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1. Introduction

Among many algebraic structures, algebras of logic form important class of algebras.
Examples of these are BCK-algebras [1], BCI-algebras [2], BCH-algebras [3], B-algebras
[4], KU-algebras [5], SU-algebras [6], UP-algebras [7] and others. They are strongly
connected with logic. For example, BCI-algebras introduced by Iséki [2] in 1966 have
connections with BCI-logic being the BCI-system in combinatory logic which has appli-
cation in the language of functional programming. BCK and BCI-algebras are two classes
of logical algebras. They were introduced by Imai and Iséki [1, 2] in 1966 and have been
extensively investigated by many researchers. It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. The above-mentioned section has been
derived from [8].
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The type of the logical algebra, a UP-algebra was introduced by Iampan [7], and it
is known that the class of KU-algebras is a proper subclass of the class of UP-algebras.
Later Somjanta et al. [9] studied fuzzy UP-subalgebras, fuzzy UP-ideals and fuzzy UP-
filters of UP-algebras. Guntasow et al. [10] studied fuzzy translations of a fuzzy set in
UP-algebras. Kesorn et al. [11] studied intuitionistic fuzzy sets in UP-algebras. Kaijae
et al. [12] studied anti-fuzzy UP-ideals and anti-fuzzy UP-subalgebras of UP-algebras.
Tanamoon et al. [13] studied Q-fuzzy sets in UP-algebras. Sripaeng et al. [14] studied anti
Q-fuzzy UP-ideals and anti Q-fuzzy UP-subalgebras of UP-algebras. Dokkhamdang et al.
[15] studied generalized fuzzy sets in UP-algebras. Songsaeng and Iampan [16, 17] studied
N -fuzzy UP-algebras and fuzzy proper UP-filters of UP-algebras. Senapati et al. [18, 19]
studies cubic sets and interval-valued intuitionistic fuzzy structures in UP-algebras.

A fuzzy set f in a nonempty set S is a function from S to the closed interval [0, 1].
The concept of a fuzzy set in a nonempty set was first considered by Zadeh [20]. The
fuzzy set theories developed by Zadeh and others have found many applications in the do-
main of mathematics and elsewhere. Zadeh [21] introduced interval-value fuzzy sets. An
interval-valued fuzzy set is defined by an interval-valued membership function. The con-
cept of neutrosophic sets was introduced by Smarandache [22] in 1999. Wang et al. [23]
introduced the concept of interval-valued neutrosophic sets in 2005. The interval-valued
neutrosophic set is an instance of neutrosophic set which can be used in real scientific
and engineering applications. Jun et al. [24] introduced the notion of interval-valued neu-
trosophic sets with applications in BCK/BCI-algebra, they also introduced the notion of
interval-valued neutrosophic length of an interval-valued neutrosophic set, and investigate
their properties and relations. In 2018-2019, Muhiuddin et al. [25–30] applied the notion
of neutrosophic sets to semigroups, BCK/BCI-algebras. The concept of neutrosophic N -
structures and their applications in semigroups was introduced by Khan et al. [31] in
2017. Jun et al. [32] applied the concept of neutrosophic N -structures to BCK/BCI-
algebras in 2017. Songsaeng and Iampan [33] applied the concept of neutrosophic set to
UP-algebras in 2019.

A cubic set in a nonempty set is a structure using an interval-value fuzzy set and a
fuzzy set was introduced by Jun et al. [34] in 2012. People find that cubic sets have
board applications in computer science and soft engineering. Jun et al. [35] applied the
concept of cubic sets to a subgroup in 2011. Senapati [36] introduced the concept of cubic
subalgebras and cubic closed ideals of B-algebras in 2015. Senapati et al. [18] introduced
the concept of cubic set structure applied in UP-algebras in 2018.

A neutrosophic cubic set which is the generalized form of fuzzy sets, cubic sets and
neutrosophic sets and introduced by Jun et al. [37] in 2017. The concept of truth-internals
(indeterminacy-internals, falsity-internals) and truth-externals (indeterminacy-externals,
falsity-externals) were introduced and related properties were investigated. Iqbal et al.
[38] introduced the concept of neutrosophic cubic subalgebras and neutrosophic cubic
closed ideals of B-algebras in 2016. Relation among neutrosophic cubic algebra with
neutrosophic cubic ideals and neutrosophic closed ideals of B-algebras were studied and
some related properties were investigated.

From literature review, we applied the concept of neutrosophic cubic sets to UP-
algebras and we introduce the concepts of neutrosophic cubic UP-subalgebras, neutro-
sophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals,
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and neutrosophic cubic strong UP-ideals of UP-algebras. Moreover, we discuss the re-
lations between neutrosophic cubic UP-subalgebras (resp., neutrosophic cubic near UP-
filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals and neutrosophic cubic
strong UP-ideals) and their level subsets by means of interval-valued neutrosophic sets
and neutrosophic sets.

2. Basic Concepts and Preliminary Notes on UP-Algebras

Before we begin our study, we will give the definition and useful properties of UP-
algebras.

Definition 2.1 ([7]). An algebra X = (X, ·, 0) of type (2, 0) is called a UP-algebra, where
X is a nonempty set, · is a binary operation on X, and 0 is a fixed element of X (i.e., a
nullary operation) if it satisfies the following axioms:

(UP-1): (∀x, y, z ∈ X)((y · z) · ((x · y) · (x · z)) = 0),
(UP-2): (∀x ∈ X)(0 · x = x),
(UP-3): (∀x ∈ X)(x · 0 = 0), and
(UP-4): (∀x, y ∈ X)(x · y = 0, y · x = 0⇒ x = y).

From [7], we know that the concept of UP-algebras is a generalization of KU-algebras
(see [5]).

Example 2.2 ([39]). Let X be a universal set and let Ω ∈ P(X), where P(X) means the
power set of X. Let PΩ(X) = {A ∈ P(X) | Ω ⊆ A}. Define a binary operation · on PΩ(X)
by putting A ·B = B ∩ (AC ∪Ω) for all A,B ∈ PΩ(X), where AC means the complement
of a subset A. Then (PΩ(X), ·,Ω) is a UP-algebra and we shall call it the generalized
power UP-algebra of type 1 with respect to Ω. Let PΩ(X) = {A ∈ P(X) | A ⊆ Ω}. Define
a binary operation ∗ on PΩ(X) by putting A ∗B = B ∪ (AC ∩ Ω) for all A,B ∈ PΩ(X).
Then (PΩ(X), ∗,Ω) is a UP-algebra and we shall call it the generalized power UP-algebra
of type 2 with respect to Ω. In particular, (P(X), ·, ∅) is a UP-algebra and we shall call it
the power UP-algebra of type 1, and (P(X), ∗, X) is a UP-algebra and we shall call it the
power UP-algebra of type 2.

Example 2.3 ([15]). Let N0 be the set of all natural numbers with zero. Define two
binary operations ◦ and • on N0 by

(∀x, y ∈ N0)

(
x ◦ y =

{
y if x < y,
0 otherwise

)
and

(∀x, y ∈ N0)

(
x • y =

{
y if x > y or x = 0,
0 otherwise

)
.

Then (N0, ◦, 0) and (N0, •, 0) are UP-algebras.

For more examples of UP-algebras, see [18, 19, 39–44].
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In a UP-algebra X = (X, ·, 0), the following assertions are valid (see [7, 42]).

(∀x ∈ X)(x · x = 0), (2.1)

(∀x, y, z ∈ X)(x · y = 0, y · z = 0⇒ x · z = 0), (2.2)

(∀x, y, z ∈ X)(x · y = 0⇒ (z · x) · (z · y) = 0), (2.3)

(∀x, y, z ∈ X)(x · y = 0⇒ (y · z) · (x · z) = 0), (2.4)

(∀x, y ∈ X)(x · (y · x) = 0), (2.5)

(∀x, y ∈ X)((y · x) · x = 0⇔ x = y · x), (2.6)

(∀x, y ∈ X)(x · (y · y) = 0), (2.7)

(∀a, x, y, z ∈ X)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0), (2.8)

(∀a, x, y, z ∈ X)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0), (2.9)

(∀x, y, z ∈ X)(((x · y) · z) · (y · z) = 0), (2.10)

(∀x, y, z ∈ X)(x · y = 0⇒ x · (z · y) = 0), (2.11)

(∀x, y, z ∈ X)(((x · y) · z) · (x · (y · z)) = 0), and (2.12)

(∀a, x, y, z ∈ X)(((x · y) · z) · (y · (a · z)) = 0). (2.13)

From [7], the binary relation ≤ on a UP-algebra X = (X, ·, 0) defined as follows:

(∀x, y ∈ X)(x ≤ y ⇔ x · y = 0).

