), A\r(0)}, we have & = (A, A)
is not a neutrosophic cubic strong UP-ideal of X.

Theorem 3.17. Every neutrosophic cubic UP-ideal of X is a neutrosophic cubic UP-
filter.

Proof. Assume that &/ = (A, A) is a neutrosophic cubic UP-ideal of X. Then for all
v € X, A7(0) = Ar(z), Ar(0) = Ar(z), Ar(0) = Ap(z),Ar(0) < Ar(z), Ar(0) = Ar(2),
and Ap(0) < Ap(z). Let 2,y € X. Then

Ar(y) = Ar(0-y) ((UP-2)

= rmin{Ar(0- (z-y)), Ar(x)}

=rmin{Ar(z - y), Ar(z)}, ((UP-2))
Ary) = A1(0-y) (P-2)

<rmax{A;(0-(z-y)), Ar(x)}

= rmax{A;(z - y), Ar(z)}, ((UP-2))
Ap(y) = Ap(0-y) ((UF-2)

=rmin{Ar(0- (z-y)), Ar(x)}

=rmin{Ap(z-y), Ar(x)}, ((UP-2))
Ar(y) = Ar(0-y) ((UP-2))

< max{Ar(0- (z-y)), A\r(z)}

= max{\r(z - y), A\r(x)}, ((UP-2))
Ar(y) = Ar(0-y) (UF-2)

> min{A;(0- (z-y)), \r(z)}

= max{\;(z - y), A1 (2)}, ((UP-2))
Ar(y) = Ar(0-y) (UP-2)

< max{Ar(0- (z-y)), Ar(z)}

— max{Ar(z - ), Ar(2)}. ((UP-2))

Hence, o7 = (A, A) is a neutrosophic cubic UP-filter of X. "

The following example show that the converse of Theorem 3.17 is not true.
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Example 3.18. From Example 3.8, we have &/ = (A, A) is a neutrosophic cubic UP-
filter of X. Since Ap(3-4) =[0.2,0.4] # [0.5,0.6] = rmin{Ap(3-(2-4)), Arp(2)}, we have
&/ = (A, ) is not a neutrosophic cubic UP-ideal of X.

Theorem 3.19. Every neutrosophic cubic UP-filter of X is a neutrosophic cubic near
UP-filter.

Proof. Assume that &/ = (A, A) is a neutrosophic cubic UP-filter of X. Then for all
v € X,Ar(0) = Ar(x), A1(0) = A;(2), Ap(0) = Ap(x), Ar(0) < Ar(z), A1(0) = Ar(w),
and Ap(0) < Ap(z). Let z,y € X. Then

Ar(z-y) = rmin{Ar(y - (z - y)), Ar(y)}
= rmin{ A7 (0), A7 (y)} ((2:5))
= AT(y)y

Ar(z - y) 2rmax{A;(y - (z - y)), Ar(y)}
= rmax{A4;(0), A;(y)} ((2.5))
= A;(y),

Ap(z-y) =z min{Ap(y - (z-y)), Ar(y)}
= rmin{Ap(0), Ap(y)} ((2:5))
= Ar(y),

Ar(z - y) < max{Ar(y - (z-y)), Ar(y)}
= max{Ar(0), A\r(y)} ((2:5))
= /\T(y),

Ar(z - y) > min{Ar(y - (2 - y)), Ar(y)}
= min{A7(0), Ar(y)} ((2.5))
= A1(y),

Ar(z-y) < max{Ar(y - (z-y)), Ar(y)}
= max{Ar(0), A\r(y)} ((2.5))
= Ar(y).

Hence, & = (A, A) is a neutrosophic cubic near UP-filter of X. n

The following example show that the converse of Theorem 3.19 is not true.

Example 3.20. From Example 3.6, we have &/ = (A, A) is a neutrosophic cubic near
UP-filter of X. Since Ar(2) = [0.5,0.6] # [0.6,0.8] = rmin{Ar(1-2), Ar(1)}, we have
o/ = (A, A) is not a neutrosophic cubic UP-filter of X.

Theorem 3.21. FEvery neutrosophic cubic near UP-filter of X is a neutrosophic cubic
UP-subalgebra.

