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1. Introduction

Equilibrium problem theorem is significant role and interesting in mathematics. This
problem is inspired to mathematicians for considering the applied math problems includ-
ing economics, finance, transportation, mechanics, network analysis, optimization and
operation research in general and unified way, see [1–4]. The equilibrium problem in-
cludes the variational inequality problem as special case which the variational inequality
problem is widely useful problem and powerful tool in mathematics. By these reasons,
the equilibrium problem has been extensively analyzed. A quasi mixed equilibrium prob-
lem is a problem which is developed from the equlibrium problem because this problem
consist of the equilibrium problem and the variational inequality and, moreover, can be
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applied in various fields in nonlinear analysis including variational inequalities, comple-
mentarity problem, optimization problem, fixed point problem, saddle point problem and
Nash equilibrium problem as special case, see [5, 6].

A dynamical system is a problem which relates to time and this problem is applied
in many fields such as economics, physics, engineering, medicine and mathematics etc.
Some problems in the previous fields can be written in the dynamical system model and
then such model can be exchanged to the dynamical system equation that this equation
is simple form to solve the results in the sense of mathematics such as to find equilib-
rium point, existence solution and stability solution, etc. see [7, 8]. In another way, in
mathematics, some functions over time can be formulated in the dynamical system form
and, using the results, applied in science and the real world problems. One of interest-
ing aspects is the dynamical system of variational inequality problem that consider the
dynamical system which associates with the variational inequality problem. This implies
the variational inequality problem close to the real world problems and is simple for ap-
plications. For example, in paper of P. Dupuis and A. Nugurney [9] and M. A. Noor
[10–12], authors studied the dynamical system associated with the variational inequality
problem and obtained the following results. The set of stationary points of the dynamical
system coincides with the set of the solutions of variational inequality problem. This
concept is used for considering the solution, existence solution and the stability solution
of the dynamical system and the variational inequality problem. By the previous article,
researchers developed the dynamical system which relates with the variational inequality
and this problem has received a lot of attention because of its application in financial
equilibrium problem, optimization problem, complementarity problem and all problems
in the framework of the variational inequality see [13–16].

The aim of this paper, we would like to develop the dynamical system associated with
variational inequality, so we will consider a quasi-mixed equilibrium problem. The ex-
istence solution of such equilibrium problem is proved. The resolvent equation of quasi
mixed equilibrium problem is presented and the relation of a solution of quasi mixed equi-
librium problem and a solution of resolvent equation is considered. After that, using this
relation, we can introduce the dynamical system associated with quasi mixed equilibrium
problem. Finally, the existence solution and stability of such dynamical system is proved.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. The following
basic concepts need for solving our results. Firstly, we will introduce the properties of
mappings which are used in this paper.

Definition 2.1. A mapping T : H → H is said to be γ-strongly monotone if there exists
a real number γ > 0 such that

〈T (x)− T (y), x− y〉 ≥ γ‖x− y‖2,

for all x, y ∈ H.

Definition 2.2. A mapping T : H → H is said to be β-Lipschitz continuous if there
exists a real number β > 0 such that

‖T (x)− T (y)‖ ≤ β‖x− y‖,
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for all x, y ∈ H.

Definition 2.3 ([6]). A function f : H → R∪{+∞} is said to be lower semi-continuous
at x0 if for all α < f(x0), there exists a constant δ > 0 such that

α ≤ f(x), ∀x ∈ B(x0, δ),

where B(x0, δ) denotes the ball with the center x0 and the radius δ, i.e., B(x0, δ) =
{y : ‖y − x0‖ ≤ δ}. Furthermore, f is said to be lower semi-continuous if it is lower
semi-continuous at every point of H.

Definition 2.4 ([6]). Let F : H ×H → R be a real valued bifunction.