In UP-algebras, 5 types of special subsets are defined as follows.

Definition 2.4 ([7, 9, 10, 45]). A nonempty subset S of a UP-algebra X = (X, ·, 0) is
called

(1) a UP-subalgebra of X if (∀x, y ∈ S)(x · y ∈ S).
(2) a near UP-filter of X if

(i) the constant 0 of X is in S, and
(ii) (∀x, y ∈ X)(y ∈ S ⇒ x · y ∈ S).

(3) a UP-filter of X if
(i) the constant 0 of X is in S, and

(ii) (∀x, y ∈ X)(x · y ∈ S, x ∈ S ⇒ y ∈ S).
(4) a UP-ideal of X if

(i) the constant 0 of X is in S, and
(ii) (∀x, y, z ∈ X)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S).

(5) a strong UP-ideal (renamed from a strongly UP-ideal) of X if
(i) the constant 0 of X is in S, and

(ii) (∀x, y, z ∈ X)((z · y) · (z · x) ∈ S, y ∈ S ⇒ x ∈ S).

Guntasow et al. [10] and Iampan [45] proved that the concept of UP-subalgebras
is a generalization of near UP-filters, near UP-filters is a generalization of UP-filters,
UP-filters is a generalization of UP-ideals, and UP-ideals is a generalization of strong
UP-ideals. Furthermore, they proved that the only strong UP-ideal of a UP-algebra X is
X.

In 1965, the concept of a fuzzy set in a nonempty set was first considered by Zadeh
[20] as the following definition.

Definition 2.5. A fuzzy set (briefly, FS) in a nonempty set X (or a fuzzy subset of X)
is defined to be a function λ : X → [0, 1], where [0, 1] is the unit segment of the real
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line. Denote by [0, 1]X the collection of all fuzzy sets in X. Define a binary relation ≤ on
[0, 1]X as follows:

(∀λ, µ ∈ [0, 1]X)(λ ≤ µ⇔ (∀x ∈ X)(λ(x) ≤ µ(x))). (2.14)

Definition 2.6 ([9]). Let λ be a fuzzy set in a nonempty set X. The complement of λ,
denoted by λC , is defined by

(∀x ∈ X)(λC(x) = 1− λ(x)). (2.15)

Definition 2.7 ([46]). Let {λi | i ∈ J} be a family of fuzzy sets in a nonempty set X. We
define the join and the meet of {λi | i ∈ J}, denoted by ∨i∈Jλi and ∧i∈Jλi, respectively,
as follows:

(∀x ∈ X)((∨i∈Jλi)(x) = sup
i∈J
{λi(x)}), (2.16)

(∀x ∈ X)((∧i∈Jλi)(x) = inf
i∈J
{λi(x)}). (2.17)

In particular, if λ and µ be fuzzy sets in X, we have the join and meet of λ and µ as
follows:

(∀x ∈ X)((λ ∨ µ)(x) = max{λ(x), µ(x)}), (2.18)

(∀x ∈ X)((λ ∧ µ)(x) = min{λ(x), µ(x)}), (2.19)

respectively.

An interval number we mean a close subinterval ã = [a−, a+] of [0, 1], where 0 ≤ a− ≤
a+ ≤ 1. The interval number ã = [a−, a+] with a− = a+ is denoted by a. Denote by
[[0, 1]] the set of all interval numbers.

Definition 2.8 ([37]). Let {ãi | i ∈ J} be a family of interval numbers. We define the
refined infimum and the refined supremum of {ãi | i ∈ J}, denoted by rinfi∈J ãi and
rsupi∈J ãi, respectively, as follows:

rinfi∈J{ãi} = [inf
i∈J
{a−i }, inf

i∈J
{a+
i }], (2.20)

rsupi∈J{ãi} = [sup
i∈J
{a−i }, sup

i∈J
{a+
i }]. (2.21)

In particular, if ã1 and ã2 are interval numbers, we define the refined minimum and the
refined maximum of ã1 and ã2, denoted by rmin{ã1, ã2} and rmax{ã1, ã2}, respectively,
as follows:

rmin{ã1, ã2} = [min{a−1 , a
−
2 },min{a+

1 , a
+
2 }], (2.22)

rmax{ã1, ã2} = [max{a−1 , a
−
2 },max{a+

1 , a
+
2 }]. (2.23)

Definition 2.9 ([37]). Let ã1 and ã2 be interval numbers. We define the symbols “�”,
“�”, “=” in case of ã1 and ã2 as follows:

ã1 � ã2 ⇔ a−1 ≥ a
−
2 and a+

1 ≥ a
+
2 , (2.24)

and similarly we may have ã1 � ã2 and ã1 = ã2. To say ã1 � ã2 (resp., ã1 ≺ ã2) we mean
ã1 � ã2 and ã1 6= ã2 (resp., ã1 � ã2 and ã1 6= ã2).

Definition 2.10 ([21]). Let ã be an interval number. The complement of ã, denoted by
ãC , is defined by the interval number

ãC = [1− a+, 1− a−]. (2.25)
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In the [[0, 1]], the following assertions are valid (see [47]).

(∀ã ∈ [[0, 1]])((ãC)C = ã), (2.26)

(∀ã ∈ [[0, 1]])(rmax{ã, ã} = ã and rmin{ã, ã} = ã), (2.27)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ã1, ã2}=rmax{ã2, ã1} and rmin{ã1, ã2}=rmin{ã2, ã1}),
(2.28)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ã1, ã2} � ã1 and ã2 � rmin{ã1, ã2}), (2.29)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 � ã2 ⇔ ãC1 � ãC2 ), (2.30)

(∀ã1, ã2, ã3, ã4 ∈ [[0, 1]])(ã1 � ã2, ã3 � ã4 ⇒ rmin{ã1, ã3} � rmin{ã2, ã4}),
(2.31)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 � ã2, ã3 � ã2 ⇔ rmin{ã1, ã3} � ã2), (2.32)

(∀ã1, ã2, ã3, ã4 ∈ [[0, 1]])(ã1 � ã2, ã3 � ã4 ⇒ rmax{ã1, ã3} � rmax{ã2, ã4}),
(2.33)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã2 � ã1, ã2 � ã3 ⇔ ã2 � rmax{ã1, ã3}), (2.34)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 � ã2 ⇔ rmin{ã1, ã2} = ã2), (2.35)

(∀ã1, ã2 ∈ [[0, 1]])(ã1 � ã2 ⇔ rmax{ã1, ã2} = ã1), (2.36)

(∀ã1, ã2 ∈ [[0, 1]])(rmin{ãC1 , ãC2 } = rmax{ã1, ã2}C), (2.37)

(∀ã1, ã2 ∈ [[0, 1]])(rmax{ãC1 , ãC2 } = rmin{ã1, ã2}C), (2.38)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 � rmax{ã2, ã3} ⇔ ãC1 � rmin{ãC2 , ãC3 }), (2.39)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 � rmax{ã2, ã3} ⇔ ãC1 � rmin{ãC2 , ãC3 }), (2.40)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 � rmin{ã2, ã3} ⇔ ãC1 � rmax{ãC2 , ãC3 }), and (2.41)

(∀ã1, ã2, ã3 ∈ [[0, 1]])(ã1 � rmin{ã2, ã3} ⇔ ãC1 � rmax{ãC2 , ãC3 }). (2.42)

In 1975, the concept of an interval-valued fuzzy set in a nonempty set was first intro-
duced by Zadeh [20] as the following definition.

Definition 2.11. An interval-valued fuzzy set (briefly, IVFS) in a nonempty set X is
an arbitrary function A : X → [[0, 1]]. Let IV FS(X) stands for the set of all IVFS in
X. For every A ∈ IV FS(X) and x ∈ X,A(x) = [A−(x), A+(x)] is called the degree of
membership of an element x to A, where A−, A+ are fuzzy sets in X which are called
a lower fuzzy set and an upper fuzzy set in X, respectively. For simplicity, we denote
A = [A−, A+].