Proof. Assume that &/ = (A, A) is a neutrosophic cubic near UP-filter of X. Then for all
z € X,Ar(0) = Ap(z),A;(0) = Ar(z), Ar(0) = Ap(z), \r(0) < Ap(z), A1(0) > A;(x),
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Ar(z-y) = Ar(y) = rmin{Ar(x), Ar(y)},
Ar(z-y) 2 Ar(y) 2 rmax{A;(2), Ar(y)},
Ap(z-y) = Ap(y) = rmin{Ap (), Ap(y)},
Ar(z - y) < Ar(y) < max{Ar(z), Ar(y)},
Ar(@-y) > Ar(y) = min{Ar(2), Ar(y)},
Ar(z-y) < Ar(y) < max{Ap(z), Ar(y)}-

Hence, o7 = (A, A) is a neutrosophic cubic UP-subalgebra of X. (]

The following example show that the converse of Theorem 3.21 is not true.

Example 3.22. From Example 3.4, we have &/ = (A, A) is a neutrosophic cubic UP-
subalgebra of X. Since A;(1-2) = 0.2 < 0.6 = A\;(2), we have & = (A, A) is not a
neutrosophic cubic near UP-filter of X.

By Theorems 3.15, 3.17, 3.19, and 3.21 and Examples 3.16, 3.18, 3.20, and 3.22, we have
that the concept of neutrosophic cubic UP-subalgebras is a generalization of neutrosophic
cubic near UP-filters, neutrosophic cubic near UP-filters is a generalization of neutrosophic
cubic UP-filters, neutrosophic cubic UP-filters is a generalization of neutrosophic cubic
UP-ideals, and neutrosophic cubic UP-ideals is a generalization of neutrosophic cubic
strong UP-ideals. Moreover, by Theorem 3.14, we obtain that neutrosophic cubic strong
UP-ideals and constant neutrosophic cubic sets coincide.

Theorem 3.23. If o = (A,A) is a neutrosophic cubic UP-subalgebra of X satisfying
the following condition:

Ar(z) = Ar(y)
Ar(z) 2 Ar(y)
Ap(z) = Ar(y)
Ve,yeX) |z -y#0= Ar(z) < Ar(y) , (3.1)
Ar(z) > A (y)
<

then & = (A, A\) is a neutrosophic cubic near UP-filter of X.

Proof. Assume that &/ = (A, A) is a neutrosophic cubic UP-subalgebra of X satisfying
the condition (3.1). By Proposition 3.3, we have «f satisfies the conditions (P1) and (P2).
Next, let 2,y € X.

Case 1: -y =0. Then

Ar(z - y) = Ar(0) = Ar(y), Ar(z - y) = Ar(0) < Ar(y), Ar(z - y) = Ap(0

) = Ar(y),
Ar(z - y) = Ar(0) < Ar(y), Ar(z-y) = A1(0) > Ar(y), Ar(z - y) = Ap(0) < A

F(y)-
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Case 2: z -y # 0. Then

Ar(z - y) = rmin{Ar(z), Ar(y)} = Ar(y),
Ap(z-y) 2 rmax{A;(z), A1(y)} = Ar(y),
Ap(z-y) = mmin{Ar(2), Ap(y)} = Ar(y),
Ar(z - y) < max{Ar(x), A\ (y)} = A\r(y),
Ar(@-y) = min{Ar(z), Ar(y)} = Ar(y),
Ap(z - y) <max{Ap(z), Ar(y)} = Ar(y).
Hence, & = (A, A) is a neutrosophic cubic near UP-filter of X. n

Theorem 3.24. If o = (A, A) is a neutrosophic cubic near UP-filter of X satisfying the
following condition:

AT:A[:AF,AT:)\]:)\F, (32)
then & = (A, A) is a neutrosophic cubic strong UP-ideal of X .