(1) F is said to be monotone if

F (x, y) + F (y, x) ≤ 0,

for all x, y ∈ H.
(2) F is said to be strictly monotone if

F (x, y) + F (y, x) < 0,

for all x, y ∈ H with x 6= y.
(3) F is said to be upper hemicontinuous if for all x, y, z ∈ H

limsupt→0+F (tz + (1− t)x, y) ≤ F (x, y).

The following lemmas, we will recall the definition of JµF,K and some properties of such
mapping.

Lemma 2.5 ([6]). Let K be a nonempty closed convex subset of H and F be a bifunction
of H ×H into R satisfying the following conditions:

(1) F is monotone and upper hemicontinuous;
(2) F (x, ·) is convex and lower semi-continuous for each x ∈ K.

Let µ > 0 be fixed. Define a mapping JµF,K : H → K as follows:

JµF,K(x) = {w ∈ K : µF (w, z) + 〈w − x, z − w〉 ≥ 0,∀z ∈ K},

for all x ∈ H. Then, JµF,K is a single valued mapping.

Lemma 2.6 ([17]). Let K be a nonempty closed convex subset of H. If F : H ×H → R
is a monotone function, then the operator JµF,K is a nonexpansive mapping, that is,

‖JµF,K(x)− JµF,K(y)‖ ≤ ‖x− y‖,
for all x, y ∈ H.

Now, we will recall the following well known concepts of the dynamical system see [18].

A dynamical system is a mapping Φ : R×H → H which is a C1 mapping and writing
Φ(t, x) := Φt(x) and f : H → H is defined by

f(x) =
d

dt
Φt(x)|t=0. (2.1)

Now, we may rewrite this in more conventional terms. If Φt : H → H is a dynamical
system and x ∈ H, let x(t) = Φt(x). Then, we rewrite (2.1) as

ẋ = f(x). (2.2)
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A solution of (2.2) is a differentiable function x : I → H where I is some intervals of R
such that for all t ∈ I,

ẋ(t) = f(x(t)).

By the previous concept of dynamical system, we will propose the definition of equi-
librium point and stability as follows.

Definition 2.7 ([19]). a) A point x∗ is an equilibrium point for (2.2) if f(x∗) = 0;
b) An equilibrium point x∗ of (2.2) is stable if, for any ε > 0, there exists δ > 0 such

that, for every x0 ∈ B(x∗, δ), the solution x(t) of the dynamical system with x(0) = x0
exists and is contained in B(x∗, ε) for all t > 0, where B(x∗, r) denotes the open ball with
center x∗ and radius r;

c) A stable equilibrium point x∗ of (2.2) is asymptotically stable if there exists δ > 0
such that, for every solution x(t) with x(0) ∈ B(x∗, δ), one has

lim
t→∞

x(t) = x∗.

Definition 2.8 ([20]). Let x(t) = Φt(x) in (2.1). For any x∗ ∈ K, where K is a closed
convex set, let L be a real continuous function defined on a neighborhood N(x∗) of x∗,
and differentiable everywhere on N(x∗) except possibly at x∗. L is called a Lyapunov
function at x∗ if satisfies:

i) L(x∗) = 0 and L(x) > 0, for all x 6= x∗,

ii) L̇(x) ≤ 0 for all x 6= x∗ where

L̇(x) =
d

dt
L(x(t))|t=0. (2.3)

Notice that, the equilibrium point x, which satisfies Definition 2.8 ii), is stable in the
sense of Lyapunov.

Definition 2.9 ([10]). A dynamical system is said to be globally convergent to the solution
set X of (2.2) if, irrespective of initial point, the trajectory of dynamical system satisfies

lim
t→∞

d(x(t), X) = 0. (2.4)

If the set X has a unique point x∗, then (2.4) satisfies lim
t→∞

x(t) = x∗. If the dynamical

system is still stable at x∗ in the Lyapunov sense, then the dynamical system is globally
asymptotically stable at x∗ .