Definition 2.12 ([37]). Let A and B be interval-valued fuzzy sets in a nonempty set X.
We define the symbols “⊆”, “⊇”, “=” in case of A and B as follows:

A ⊆ B ⇔ (∀x ∈ X)(A(x) � B(x)), (2.43)

and similarly we may have A ⊇ B and A = B.

Definition 2.13 ([21]). Let A be an interval-valued fuzzy set in a nonempty set X. The
complement of A, denoted by AC , is defined as follows: AC(x) = A(x)C for all x ∈ X,
that is,

(∀x ∈ X)(AC(x) = [1−A+(x), 1−A−(x)]). (2.44)

We note that AC
−

(x) = 1−A+(x) and AC
+

(x) = 1−A−(x) for all x ∈ X.



Neutrosophic Cubic Set Theory Applied to UP-Algebras 1453

Definition 2.14 ([21]). Let {Ai | i ∈ J} be a family of interval-valued fuzzy sets in a
nonempty set X. We define the intersection and the union of {Ai | i ∈ J}, denoted by
∩i∈JAi and ∪i∈JAi, respectively, as follows:

(∀x ∈ X)((∩i∈JAi)(x) = rinfi∈J{Ai(x)}), (2.45)

(∀x ∈ X)((∪i∈JAi)(x) = rsupi∈J{Ai(x)}). (2.46)

We note that

(∀x ∈ X)((∩i∈JAi)−(x) = (∧i∈JA−i )(x) = inf
i∈J
{A−i (x)})

and

(∀x ∈ X)((∩i∈JAi)+(x) = (∧i∈JA+
i )(x) = inf

i∈J
{A+

i (x)}).

Similarly,

(∀x ∈ X)((∪i∈JAi)−(x) = (∨i∈JA−i )(x) = sup
i∈J
{A−i (x)})

and

(∀x ∈ X)((∪i∈JAi)+(x) = (∨i∈JA+
i )(x) = sup

i∈J
{A+

i (x)}).

In particular, if A1 and A2 are interval-valued fuzzy sets in X, we have the intersection
and the union of A1 and A2 as follows:

(∀x ∈ X)((A1 ∩A2)(x) = rmin{A1(x), A2(x)}), (2.47)

(∀x ∈ X)((A1 ∪A2)(x) = rmax{A1(x), A2(x)}). (2.48)

In 1999, the concept of a neutrosophic set in a nonempty set was first considered by
Smarandache [22] as the following definition.

Definition 2.15. A neutrosophic set (briefly, NS) in a nonempty set X is a structure of
the form:

Λ = {(x, λT (x), λI(x), λF (x)) | x ∈ X}, (2.49)

where λT : X → [0, 1] is a truth membership function, λI : X → [0, 1] is an indeterminate
membership function, and λF : X → [0, 1] is a false membership function. For our
convenience, we will denote a NS as Λ = (X,λT , λI , λF ) = (X,λT,I,F ) = {(x, λT (x),
λI(x), λF (x)) | x ∈ X}.

Definition 2.16 ([22]). Let Λ be a NS in a nonempty setX. The NS ΛC = (X,λCT , λ
C
I , λ

C
F )

in X is called the complement of Λ in X.

In 2019, the concepts of a special neutrosophic UP-subalgebra, a special neutrosophic
near UP-filter, a special neutrosophic UP-filter, a special neutrosophic UP-ideal, and a
special neutrosophic strong UP-ideal of a UP-algebra were first considered by Songsaeng
and Iampan [48] as the following definition.

Definition 2.17. A NS Λ = (X,λT , λI , λF ) in a UP-algebra X = (X, ·, 0) is called

(1) a special neutrosophic UP-subalgebra of X if

(∀x, y ∈ X)(λT (x · y) ≤ max{λT (x), λT (y)}), (2.50)

(∀x, y ∈ X)(λI(x · y) ≥ min{λI(x), λI(y)}), (2.51)

(∀x, y ∈ X)(λF (x · y) ≤ max{λF (x), λF (y)}). (2.52)
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(2) a special neutrosophic near UP-filter of X if

(∀x ∈ X)(λT (0) ≤ λT (x)), (2.53)

(∀x ∈ X)(λI(0) ≥ λI(x)), (2.54)

(∀x ∈ X)(λF (0) ≤ λF (x)), (2.55)

(∀x, y ∈ X)(λT (x · y) ≤ λT (y)), (2.56)

(∀x, y ∈ X)(λI(x · y) ≥ λI(y)), (2.57)

(∀x, y ∈ X)(λF (x · y) ≤ λF (y)). (2.58)

(3) a special neutrosophic UP-filter of X if it satisfies the following conditions:
(2.53), (2.54), (2.55), and

(∀x, y ∈ X)(λT (y) ≤ max{λT (x · y), λT (x)}), (2.59)

(∀x, y ∈ X)(λI(y) ≥ min{λI(x · y), λI(x)}), (2.60)

(∀x, y ∈ X)(λF (y) ≤ max{λF (x · y), λF (x)}). (2.61)

(4) a special neutrosophic UP-ideal of X if it satisfies the following conditions:
(2.53), (2.54), (2.55), and

(∀x, y, z ∈ X)(λT (x · z) ≤ max{λT (x · (y · z)), λT (y)}), (2.62)

(∀x, y, z ∈ X)(λI(x · z) ≥ min{λI(x · (y · z)), λI(y)}), (2.63)

(∀x, y, z ∈ X)(λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}). (2.64)

(5) a special neutrosophic strong UP-ideal of X if it satisfies the following condi-
tions: (2.53), (2.54), (2.55), and

(∀x, y, z ∈ X)(λT (x) ≤ max{λT ((z · y) · (z · x)), λT (y)}), (2.65)

(∀x, y, z ∈ X)(λI(x) ≥ min{λI((z · y) · (z · x)), λI(y)}), (2.66)

(∀x, y, z ∈ X)(λF (x) ≤ max{λF ((z · y) · (z · x)), λF (y)}). (2.67)

In 2005, the concept of an interval neutrosophic set in a nonempty set was first con-
sidered by Wang et al. [23] as the following definition.

Definition 2.18. An interval-valued neutrosophic set (briefly, IVNS) in a nonempty set
X is a structure of the form:

A := {(x,AT (x), AI(x), AF (x)) | x ∈ X}, (2.68)

where AT , AI and AF are interval-valued fuzzy sets inX, which are called an interval truth
membership function, an interval indeterminacy membership function and an interval
falsity membership function, respectively. For our convenience, we will denote a IVNS as
A = (X,AT , AI , AF ) = (X,AT,I,F ) = {(x,AT (x), AI(x), AF (x)) | x ∈ X}.

Definition 2.19 ([23]). Let A = (X,AT , AI , AF ) be an IVNS in a nonempty set X. The
IVNS AC = (X,ACT , A

C
I , A

C
F ) in X is called the complement of A in X.

In 2019, the concepts of an interval-valued neutrosophic UP-subalgebra, an interval-
valued neutrosophic near UP-filter, an interval-valued neutrosophic UP-filter, an interval-
valued neutrosophic UP-ideal, and an interval-valued neutrosophic strong UP-ideal of a
UP-algebra were first considered by Songsaeng and Iampan [49] as the following definition.