Proof. Assume that &/ = (A, A) is a neutrosophic cubic near UP-filter of X satisfying
the condition (3.2). Then « satisfies the conditions (P1) and (P2). Let z € X. Then

Ar(0) = Ap(z) = AI(CU) = A1(0) = A7 (0)

Ar(0) 2 Ar(x) = Ap(x) = Ar(0) = A7(0)

Ap(0) = Ap(z) = Ar(x) = Ar(0) = Ap(0)

Ar(0) < Ar(z) = Ar(z) < Ar(0) = Ar(0)

Ar(x) = Ar(x) = Ar(x) = Ar(z) = Ar(z)

Ar(z) < Ap(z) = Ar(z) < Af(z) = Ap(2)
Thus Ar(0) = A(e), A7(0) = A(x), Ap(0) = Ap(x).Az(0) = Ar(2). Ar(x) = Ar(z).
and Ap(z) = Ap(z), that is, &7 is constant. By Theorem 3.14, we have &/ = (A, A) is a

neutrosophic cubic strong UP-ideal of X.

Theorem 3.25. If o = (A, A) is a neutrosophic cubic UP-filter of X satisfying the
following condition.:

Aply - (2-2)) = Ar(e - (y - 2))
Arly - (2 2) = Are- (y - 2))
Aply-(x-2) = Az - (y-2)

Gz €0 @ 2) = M- (v-2) | (3.3)
Ay (2-2) = Aile - (y - 2))
Ar(y- (2 2) = Ap(e - (y-2)

then & = (A, A) is a neutrosophic cubic UP-ideal of X.

Proof. Assume that &/ = (A, A) is a neutrosophic cubic UP-filter of X satisfying the
condition (3.3). Then .« satisfies the conditions (P1) and (P2). Next, let z,y,z € X.
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Ap(x-z) <max{Ap(y-(z-z

Then
Ar(z-2) = rmin{Ar(y - (z - 2)), Ar(y)}
=rmin{Ar(z - (y- 2)), Ar(y)},
Ap(z - z) 2 rmax{A;(y - (z-2)), A1(y)}
=mmax{Ar(z-(y-2)), Ar(y)}
Ap(z-2) = rmin{Ap(y - (- 2)), Ar(y)}
=rmin{Ar(z-(y-2)), Ar(y)},
Ar(z - z) <max{Ar(y - (z-2)), \r(y)}
=max{Ar(z- (y-2)), A\r(y)},
Ar(w-2z) > min{Ar(y - (7 - 2)), Ar(y)}
=min{A\(z- (y-2)), \1(v)},
)
)

Hence, & = (A, A) is a neutrosophic cubic UP-ideal of X. n
Theorem 3.26. If o = (A, A) is a NCS in X satisfying the following condition:
Ar(z) = rmin{Ar(z), Ar(y)}

Ap(z) = rmax{A;(z), A7 (y)}

Ap(2) = rmin{Ap(z), Ap(y)}

Ar(z) < max{Ar(z), Ar(y)} ’

Ar(2) = min{Ar(z), Ar(y)}

Ar(2) < max{Ap(z), Ar(y)}

then & = (A, A\) is a neutrosophic cubic UP-subalgebra of X.

Proof. Assume that &/ = (A,A) is a NCS in X satisfying the condition (3.4). Let

z,y € X. By (2.1), we have (z-y) - (z-y) =0, that is, x -y > z - y. It follows from (3.4)
that

(Vz,y,2€X) |2 <a-y= (3.4)

Ar(z - y) = rmin{Ar(z), Ar(y) }, Ar(z - y) 2 rmax{A;(z), A1 (y)},
Ap(z - y) = min{Ap (), Ar(y)}, Ar(z - y) < max{Ar(z), Ar(y)},
Ar(z - y) 2 min{Ar(z), Ar(y) }, Ar (2 - y) < max{Ap(z), Ar(y)}-

Hence, & = (A, A) is a neutrosophic cubic UP-subalgebra of X. ]
Theorem 3.27. If o = (A, A) is a NCS in X satisfying the following condition:
Ar(y) = rmin{Ar(z), Ar(x)}
Ar(y) 2 rmax{A;(z), Ar(x)}
Arp(y) = rmin{Ap(2), Ap(x)}
Ar(y) < max{Ar(z), Ar(x)} ’
A1(y) =2 min{Ar(2), Ar(x)}
Ar(y) < max{Ap(z), Ar(z)}
then o = (A, A\) is a neutrosophic cubic UP-filter of X.