Definition 2.10 ([10]). The dynamical system is said to be globally exponentially stable
with degree ω at x∗ if, irrespective of the initial point, the trajectory of the dynamical
system x(t) satisfies

‖x(t)− x∗‖ ≤ c0‖x(t0)− x∗‖ exp−ω(t−t0),

for all t ≥ t0, where c0 and ω are positive constants independent of initial point.

Notice that, if it is a globally exponentially stability then it is a globally asymptotically
stable and the dynamical system converges arbitrarily fast.

Lemma 2.11 ([21]). (Gronwall’s inequality) Let û and v̂ be real valued nonnegative con-
tinuous functions with domain {t|t ≥ t0} and let α(t) = α0(|t − t0|), where α0 is a
monotone increasing function. If for all t ≥ t0,

û(t) ≤ α(t) +

∫ t

t0

û(s)v̂(s)ds,
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then,

û(t) ≤ α(t) exp
∫ t
t0
v̂(s)ds

.

3. Main Results

Throughout this paper, we let H be a real Hilbert space, K be a nonempty closed
convex subset of H and CC(H) be the family of all nonempty closed convex subsets of H.
Firstly, we will propose the quasi mixed equilibrium problem (QMEP) in Hilbert spaces
as follows. Let F : H × H → R be a given bifunction satisfying F (x, x) = 0 for all
x ∈ H,T : H → H be a nonlinear operator and let C : H → CC(H) be a set valued
mapping which associate a nonempty closed convex set C(x) with any element x of H.
To find x∗ ∈ C(x∗) such that

F (x∗, x) + 〈T (x∗), x− x∗〉 ≥ 0, (3.1)

for all x ∈ C(x∗). If C(x) = m(x) +K for all x ∈ H with a fixed closed convex set K and
a single valued mapping m, then the problem (3.1) is equivalent to find x∗ −m(x∗) ∈ K
such that

F (x∗, x) + 〈T (x∗), x− x∗〉 ≥ 0, (3.2)

for all x ∈ m(x∗) +K.

Next, we will present the special cases of the problem (3.1) as follows:

(a) If we set C(x) = K for all x ∈ H then the problem (3.1) reduces to the mixed
equilibrium problem (MEP), which was a case of the mixed equilibrium problems
and was studied by A. Moudafi in [5], to find x∗ ∈ K such that

F (x∗, x) + 〈T (x∗), x− x∗〉 ≥ 0, (3.3)

for all x ∈ K.
(b) If we set a mapping T = 0 then the problem (3.1) reduces to the quasi equi-

librium problem (QEP), that is to find x∗ ∈ C(x∗) such that

F (x∗, x) ≥ 0, (3.4)

for all x ∈ C(x∗) and, moreover, if we set C(x) = K for all x ∈ H then the
problem (3.4) reduces to the equilibrium problem (EP), that is to find x∗ ∈ K
such that

F (x∗, x) ≥ 0, (3.5)

for all x ∈ K.
(c) If we set F (x, y) = ϕ(y) − ϕ(x) for all x, y ∈ K where ϕ : K → R is a real
valued function, a mapping T = 0 and C(x) = K then the problem (3.1) reduces
to the minimization problem (MP) subject to implicit constraints, that is to find
x∗ ∈ K such that

ϕ(x∗) ≤ ϕ(x), (3.6)

for all x ∈ K.
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(d) Furthermore, if F (x, y) = ϕ(y)− ϕ(x) where ∂ϕ is a subdifferential of proper,
convex and lower-semicontinuous function ϕ : H → R ∪ {+∞} then the problem
(3.1) reduces to a case of quasi variational inequality problem (QVI), that is to
find x∗ ∈ C(x∗) such that

ϕ(x)− ϕ(x∗) + 〈T (x∗), x− x∗〉 ≥ 0, (3.7)

for all x ∈ C(x∗) and if C(x) = K for all x ∈ H then the problem (3.7) reduces
to the mixed variational inequality which was presented by M. A. Noor [11].
Moreover, if ϕ = 0 then the mixed variational inequality reduces to the classical
Stampacchia’s variational inequality problem (VI).