Definition 2.20. An IVNS A = (X,AT , AI , AF ) in a UP-algebra X = (X, ·, 0) is called
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(1) an interval-valued neutrosophic UP-subalgebra of X if

(∀x, y ∈ X)(AT (x · y) � rmin{AT (x), AT (y)}), (2.69)

(∀x, y ∈ X)(AI(x · y) � rmax{AI(x), AI(y)}), (2.70)

(∀x, y ∈ X)(AF (x · y) � rmin{AF (x), AF (y)}). (2.71)

(2) an interval-valued neutrosophic near UP-filter of X if

(∀x ∈ X)(AT (0) � AT (x)), (2.72)

(∀x ∈ X)(AI(0) � AI(x)), (2.73)

(∀x ∈ X)(AF (0) � AF (x)). (2.74)

(∀x, y ∈ X)(AT (x · y) � AT (y)), (2.75)

(∀x, y ∈ X)(AI(x · y) � AI(y)), (2.76)

(∀x, y ∈ X)(AF (x · y) � AF (y)). (2.77)

(3) an interval-valued neutrosophic UP-filter of X if it holds the following condi-
tions: (2.72), (2.73), (2.74), and

(∀x, y ∈ X)(AT (y) � rmin{AT (x · y), AT (x)}), (2.78)

(∀x, y ∈ X)(AI(y) � rmax{AI(x · y), AI(x)}), (2.79)

(∀x, y ∈ X)(AF (y) � rmin{AF (x · y), AF (x)}). (2.80)

(4) an interval-valued neutrosophic UP-ideal of X if it holds the following condi-
tions: (2.72), (2.73), (2.74), and

(∀x, y, z ∈ X)(AT (x · z) � rmin{AT (x · (y · z)), AT (y)}), (2.81)

(∀x, y, z ∈ X)(AI(x · z) � rmax{AI(x · (y · z)), AI(y)}), (2.82)

(∀x, y, z ∈ X)(AF (x · z) � rmin{AF (x · (y · z)), AF (y)}). (2.83)

(5) an interval-valued neutrosophic strong UP-ideal of X if it holds the following
conditions: (2.72), (2.73), (2.74), and

(∀x, y, z ∈ X)(AT (x) � rmin{AT ((z · y) · (z · x)), AT (y)}), (2.84)

(∀x, y, z ∈ X)(AI(x) � rmax{AI((z · y) · (z · x)), AI(y)}), (2.85)

(∀x, y, z ∈ X)(AF (x) � rmin{AF ((z · y) · (z · x)), AF (y)}). (2.86)

In 2012, the concept of a cubic set in a nonempty set was first considered by Jun et al.
[34] as the following definition.

Definition 2.21. A cubic set (briefly, CS) in a nonempty set X is a structure of the
form:

C = {(x,A(x), λ(x)) | x ∈ X}, (2.87)

where A is an interval-valued fuzzy set in X and λ is a fuzzy set in X. For our convenience,
we will denote a CS as C = (X,A, λ) = {(x,A(x), λ(x)) | x ∈ X}.
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3. Neutrosophic Cubic Sets in UP-Algebras

In 2017, Jun et al. [37] introduced the concept of a neutrosophic cubic set in a nonempty
set which extend the concept of a cubic sets to a neutrosophic set as the following defini-
tion.

Definition 3.1. A neutrosophic cubic set (briefly, NCS) in a nonempty set X is a pair
A = (A,Λ), where A = (X,AT , AI , AF ) is an interval-valued neutrosophic set in X
and Λ = (X,λT , λI , λF ) is a neutrosophic set in X. For simplicity, we denote A =
(AT,I,F , λT,I,F ). A NCS A = (A,Λ) in a nonempty set X is said to be constant if
AT , AI , AF , λT , λI , and λF are constant functions. The complement of a NCS A = (A,Λ)
is defined to be the NCS A C = (AC ,ΛC).

Now, we introduce the concepts of neutrosophic cubic UP-subalgebras, neutrosophic
cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-ideals, and
neutrosophic cubic strong UP-ideals of UP-algebras, provide the necessary examples,
investigate their properties, and prove their generalizations.

In what follows, let X denote a UP-algebra (X, ·, 0) unless otherwise specified.

Definition 3.2. A NCS A = (A,Λ) in X is called a neutrosophic cubic UP-subalgebra
of X if it holds the following conditions:

(∀x, y ∈ X)

AT (x · y) � rmin{AT (x), AT (y)}
AI(x · y) � rmax{AI(x), AI(y)}
AF (x · y) � rmin{AF (x), AF (y)}

 (S1)

and

(∀x, y ∈ X)

λT (x · y) ≤ max{λT (x), λT (y)}
λI(x · y) ≥ min{λI(x), λI(y)}
λF (x · y) ≤ max{λF (x), λF (y)}

 . (S2)

Proposition 3.3. If A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X, then

(∀x ∈ X)

AT (0) � AT (x)
AI(0) � AI(x)
AF (0) � AF (x)

 (P1)

and

(∀x ∈ X)

λT (0) ≤ λT (x)
λI(0) ≥ λI(x)
λF (0) ≤ λF (x)

 . (P2)

Proof. Let A = (A,Λ) be a neutrosophic cubic UP-subalgebra of X. By (2.1) and (2.27),
we have

(∀x ∈ X)



AT (0) = AT (x · x) � rmin{AT (x), AT (x)} = AT (x)

AI(0) = AI(x · x) � rmax{AI(x), AI(x)} = AI(x)

AF (0) = AF (x · x) � rmin{AF (x), AF (x)} = AF (x)

λT (0) = λT (x · x) ≤ max{λT (x), λT (x)} = λT (x)

λI(0) = λI(x · x) ≥ min{λI(x), λI(x)} = λI(x)

λF (0) = λF (x · x) ≤ max{λF (x), λF (x)} = λF (x)


.
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Example 3.4. Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0 and a binary
operation · defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 1 3 4
2 0 0 0 3 4
3 0 0 0 0 4
4 0 0 0 0 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)
0 ([1, 1], [0, 0.3], [0.7, 1]) (0, 1, 0)
1 ([0.6, 0.7], [0.4, 0.5], [0.4, 0.5]) (0.3, 0.2, 0.4)
2 ([0.4, 0.8], [0.1, 0.4], [0.5, 0.7]) (0.5, 0.6, 0.2)
3 ([0.3, 0.4], [0.8, 0.9], [0.2, 0.3]) (0.7, 0.8, 0.7)
4 ([0.7, 0.8], [0.2, 0.4], [0.6, 0.7]) (0.5, 0.4, 0.8)

Then A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

Definition 3.5. A NCS A = (A,Λ) in X is called a neutrosophic cubic near UP-filter
of X if it holds the following conditions: (P1), (P2), and

(∀x, y ∈ X)

AT (x · y) � AT (y)
AI(x · y) � AI(y)
AF (x · y) � AF (y)

 (N1)

and

(∀x, y ∈ X)

λT (x · y) ≤ λT (y)
λI(x · y) ≥ λI(y)
λF (x · y) ≤ λF (y)

 . (N2)

Example 3.6. Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0 and a binary
operation · defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 1 2 4
2 0 0 0 1 4
3 0 0 0 0 4
4 0 1 2 3 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)
0 ([0.9, 1], [0, 0.1], [1, 1]) (0, 0.9, 0.1)
1 ([0.6, 0.8], [0.1, 0.3], [0.6, 0.8]) (0.3, 0.8, 0.2)
2 ([0.5, 0.6], [0.3, 0.4], [0.5, 0.7]) (0.5, 0.7, 0.6)
3 ([0.4, 0.6], [0.5, 0.6], [0.4, 0.6]) (0.6, 0.3, 0.7)
4 ([0.1, 0.7], [0.8, 0.9], [0.1, 0.3]) (0.2, 0.4, 0.5)

Then A = (A,Λ) is a neutrosophic cubic near UP-filter of X.
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Definition 3.7. A NCS A = (A,Λ) in X is called a neutrosophic cubic UP-filter of X
if it holds the following conditions: (P1), (P2), and

(∀x, y ∈ X)

AT (y) � rmin{AT (x · y), AT (x)}
AI(y) � rmax{AI(x · y), AI(x)}
AF (y) � rmin{AF (x · y), AF (x)}

 (F1)

and

(∀x, y ∈ X)

λT (y) ≤ max{λT (x · y), λT (x)}
λI(y) ≥ min{λI(x · y), λI(x)}
λF (y) ≤ max{λF (x · y), λF (x)}

 . (F2)

Example 3.8. Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0 and a binary
operation · defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 3 3
3 0 1 2 0 3
4 0 1 2 0 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)
0 ([0.9, 1], [0, 0.1], [0.8, 0.9]) (0, 1, 0.1)
1 ([0.5, 0.8], [0.2, 0.3], [0.6, 0.7]) (0.2, 0.7, 0.2)
2 ([0.3, 0.7], [0.4, 0.5], [0.5, 0.6]) (0.5, 0.5, 0.9)
3 ([0.1, 0.4], [0.7, 0.9], [0.2, 0.4]) (0.7, 0.4, 0.3)
4 ([0.1, 0.4], [0.7, 0.9], [0.2, 0.4]) (0.7, 0.4, 0.3)

Then A = (A,Λ) is a neutrosophic cubic UP-filter of X.