Vz,y,zeX) | z<z-y= (3.5)
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Proof. Assume that & = (A, A) is a NCS in X satisfying the condition (3.5). Let z € X.
By (UP-3), we have = - (x - 0) = 0, that is, z < z - 0. It follows from (3.5) that

A7 (0) = rmin{Ar(z), Ar(2)} = Ar (),
Ar(0) = rmax{A;(z), A;(x)} = As
Ap(0) = rmin{Ap(z), Ap(x)} = Ap

(
(z
(
)\T(O) S max{)\T(xL )\T(CU)} = )\T(
(
(

)

€T

5]

i

)
)
),
)

A1(0) = min{Ar(z), Ar(2)} = Ar(),
Ar(0) < max{Ap(x), Ar(z)} = Ar(2).

Next, let z,y € X. By (2.1), we have (z-y) - (x-y) =0, that is, z -y > = - y. It follows
from (3.5) that

Ap(y) = rmin{Ap(z - y), Ar(2)}, Ar(y) 2 rmax{A;(z - y), Ar(2)},
Ap(y) =z min{Ap(z - y), Ap(2)}, Ar(y) < max{Ar(z - y), Ar(z)},
Ar(y) =2 min{A;(z - y), Ar(2)}, Ap(y) < max{Ap(z-y), Ap(z)}

Hence, & = (A, A) is a neutrosophic cubic UP-filter of X. [
Theorem 3.28. If o = (A, A) is a NCS in X satisfying the following condition:

Ar(z - z) = rmin{Ar(a), Ar(y)}
Ar(z - 2) 2 rmax{A;(a), A1(y)}
Ap(z - 2) = rmin{Ar(a), Ar(y)}
Ar(z - z) < max{Ar(a), Ar(y)} 7
Ar(z - z) > min{Az(a), Ar(y)}

Ar(z - 2) <max{Ar(a), Ar(y)}

Va,z,y,z€ X)|a<z-(y-2)=>

then o = (A, A) is a neutrosophic cubic UP-ideal of X.

Proof. Assume that & = (A, A) is a NCS in X satisfying the condition (3.6). Let z € X.
By (UP-3), we have z- (0- (x-0)) =0, that is, x <0 (x - 0). It follows from (3.6) that

Ar(0) = A7 (0-0) = rmin{Ar(z), Ar(z)} = Ar(z), ((UP-2))
A7(0) = A7(0-0) = rmax{A;(z), Ar(2)} = Ar(), ((UP-2))
Ap(0) = Ap(0-0) = rmin{Ar(z), Ar(2)} = Ap(z), ((UP-2))
Ar(0) = Ar(0-0) < max{Ar(z), Ar(2)} = Ar(z), ((UP-2))
Ar(0) = A7(0-0) = min{A (), Ar(2)} = Ar(x), ((UP-2))
Ar(0) = Ap(0-0) < max{Ap(x), \r(z)} = Ap(x). ((UP-2))
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Next, let z,y,z € X. By (2.1), we have (z-(y-2))-(z-(y-2)) = 0, that is, x-(y-z) > z-(y-2).
It follows from (3.6) that
Ar(z - 2) = min{Ar(z - (y - 2)), Ar(y)},
Ar(z - z) 2rmax{A;(z - (y- 2)), Ar(y)
Ap(z - z) =z min{Ap(z - (y - 2)), Ar(y)
Ar(z - z) < max{Ar(z - (y- 2)), Ar(y)
Ar(z - z) 2 min{Ar(z - (y - 2)), A1)},
Ap(z-z) <max{Ar(z - (y-2)), Ar(y)}-
Hence, & = (A, A) is a neutrosophic cubic UP-ideal of X. n
Theorem 3.29. A NCS o/ = (A, A) in X satisfies the following condition:
Ar(z) = Ar(y)
Ar(z) 2 Ar(y)
Ap(z) = Ap(y)
Ar(z) < Ar(y)
Ar(z) = Ar(y)
Ar(2) < Ar(y)
if and only if & = (A, ) is a neutrosophic cubic strong UP-ideal of X .