The following lemma is important for solving our results.

Lemma 3.1. Let F : H ×H → R be a monotone bifunction and C : H → CC(H) be a
set valued mapping and T : H → H be a nonlinear operator.

(i) If x∗ is a solution of the problem (3.1) then for any µ > 0,

x∗ = JµF,C(x∗)(x
∗ − µT (x∗)). (3.8)

(ii) If there exists µ > 0 such that

x∗ = JµF,C(x∗)(x
∗ − µT (x∗)), (3.9)

then x∗ is a solution of the problem (3.1).

Proof. (i) Assume that x∗ is a solution of the problem (3.1), that is, x∗ ∈ C(x∗)
such that

F (x∗, x) + 〈T (x∗), x− x∗〉 ≥ 0,

for all x ∈ C(x∗). For any µ > 0, we have

µF (x∗, x) + 〈x∗ − (x∗ − µT (x∗)), x− x∗〉 ≥ 0.

By the definition of JµF,C(x∗), we have

x∗ = JµF,C(x∗)(x
∗ − µT (x∗)).

(ii) Assume that x∗ = JµF,C(x∗)(x
∗ − µT (x∗)) for some µ > 0. By the definition of

JµF,C(x∗), we have x∗ ∈ C(x∗) with

µF (x∗, x) + 〈x∗ − (x∗ − µT (x∗)), x− x∗〉 ≥ 0,

for all x ∈ C(x∗). Since µ > 0, we get x∗ ∈ C(x∗) such that

F (x∗, x) + 〈T (x∗)), x− x∗〉 ≥ 0,

for all x ∈ C(x∗). We obtain that x∗ is a solution of (3.1). This completes the
proof.

Next, the following theorem we will present the existence theorem of the problem (3.1)
and the following condition is important to solve our results.

Condition (A) There exists η > 0 such that

‖JµF,C(x)(z)− J
µ
F,C(y)(z)‖ ≤ η‖x− y‖, (3.10)

for all x, y, z ∈ H.
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Remark 3.2. If K be a closed convex subset of H, then, we see that Condition (A) is
satistied for the case C(x) = K for all x ∈ H with η = 0. We can obtain that for the
case C(x) = m(x) +K, the condition (A) holds when m is a Lipschitz continuous and F
satisfies F (x− y, z) = F (x, z − y) for all x, y, z ∈ H (see prove in [6]).

Theorem 3.3. Let F : H × H → R be a monotone function, C : H → CC(H) be a
setvalued mapping and T : H → H be a γ-strongly monotone mapping and β-Lipschitz
continuous mapping. If the condition (A) and the following conditions hold:

(a) |1− η| < 1;
(b) β2 < γ2;
(c) µ satisfies

µ ∈

(
γ −

√
γ2 − β2(1− (1− η)2)

β2
,
γ −

√
γ2 − β2

β2

)
⋃(

γ +
√
γ2 − β2

β2
,
γ +

√
γ2 − β2(1− (1− η)2)

β2

)
.

Then, the problem (3.1) has a unique solution.

Proof. Define the mapping S : H → H by

S(x) = JµF,C(x)(x− µT (x)), (3.11)

for all x ∈ H and µ satisfies (c). Next, we will show that S is a contraction mapping. Let
x, y ∈ H. We see that

‖S(x)− S(y)‖ = ‖JµF,C(x)(x− µT (x))− JµF,C(y)(y − µT (y))‖
≤ ‖JµF,C(x)(x− µT (x))− JµF,C(x)(y − µT (y))‖

+‖JµF,C(x)(y − µT (y))− JµF,C(y)(y − µT (y))‖
≤ ‖x− µT (x)− y + µT (y)‖+ η‖x− y‖. (3.12)

By the assumption of mapping T, we have

‖(x− y)− µ(T (x)− T (y))‖2 = ‖x− y‖2 − 2µ〈T (x)− T (y), x− y〉+ µ2‖T (x)− T (y)‖2

≤ ‖x− y‖2 − 2µγ‖x− y‖2 + µ2β2‖x− y‖2

= (1− 2µγ + µ2β2)‖x− y‖2.