Definition 3.9. A NCS A = (A,Λ) in X is called a neutrosophic cubic UP-ideal of X
if it holds the following conditions: (P1), (P2), and

(∀x, y, z ∈ X)

AT (x · z) � rmin{AT (x · (y · z)), AT (y)}
AI(x · z) � rmax{AI(x · (y · z)), AI(y)}
AF (x · z) � rmin{AF (x · (y · z)), AF (y)}

 (I1)

and

(∀x, y, z ∈ X)

λT (x · z) ≤ max{λT (x · (y · z)), λT (y)}
λI(x · z) ≥ min{λI(x · (y · z)), λI(y)}
λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}

 . (I2)

Example 3.10. Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0 and a
binary operation · defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 0 0 0 4
3 0 0 2 0 4
4 0 0 0 0 0
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We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)
0 ([0.9, 1], [0.1, 0.3], [0.8, 0.9]) (0, 1, 0)
1 ([0.7, 0.9], [0.3, 0.5], [0.5, 0.9]) (0.3, 0.6, 0.2)
2 ([0.6, 0.8], [0.4, 0.7], [0.4, 0.6]) (0.5, 0.5, 0.7)
3 ([0.6, 0.9], [0.3, 0.6], [0.5, 0.8]) (0.4, 0.6, 0.4)
4 ([0.3, 0.5], [0.5, 0.9], [0.4, 0.5]) (0.6, 0.2, 0.9)

Then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Definition 3.11. A NCS A = (A,Λ) in X is called a neutrosophic cubic strong UP-ideal
of X if it holds the following conditions: (P1), (P2), and

(∀x, y, z ∈ X)

AT (x) � rmin{AT ((z · y) · (z · x)), AT (y)}
AI(x) � rmax{AI((z · y) · (z · x)), AI(y)}
AF (x) � rmin{AF ((z · y) · (z · x)), AF (y)}

 (B1)

and

(∀x, y, z ∈ X)

λT (x) ≤ max{λT ((z · y) · (z · x)), λT (y)}
λI(x) ≥ min{λI((z · y) · (z · x)), λI(y)}
λF (x) ≤ max{λF ((z · y) · (z · x)), λF (y)}

 . (B2)

Example 3.12. Let X = {0, 1, 2, 3, 4} be a UP-algebra with a fixed element 0 and a
binary operation · defined by the following Cayley table:

· 0 1 2 3 4
0 0 1 2 3 4
1 0 0 2 3 4
2 0 1 0 3 4
3 0 1 0 0 4
4 0 1 0 3 0

We define a NCS A = (A,Λ) in X with the tabular representation as follows:

X A(x) Λ(x)
0 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)
1 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)
2 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)
3 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)
4 ([0.5, 0.7], [0.3, 0.9], [0.4, 0.5]) (0.5, 0.4, 0.7)

Then A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Theorem 3.13. A NCS A = (A,Λ) in X is a neutrosophic cubic UP-subalgebra (resp.,
neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-
ideal, neutrosophic cubic strong UP-ideal) of X if and only if the IVNS A is an interval-
valued neutrosophic UP-subalgebra (resp., interval-valued neutrosophic near UP-filter,
interval-valued neutrosophic UP-filter, interval-valued neutrosophic UP-ideal, interval-
valued neutrosophic strong UP-ideal) of X and the NS Λ is a special neutrosophic UP-
subalgebra (resp., special neutrosophic near UP-filter, special neutrosophic UP-filter, spe-
cial neutrosophic UP-ideal, special neutrosophic strong UP-ideal) of X.

Proof. It is straightforward by Definitions 2.17 and 2.20.
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Theorem 3.14. A NCS A = (A,Λ) in X is constant if and only if it is a neutrosophic
cubic strong UP-ideal of X.

Proof. Assume that A = (A,Λ) is a constant neutrosophic cubic set in X. Then AT (x) =
AT (0), AI(x) = AI(0), AF (x) = AF (0), λT (x) = λT (0), λI(x) = λI(0), and λF (x) =
λF (0) for all x ∈ X. Then for all x ∈ X,AT (0) � AT (x), AI(0) � AI(x), AF (0) �
AF (x), λT (0) ≤ λT (x), λI(0) ≥ λI(x), and λF (0) ≤ λF (x), and for all x, y, z ∈ X,

rmin{AT ((z · y) · (z · x)), AT (y)} = rmin{AT (0), AT (0)}
= AT (0) ((2.27))

= AT (x),

rmax{AI((z · y) · (z · x)), AI(y)} = rmax{AI(0), AI(0)}
= AI(0) ((2.27))

= AI(x),

rmin{AF ((z · y) · (z · x)), AF (y)} = rmin{AF (0), AF (0)}
= AF (0) ((2.27))

= AF (x),

max{λT ((z · y) · (z · x)), λT (y)} = max{λT (0), λT (0)}
= λT (0)

= λT (x),

min{λI((z · y) · (z · x)), λI(y)} = min{λI(0), λI(0)}
= λI(0)

= λI(x),

max{λF ((z · y) · (z · x)), λF (y)} = max{λF (0), λF (0)}
= λF (0)

= λF (x).

Hence, A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.
Conversely, assume that A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Then for all x ∈ X,

AT (x) � rmin{AT ((x · 0) · (x · x)), AT (0)}
= rmin{AT (0 · (x · x)), AT (0)} ((UP-3))

= rmin{AT (x · x), AT (0)} ((UP-2))

= rmin{AT (0), AT (0)} ((2.1))

= AT (0) ((2.27))

� AT (x),
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AI(x) � rmax{AI((x · 0) · (x · x)), AI(0)}
= rmax{AI(0 · (x · x)), AI(0)} ((UP-3))

= rmax{AI(x · x), AI(0)} ((UP-2))

= rmax{AI(0), AI(0)} ((2.1))

= AI(0) ((2.27))

� AI(x),

AF (x) � rmin{AF ((x · 0) · (x · x)), AF (0)}
= rmin{AF (0 · (x · x)), AF (0)} ((UP-3))

= rmin{AF (x · x), AF (0)} ((UP-2))

= rmin{AF (0), AF (0)} ((2.1))

= AF (0) ((2.27))

� AF (x),

λT (x) ≤ max{λT ((x · 0) · (x · x)), λT (0)}
= max{λT (0 · (x · x)), λT (0)} ((UP-3))

= max{λT (x · x), λT (0)} ((UP-2))

= max{λT (0), λT (0)} ((2.1))

= λT (0)

≤ λT (x),

λI(x) ≥ min{λI((x · 0) · (x · x)), λI(0)}
= min{λI(0 · (x · x)), λI(0)} ((UP-3))

= min{λI(x · x), λI(0)} ((UP-2))

= min{λI(0), λI(0)} ((2.1))

= λI(0)

≥ λI(x),

λF (x) ≤ max{λF ((x · 0) · (x · x)), λF (0)}
= max{λF (0 · (x · x)), λF (0)} ((UP-3))

= max{λF (x · x), λF (0)} ((UP-2))

= max{λF (0), λF (0)} ((2.1))

= λF (0)

≤ λF (x).

Thus AT (0) = AT (x), AI(0) = AI(x), AF (0) = AF (x), λT (0) = λT (x), λI(0) = λI(x),
and λF (0) = λF (x) for all x ∈ X. Hence, A = (A,Λ) is constant.

Theorem 3.15. Every neutrosophic cubic strong UP-ideal of X is a neutrosophic cubic
UP-ideal.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic strong UP-ideal ofX. Then for all
x ∈ X,AT (0) � AT (x), AI(0) � AI(x), AF (0) � AF (x), λT (0) ≤ λT (x), λI(0) ≥ λI(x),
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and λF (0) ≤ λF (x). Let x, y, z ∈ X. Then

AT (x · z) = AT (y) � rmin{AT (x · (y · z)), AT (y)},
AI(x · z) = AI(y) � rmax{AT (x · (y · z)), AT (y)},
AF (x · z) = AF (y) � rmin{AF (x · (y · z)), AF (y)},
λT (x · z) = AT (y) ≤ max{λT (x · (y · z)), λT (y)},
λI(x · z) = AI(y) ≥ min{λI(x · (y · z)), λI(y)},

λF (x · z) = AF (y) ≤ max{λF (x · (y · z)), λF (y)}.
Hence, A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

The following example show that the converse of Theorem 3.15 is not true.