(Vz,y,z€ X) [2<z-y= (3.7)

Proof. Assume that o/ = (A,A) is a NCS in X satisfying the condition (3.7). Let
z,y € X. By (UP-3) and (2.1), we have z - 0 = 0, that is, <0 =y -y. It follows from
(3.7) that

Ar(z) = A7r(y), Ar(z) 2 Ar(y), Ar(z) = Ap(y),
Ar(z) < Ar(y), Ar(z) > Ar(y), Ar(x) < Ap(y).
Similarly,
Ar(y) = Ar(z), Ar(y) = Ar(z), Ar(y) = Ar(
Ar(y) <

8

)
Ar(x), Ar(y) 2 Ar(2), Ar(y) < Ap().
Then
Ar(z) = Ar(y), Ar(z) = Ar(y), Ap(z) = Ar(y),
Ar(z) = Ar(y), Ar(z) = A1(y), Ar(x) = Ar(y).
Thus & is constant. By Theorem 3.14, we have &/ = (A,A) is a neutrosophic cubic

strong UP-ideal of X. n
For any fixed numbers a™,a™,8%,57,9",v~ € [0,1] such that o™ > a=,87 >
87,77 > ~~ and a nonempty subset G of X, the NS GA[Z;ZJ_“VQ] = (X,9r[2],

G)\I[gtL G)\F[Yyl]) in X, where “Ap[,], G)\I[gJ:L and G)\F[:’;r] are fuzzy sets in X which
are given as follows:

a” ifxeq,

at  otherwise,

rlo](@) = {
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S (@) = {5+ if z € G,

B~ otherwise,

Apl) () = {’V e,

~T  otherwise.

For any fixed interval numbers a*,a~, b, b=, ét, & e [[0, 1]] such that at = a=, bt >
b—,ét = & and a nonempty subset G of X, the IVNS AG[a ’ +’ft] (X, AG[ Mk AG[ L
AG[ _]) in X, where AG[ -1 AG[ ], and AG[ _] are interval- Valued fuzzy sets in X which

are given as follows:

Ag[ff}(x) = {~_ .

a~ otherwise,

- b= ifzeG,
s = {5, e

otherwise,
&t é+ lf T € G,
AG[E](2) = {~_ .
¢~ otherwise.
A I N at.bm.et a” BT
We define the NCS &/“[[7_7. "], AR (ACL25 ] CALL 7)) in X

Theorem 3.30 ([18]). A NS GA[O‘+ g_”er] in X is a special neutrosophic UP-subalgebra
(resp., special neutrosophic near UP-filter, special neutrosophic UP-filter, special neutro-
sophic UP-ideal, special neutrosophic strong UP-ideal) of X if and only if a nonempty
subset G of X is a UP-subalgebra (resp., near UP-filter, UP-filter, UP-ideal, strong UP-
ideal) of X.

Theorem 3.31 ([419]). An IVNS AG[a ’b+"i] in X is an interval-valued neutrosophic
UP-subalgebra (resp., interval-valued neutrosophic near UP-filter, interval-valued neu-
trosophic UP-filter, interval-valued neutrosophic UP-ideal, interval-val- ued neutrosophic
strong UP-ideal) of X if and only if a nonempty subset G of X is a UP-subalgebra (resp.,
near UP-filter, UP-filter, UP-ideal, strong UP-ideal) of X .

Combining Theorems 3.13, 3.30, and 3.31, we have the following corollary.

ety a8ty

Corollary 3.32. A NCS dG[[ _ b+c I o+ I

subalgebra (resp., neutrosophic cubzc near UP-filter, neutrosophic cubic UP-filter, neutro-
sophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X if and only if a nonempty
subset G of X is a UP-subalgebra (resp., near UP-filter, UP-filter, UP-ideal, strong UP-
ideal) of X.