Example 3.16. From Example 3.10, we have A = (A,Λ) is a neutrosophic cubic UP-
ideal of X. Since λF (3) = 0.6 > 0.3 = max{λF ((2·0)·(2·3)), λF (0)}, we have A = (A,Λ)
is not a neutrosophic cubic strong UP-ideal of X.

Theorem 3.17. Every neutrosophic cubic UP-ideal of X is a neutrosophic cubic UP-
filter.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-ideal of X. Then for all
x ∈ X,AT (0) � AT (x), AI(0) � AI(x), AF (0) � AF (x), λT (0) ≤ λT (x), λI(0) ≥ λI(x),
and λF (0) ≤ λF (x). Let x, y ∈ X. Then

AT (y) = AT (0 · y) ((UP-2))

� rmin{AT (0 · (x · y)), AT (x)}
= rmin{AT (x · y), AT (x)}, ((UP-2))

AI(y) = AI(0 · y) ((UP-2))

� rmax{AI(0 · (x · y)), AI(x)}
= rmax{AI(x · y), AI(x)}, ((UP-2))

AF (y) = AF (0 · y) ((UP-2))

� rmin{AF (0 · (x · y)), AF (x)}
= rmin{AF (x · y), AF (x)}, ((UP-2))

λT (y) = λT (0 · y) ((UP-2))

≤ max{λT (0 · (x · y)), λT (x)}
= max{λT (x · y), λT (x)}, ((UP-2))

λI(y) = λI(0 · y) ((UP-2))

≥ min{λI(0 · (x · y)), λI(x)}
= max{λI(x · y), λI(x)}, ((UP-2))

λF (y) = λF (0 · y) ((UP-2))

≤ max{λF (0 · (x · y)), λF (x)}
= max{λF (x · y), λF (x)}. ((UP-2))

Hence, A = (A,Λ) is a neutrosophic cubic UP-filter of X.

The following example show that the converse of Theorem 3.17 is not true.
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Example 3.18. From Example 3.8, we have A = (A,Λ) is a neutrosophic cubic UP-
filter of X. Since AF (3 · 4) = [0.2, 0.4] � [0.5, 0.6] = rmin{AF (3 · (2 · 4)), AF (2)}, we have
A = (A,Λ) is not a neutrosophic cubic UP-ideal of X.

Theorem 3.19. Every neutrosophic cubic UP-filter of X is a neutrosophic cubic near
UP-filter.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-filter of X. Then for all
x ∈ X,AT (0) � AT (x), AI(0) � AI(x), AF (0) � AF (x), λT (0) ≤ λT (x), λI(0) ≥ λI(x),
and λF (0) ≤ λF (x). Let x, y ∈ X. Then

AT (x · y) � rmin{AT (y · (x · y)), AT (y)}
= rmin{AT (0), AT (y)} ((2.5))

= AT (y),

AI(x · y) � rmax{AI(y · (x · y)), AI(y)}
= rmax{AI(0), AI(y)} ((2.5))

= AI(y),

AF (x · y) � rmin{AF (y · (x · y)), AF (y)}
= rmin{AF (0), AF (y)} ((2.5))

= AF (y),

λT (x · y) ≤ max{λT (y · (x · y)), λT (y)}
= max{λT (0), λT (y)} ((2.5))

= λT (y),

λI(x · y) ≥ min{λI(y · (x · y)), λI(y)}
= min{λI(0), λI(y)} ((2.5))

= λI(y),

λF (x · y) ≤ max{λF (y · (x · y)), λF (y)}
= max{λF (0), λF (y)} ((2.5))

= λF (y).

Hence, A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

The following example show that the converse of Theorem 3.19 is not true.

Example 3.20. From Example 3.6, we have A = (A,Λ) is a neutrosophic cubic near
UP-filter of X. Since AT (2) = [0.5, 0.6] � [0.6, 0.8] = rmin{AT (1 · 2), AT (1)}, we have
A = (A,Λ) is not a neutrosophic cubic UP-filter of X.

Theorem 3.21. Every neutrosophic cubic near UP-filter of X is a neutrosophic cubic
UP-subalgebra.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic near UP-filter of X. Then for all
x ∈ X,AT (0) � AT (x), AI(0) � AI(x), AF (0) � AF (x), λT (0) ≤ λT (x), λI(0) ≥ λI(x),
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and λF (0) ≤ λF (x). Let x, y ∈ X. By (2.27), we have

AT (x · y) � AT (y) � rmin{AT (x), AT (y)},
AI(x · y) � AI(y) � rmax{AI(x), AI(y)},
AF (x · y) � AF (y) � rmin{AF (x), AF (y)},
λT (x · y) ≤ λT (y) ≤ max{λT (x), λT (y)},
λI(x · y) ≥ λI(y) ≥ min{λI(x), λI(y)},
λF (x · y) ≤ λF (y) ≤ max{λF (x), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

The following example show that the converse of Theorem 3.21 is not true.

Example 3.22. From Example 3.4, we have A = (A,Λ) is a neutrosophic cubic UP-
subalgebra of X. Since λI(1 · 2) = 0.2 < 0.6 = λI(2), we have A = (A,Λ) is not a
neutrosophic cubic near UP-filter of X.

By Theorems 3.15, 3.17, 3.19, and 3.21 and Examples 3.16, 3.18, 3.20, and 3.22, we have
that the concept of neutrosophic cubic UP-subalgebras is a generalization of neutrosophic
cubic near UP-filters, neutrosophic cubic near UP-filters is a generalization of neutrosophic
cubic UP-filters, neutrosophic cubic UP-filters is a generalization of neutrosophic cubic
UP-ideals, and neutrosophic cubic UP-ideals is a generalization of neutrosophic cubic
strong UP-ideals. Moreover, by Theorem 3.14, we obtain that neutrosophic cubic strong
UP-ideals and constant neutrosophic cubic sets coincide.

Theorem 3.23. If A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X satisfying
the following condition:

(∀x, y ∈ X)


x · y 6= 0⇒



AT (x) � AT (y)

AI(x) � AI(y)

AF (x) � AF (y)

λT (x) ≤ λT (y)

λI(x) ≥ λI(y)

λF (x) ≤ λF (y)


, (3.1)

then A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X satisfying
the condition (3.1). By Proposition 3.3, we have A satisfies the conditions (P1) and (P2).
Next, let x, y ∈ X.

Case 1: x · y = 0. Then

AT (x · y) = AT (0) � AT (y), AI(x · y) = AI(0) � AI(y), AF (x · y) = AF (0) � AF (y),

λT (x · y) = λT (0) ≤ λT (y), λI(x · y) = λI(0) ≥ λI(y), λF (x · y) = λF (0) ≤ λF (y).
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Case 2: x · y 6= 0. Then

AT (x · y) � rmin{AT (x), AT (y)} = AT (y),

AI(x · y) � rmax{AI(x), AI(y)} = AI(y),

AF (x · y) � rmin{AF (x), AF (y)} = AF (y),

λT (x · y) ≤ max{λT (x), λT (y)} = λT (y),

λI(x · y) ≥ min{λI(x), λI(y)} = λI(y),

λF (x · y) ≤ max{λF (x), λF (y)} = λF (y).

Hence, A = (A,Λ) is a neutrosophic cubic near UP-filter of X.

Theorem 3.24. If A = (A,Λ) is a neutrosophic cubic near UP-filter of X satisfying the
following condition:

AT = AI = AF , λT = λI = λF , (3.2)

then A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic near UP-filter of X satisfying
the condition (3.2). Then A satisfies the conditions (P1) and (P2). Let x ∈ X. Then

AT (0) � AT (x) = AI(x) � AI(0) = AT (0)

AI(0) � AI(x) = AT (x) � AT (0) = AI(0)

AF (0) � AF (x) = AI(x) � AI(0) = AF (0)

λT (0) ≤ λT (x) = λI(x) ≤ λI(0) = λT (0)

λI(x) ≥ λI(x) = λT (x) ≥ λT (x) = λI(x)

λF (x) ≤ λF (x) = λI(x) ≤ λI(x) = λF (x)

Thus AT (0) = AT (x), AI(0) = AI(x), AF (0) = AF (x), λT (0) = λT (x), λI(x) = λI(x),
and λF (x) = λF (x), that is, A is constant. By Theorem 3.14, we have A = (A,Λ) is a
neutrosophic cubic strong UP-ideal of X.

Theorem 3.25. If A = (A,Λ) is a neutrosophic cubic UP-filter of X satisfying the
following condition:

(∀x, y, z ∈ X)



AT (y · (x · z)) = AT (x · (y · z))
AI(y · (x · z)) = AI(x · (y · z))
AF (y · (x · z)) = AF (x · (y · z))
λT (y · (x · z)) = λT (x · (y · z))
λI(y · (x · z)) = λI(x · (y · z))
λF (y · (x · z)) = λF (x · (y · z))


, (3.3)

then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Proof. Assume that A = (A,Λ) is a neutrosophic cubic UP-filter of X satisfying the
condition (3.3). Then A satisfies the conditions (P1) and (P2). Next, let x, y, z ∈ X.
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Then

AT (x · z) � rmin{AT (y · (x · z)), AT (y)}
= rmin{AT (x · (y · z)), AT (y)},

AI(x · z) � rmax{AI(y · (x · z)), AI(y)}
= rmax{AI(x · (y · z)), AI(y)},

AF (x · z) � rmin{AF (y · (x · z)), AF (y)}
= rmin{AF (x · (y · z)), AF (y)},

λT (x · z) ≤ max{λT (y · (x · z)), λT (y)}
= max{λT (x · (y · z)), λT (y)},

λI(x · z) ≥ min{λI(y · (x · z)), λI(y)}
= min{λI(x · (y · z)), λI(y)},

λF (x · z) ≤ max{λF (y · (x · z)), λF (y)}
= max{λF (x · (y · z)), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Theorem 3.26. If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀x, y, z ∈ X)


z ≤ x · y ⇒



AT (z) � rmin{AT (x), AT (y)}
AI(z) � rmax{AI(x), AI(y)}
AF (z) � rmin{AF (x), AF (y)}
λT (z) ≤ max{λT (x), λT (y)}
λI(z) ≥ min{λI(x), λI(y)}
λF (z) ≤ max{λF (x), λF (y)}


, (3.4)

then A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (3.4). Let
x, y ∈ X. By (2.1), we have (x · y) · (x · y) = 0, that is, x · y ≥ x · y. It follows from (3.4)
that

AT (x · y) � rmin{AT (x), AT (y)}, AI(x · y) � rmax{AI(x), AI(y)},
AF (x · y) � rmin{AF (x), AF (y)}, λT (x · y) ≤ max{λT (x), λT (y)},

λI(x · y) ≥ min{λI(x), λI(y)}, λF (x · y) ≤ max{λF (x), λF (y)}.
Hence, A = (A,Λ) is a neutrosophic cubic UP-subalgebra of X.

Theorem 3.27. If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀x, y, z ∈ X)


z ≤ x · y ⇒



AT (y) � rmin{AT (z), AT (x)}
AI(y) � rmax{AI(z), AI(x)}
AF (y) � rmin{AF (z), AF (x)}
λT (y) ≤ max{λT (z), λT (x)}
λI(y) ≥ min{λI(z), λI(x)}
λF (y) ≤ max{λF (z), λF (x)}


, (3.5)

then A = (A,Λ) is a neutrosophic cubic UP-filter of X.
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Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (3.5). Let x ∈ X.
By (UP-3), we have x · (x · 0) = 0, that is, x ≤ x · 0. It follows from (3.5) that

AT (0) � rmin{AT (x), AT (x)} = AT (x),

AI(0) � rmax{AI(x), AI(x)} = AI(x),

AF (0) � rmin{AF (x), AF (x)} = AF (x),

λT (0) ≤ max{λT (x), λT (x)} = λT (x),

λI(0) ≥ min{λI(x), λI(x)} = λI(x),

λF (0) ≤ max{λF (x), λF (x)} = λF (x).

Next, let x, y ∈ X. By (2.1), we have (x · y) · (x · y) = 0, that is, x · y ≥ x · y. It follows
from (3.5) that

AT (y) � rmin{AT (x · y), AT (x)}, AI(y) � rmax{AI(x · y), AI(x)},
AF (y) � rmin{AF (x · y), AF (x)}, λT (y) ≤ max{λT (x · y), λT (x)},

λI(y) ≥ min{λI(x · y), λI(x)}, λF (y) ≤ max{λF (x · y), λF (x)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-filter of X.

Theorem 3.28. If A = (A,Λ) is a NCS in X satisfying the following condition:

(∀a, x, y, z ∈ X)


a ≤ x · (y · z)⇒



AT (x · z) � rmin{AT (a), AT (y)}
AI(x · z) � rmax{AI(a), AI(y)}
AF (x · z) � rmin{AF (a), AF (y)}
λT (x · z) ≤ max{λT (a), λT (y)}
λI(x · z) ≥ min{λI(a), λI(y)}
λF (x · z) ≤ max{λF (a), λF (y)}


,

(3.6)

then A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (3.6). Let x ∈ X.
By (UP-3), we have x · (0 · (x · 0)) = 0, that is, x ≤ 0 · (x · 0). It follows from (3.6) that

AT (0) = AT (0 · 0) � rmin{AT (x), AT (x)} = AT (x), ((UP-2))

AI(0) = AI(0 · 0) � rmax{AI(x), AI(x)} = AI(x), ((UP-2))

AF (0) = AF (0 · 0) � rmin{AF (x), AF (x)} = AF (x), ((UP-2))

λT (0) = λT (0 · 0) ≤ max{λT (x), λT (x)} = λT (x), ((UP-2))

λI(0) = λI(0 · 0) ≥ min{λI(x), λI(x)} = λI(x), ((UP-2))

λF (0) = λF (0 · 0) ≤ max{λF (x), λF (x)} = λF (x). ((UP-2))



1468 Thai J. Math. Vol. 18 (2020) /M. Songsaeng and A. Iampan

Next, let x, y, z ∈ X. By (2.1), we have (x·(y·z))·(x·(y·z)) = 0, that is, x·(y·z) ≥ x·(y·z).
It follows from (3.6) that

AT (x · z) � rmin{AT (x · (y · z)), AT (y)},
AI(x · z) � rmax{AI(x · (y · z)), AI(y)},
AF (x · z) � rmin{AF (x · (y · z)), AF (y)},
λT (x · z) ≤ max{λT (x · (y · z)), λT (y)},
λI(x · z) ≥ min{λI(x · (y · z)), λI(y)},

λF (x · z) ≤ max{λF (x · (y · z)), λF (y)}.

Hence, A = (A,Λ) is a neutrosophic cubic UP-ideal of X.

Theorem 3.29. A NCS A = (A,Λ) in X satisfies the following condition:

(∀x, y, z ∈ X)


z ≤ x · y ⇒



AT (z) � AT (y)

AI(z) � AI(y)

AF (z) � AF (y)

λT (z) ≤ λT (y)

λI(z) ≥ λI(y)

λF (z) ≤ λF (y)


(3.7)

if and only if A = (A,Λ) is a neutrosophic cubic strong UP-ideal of X.

Proof. Assume that A = (A,Λ) is a NCS in X satisfying the condition (3.7). Let
x, y ∈ X. By (UP-3) and (2.1), we have x · 0 = 0, that is, x ≤ 0 = y · y. It follows from
(3.7) that

AT (x) � AT (y), AI(x) � AI(y), AF (x) � AF (y),

λT (x) ≤ λT (y), λI(x) ≥ λI(y), λF (x) ≤ λF (y).

Similarly,

AT (y) � AT (x), AI(y) � AI(x), AF (y) � AF (x),

λT (y) ≤ λT (x), λI(y) ≥ λI(x), λF (y) ≤ λF (x).