] in X is a neutrosophic cubic UP-

4. LEVEL SUBSETS OF A NEUTROSOPHIC CUBIC SET

In this section, we discuss the relationships among neutrosophic cubic UP-subalgebras
(resp., neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic
cubic UP-ideals, neutrosophic cubic strong UP-ideals) of UP-algebras and their level
subsets.
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Definition 4.1 ([9, 19]). Let f be a FS and A be an IVFS in a nonempty set X and let
t €10,1] and a € [[0,1]]. The sets
U(fit) ={r e X[ f(z) >},

t
L(f;t) ={z e X | f(z) <t},
E(f;t) ={ze X | f(z) =t}

are called an upper t-level subset, a lower t-level subset, and an equal t-level subset of f,
respectively, and the sets

U(A;a) ={z e X | Az)
L(Asa) ={z e X | A(z)
EA;a)={z e X | A(z)=a

a}, (4.1)
|2
}

A 1Y
Y

are called an upper a-level subset, a lower a-level subset, and an equal a-level subset of
A, respectively.

Theorem 4.2 ([18]). A NS A in X is a special neutrosophic UP-subalgebra (resp., special
neutrosophic near UP-filter, special neutrosophic UP-filter, special neutrosophic UP-ideal)
of X if and only if for all a, B,y € [0,1], the sets L(Ar;a),U(Ar;B), and L(Ap;7y) are
either empty or UP-subalgebras (resp., near UP-filter, UP-filter, UP-ideal) of X.

Theorem 4.3 ([19]). An IVNS A in X is an interval-valued neutrosophic UP-subalgebra
(resp., interval-valued neutrosophic near UP-filter, interval-valued neutrosophic UP-filter,
interval-valued neutrosophic UP-ideal) of X if and only if for all a,b,é € [[0,1]], the sets
U(AT;(E),L(AI;Z;), and U(AFp;¢) are either empty or UP-subalgebras (resp., near UP-
filter, UP-filter, UP-ideal) of X.

Combining Theorems 3.13, 4.2, and 4.3, we have the following corollary.

Corollary 4.4. A NCS o = (A, A) in X is a neutrosophic cubic UP-subalgebra (resp.,
neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-
ideal) of X if and only if for all [s1y, S15], [S11s SL.], [SFy» SE) € [[0,1]] and tr, ty,tF € [0,1],
the sets U(Ar; [st,, s15]), L(A~; [814, S1L])s

U(AF;[sry, $ry)), LAr; tr), U(Ar; tr), and L(Ap;tr) are either empty or UP-sub- algebras
(resp., near UP-filter, UP-filter, UP-ideal) of X .

Theorem 4.5 ([18]). A NS A in X is a special neutrosophic strong UP-ideal of X if and
only if the sets E(Ar, Ar(0)), E(Ar,A1(0)), and E(Ar, Ar(0)) are strong UP-ideals of X.

Theorem 4.6 ([19]). An IVNS A in X is an interval-valued neutrosophic strong UP-ideal
of X if and only if the sets E(Ap; Ar(0)), E(Ar; Ar(0)), and E(Ap; Arp(0)) are strong
UP-ideals of X.

Combining Theorems 3.13, 4.5, and 4.6, we have the following corollary.

Corollary 4.7. A NCS & = (A,A) in X is a neutrosophic cubic strong UP-ideal of X
if and only if the sets E(Ar; Ar(0)), E(Ar; A1(0)), E(AF; Ap(0)),
E(Ar, Ar(0)), E(A1,A1(0)), and E(Ap, Ap(0)) are strong UP-ideals of X .
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced the concepts of neutrosophic cubic UP-subalgebras,
neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-
ideals, and neutrosophic cubic strong UP-ideals of UP-algebras and investigated some
of their important properties. Then, we have the diagram of generalization of NCSs in
UP-algebras as shown in Figure 1.

(P1), (P2)

T

Neutrosophic cubic UP-subalgebra +—— (3.4)

] o

Neutrosophic cubic near UP-filter

T

Neutrosophic cubic UP-filter +«— (3.5)
3.2)+

@2 T l +(3.3)

Neutrosophic cubic UP-ideal =~ +—— (3.6)

T

— Neutrosophic cubic strong UP-ideal +—* (3.7)

I

Constant neutrosophic cubic set

FiGURE 1. NCSs in UP-algebras

In our future study, we will apply this concept/results to other type of NCSs in UP-
algebras. Also, we will study the soft set theory of neutrosophic cubic UP-subalgebras,
neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-
ideals, and neutrosophic cubic strong UP-ideals.
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