Then

AT (x) = AT (y), AI(x) = AI(y), AF (x) = AF (y),

λT (x) = λT (y), λI(x) = λI(y), λF (x) = λF (y).

Thus A is constant. By Theorem 3.14, we have A = (A,Λ) is a neutrosophic cubic
strong UP-ideal of X.

For any fixed numbers α+, α−, β+, β−, γ+, γ− ∈ [0, 1] such that α+ > α−, β+ >

β−, γ+ > γ− and a nonempty subset G of X, the NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] = (X,GλT [α
−

α+ ],

GλI [
β+

β− ],GλF [γ
−

γ+ ]) in X, where GλT [α
−

α+ ], GλI [
β+

β− ], and GλF [γ
−

γ+ ] are fuzzy sets in X which

are given as follows:

GλT [α
−

α+ ](x) =

{
α− if x ∈ G,
α+ otherwise,
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GλI [
β+

β− ](x) =

{
β+ if x ∈ G,
β− otherwise,

GλF [γ
−

γ+ ](x) =

{
γ− if x ∈ G,
γ+ otherwise.

For any fixed interval numbers ã+, ã−, b̃+, b̃−, c̃+, c̃− ∈ [[0, 1]] such that ã+ � ã−, b̃+ �
b̃−, c̃+ � c̃− and a nonempty subset G of X, the IVNS AG[ã

+,b̃−,c̃+

ã−,b̃+,c̃−
] = (X,AGT [ã

+

ã− ], AGI [b̃
−

b̃+
],

AGF [c̃
+

c̃− ]) in X, where AGT [ã
+

ã− ], AGI [b̃
−

b̃+
], and AGF [c̃

+

c̃− ] are interval-valued fuzzy sets in X which
are given as follows:

AGT [ã
+

ã− ](x) =

{
ã+ if x ∈ G,
ã− otherwise,

AGI [b̃
−

b̃+
](x) =

{
b̃− if x ∈ G,
b̃+ otherwise,

AGF [c̃
+

c̃− ](x) =

{
c̃+ if x ∈ G,
c̃− otherwise.

We define the NCS A G[[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
], [α

−,β+,γ−

α+,β−,γ+ ]] = (AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
],GΛ[α

−,β+,γ−

α+,β−,γ+ ]) in X.

Theorem 3.30 ([48]). A NS GΛ[α
−,β+,γ−

α+,β−,γ+ ] in X is a special neutrosophic UP-subalgebra

(resp., special neutrosophic near UP-filter, special neutrosophic UP-filter, special neutro-
sophic UP-ideal, special neutrosophic strong UP-ideal) of X if and only if a nonempty
subset G of X is a UP-subalgebra (resp., near UP-filter, UP-filter, UP-ideal, strong UP-
ideal) of X.

Theorem 3.31 ([49]). An IVNS AG[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
] in X is an interval-valued neutrosophic

UP-subalgebra (resp., interval-valued neutrosophic near UP-filter, interval-valued neu-
trosophic UP-filter, interval-valued neutrosophic UP-ideal, interval-val- ued neutrosophic
strong UP-ideal) of X if and only if a nonempty subset G of X is a UP-subalgebra (resp.,
near UP-filter, UP-filter, UP-ideal, strong UP-ideal) of X.

Combining Theorems 3.13, 3.30, and 3.31, we have the following corollary.

Corollary 3.32. A NCS A G[[ã
+,b̃−,c̃+

ã−,b̃+,c̃−
], [α

−,β+,γ−

α+,β−,γ+ ]] in X is a neutrosophic cubic UP-

subalgebra (resp., neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutro-
sophic cubic UP-ideal, neutrosophic cubic strong UP-ideal) of X if and only if a nonempty
subset G of X is a UP-subalgebra (resp., near UP-filter, UP-filter, UP-ideal, strong UP-
ideal) of X.

4. Level Subsets of a Neutrosophic Cubic Set

In this section, we discuss the relationships among neutrosophic cubic UP-subalgebras
(resp., neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic
cubic UP-ideals, neutrosophic cubic strong UP-ideals) of UP-algebras and their level
subsets.
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Definition 4.1 ([9, 49]). Let f be a FS and A be an IVFS in a nonempty set X and let
t ∈ [0, 1] and ã ∈ [[0, 1]]. The sets

U(f ; t) = {x ∈ X | f(x) ≥ t},
L(f ; t) = {x ∈ X | f(x) ≤ t},
E(f ; t) = {x ∈ X | f(x) = t}

are called an upper t-level subset, a lower t-level subset, and an equal t-level subset of f ,
respectively, and the sets

U(A; ã) = {x ∈ X | A(x) � ã}, (4.1)

L(A; ã) = {x ∈ X | A(x) � ã}, (4.2)

E(A; ã) = {x ∈ X | A(x) = ã} (4.3)

are called an upper ã-level subset, a lower ã-level subset, and an equal ã-level subset of
A, respectively.

Theorem 4.2 ([48]). A NS Λ in X is a special neutrosophic UP-subalgebra (resp., special
neutrosophic near UP-filter, special neutrosophic UP-filter, special neutrosophic UP-ideal)
of X if and only if for all α, β, γ ∈ [0, 1], the sets L(λT ;α), U(λI ;β), and L(λF ; γ) are
either empty or UP-subalgebras (resp., near UP-filter, UP-filter, UP-ideal) of X.

Theorem 4.3 ([49]). An IVNS A in X is an interval-valued neutrosophic UP-subalgebra
(resp., interval-valued neutrosophic near UP-filter, interval-valued neutrosophic UP-filter,

interval-valued neutrosophic UP-ideal) of X if and only if for all ã, b̃, c̃ ∈ [[0, 1]], the sets

U(AT ; ã), L(AI ; b̃), and U(AF ; c̃) are either empty or UP-subalgebras (resp., near UP-
filter, UP-filter, UP-ideal) of X.

Combining Theorems 3.13, 4.2, and 4.3, we have the following corollary.

Corollary 4.4. A NCS A = (A,Λ) in X is a neutrosophic cubic UP-subalgebra (resp.,
neutrosophic cubic near UP-filter, neutrosophic cubic UP-filter, neutrosophic cubic UP-
ideal) of X if and only if for all [sT1

, sT2
], [sI1 , sI2 ], [sF1

, sF2
] ∈ [[0, 1]] and tT , tI , tF ∈ [0, 1],

the sets U(AT ; [sT1
, sT2

]), L(AI ; [sI1 , sI2 ]),
U(AF ; [sF1 , sF2 ]), L(λT ; tT ), U(λI ; tI), and L(λF ; tF ) are either empty or UP-sub- algebras
(resp., near UP-filter, UP-filter, UP-ideal) of X.

Theorem 4.5 ([48]). A NS Λ in X is a special neutrosophic strong UP-ideal of X if and
only if the sets E(λT , λT (0)), E(λI , λI(0)), and E(λF , λF (0)) are strong UP-ideals of X.

Theorem 4.6 ([49]). An IVNS A in X is an interval-valued neutrosophic strong UP-ideal
of X if and only if the sets E(AT ;AT (0)), E(AI ;AI(0)), and E(AF ;AF (0)) are strong
UP-ideals of X.

Combining Theorems 3.13, 4.5, and 4.6, we have the following corollary.

Corollary 4.7. A NCS A = (A,Λ) in X is a neutrosophic cubic strong UP-ideal of X
if and only if the sets E(AT ;AT (0)), E(AI ;AI(0)), E(AF ;AF (0)),
E(λT , λT (0)), E(λI , λI(0)), and E(λF , λF (0)) are strong UP-ideals of X.
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5. Conclusions and Future Work

In this paper, we have introduced the concepts of neutrosophic cubic UP-subalgebras,
neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-
ideals, and neutrosophic cubic strong UP-ideals of UP-algebras and investigated some
of their important properties. Then, we have the diagram of generalization of NCSs in
UP-algebras as shown in Figure 1.

Figure 1. NCSs in UP-algebras

In our future study, we will apply this concept/results to other type of NCSs in UP-
algebras. Also, we will study the soft set theory of neutrosophic cubic UP-subalgebras,
neutrosophic cubic near UP-filters, neutrosophic cubic UP-filters, neutrosophic cubic UP-
ideals, and neutrosophic cubic strong UP-ideals.
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