That is,

‖x− µT (x)− y + µT (y)‖ ≤
√

1− 2µγ + µ2β2‖x− y‖. (3.13)

Replacing (3.13) in (3.12), we have

‖S(x)− S(y)‖ ≤
√

1− 2µγ + µ2β2‖x− y‖+ η‖x− y‖

=
(√

1− 2µγ + µ2β2 + η
)
‖x− y‖

= θ‖x− y‖,

where θ =
√

1− 2µγ + µ2β2 + η. By the assumption of µ, we obtain that θ < 1. Thus, S
has a unique fixed point in H. This implies that there exists x ∈ H such that

x = JµF,C(x)(x− µT (x)), for some µ > 0.
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By Lemma 3.1, we obtain that the problem (3.1) has a unique solution. This completes
the proof.

Next, we will present the resolvent equation, which is equivalent to the quasi mixed
equilibrium problem (QMEP). Starting with let x∗ be fixed in H and µ be a fixed positive
constant. Let F : H × H → R be bifunction, T : H → H be a nonlinear mapping and
C : H → CC(H) be a set valued mapping. We consider to find z∗ := z∗(µ, x∗) ∈ H such
that

RµF,C(x∗)(z
∗) + µTJµF,C(x∗)(z

∗) = 0, (3.14)

where RµF,C(x) ≡ I − JµF,C(x) with JµF,C(x) is a resolvent operator for all x ∈ H. Then,

(3.14) is called the resolvent equation.

The following lemma, we will show the relation between a solution of the problem (3.1)
and a solution of the problem (3.14).

Lemma 3.4. Let F : H × H → R be a bifunction, C : H → CC(H) be a set valued
mapping and T : H → H be a single valued mapping. Then, the problem (3.1) has a
solution x∗ if and only if the problem (3.14) has a solution z∗ ∈ H where

x∗ = JµF,C(x∗)(z
∗) and z∗ = x∗ − µT (x∗), (3.15)

with µ is a positive constant.

Proof. (⇒) If x∗ is a solution of the problem (3.1), then it follows from Lemma 3.1 that
for any µ > 0,

x∗ = JµF,C(x∗)(x
∗ − µT (x∗)).

Since RµF,C(x∗) ≡ I − J
µ
F,C(x∗), we see that

RµF,C(x∗)(x
∗ − µT (x∗)) = (I − JµF,C(x∗))(x

∗ − µT (x∗))

= x∗ − µT (x∗)− JµF,C(x∗)(x
∗ − µT (x∗))

= −µT (x∗).

This implies that RµF,C(x∗)(x
∗ − µT (x∗)) + µT (x∗) = 0. Hence,

RµF,C(x∗)(z
∗) + µT (JµF,C(x∗)(z

∗)) = 0,

where z∗ = x∗ − µT (x∗). Therefore, z∗ is a solution of the problem (3.14).
(⇐) Assume that z∗ ∈ H is a solution of (3.14) and satisfies (3.15), we have

x∗ = JµF,C(x∗)(x
∗ − µT (x∗)) for some µ > 0.

By Lemma 3.1, we have x∗ is a solution of (3.1). This completes the proof.

Notice that if x∗ is a solution of the problem (3.1), by Lemma 3.4 we have z∗ =
x∗ − µT (x∗), for some µ > 0, is a solution of (3.14). By the resolvent equation (3.14),
this implies that

RµF,C(x∗)(x
∗ − µT (x∗)) + µTJµF,C(x∗)(x

∗ − µT (x∗)) = 0.

Since RµF,C(x∗) ≡ I − J
µ
F,C(x∗), we obtain that

x∗ − µT (x∗)− JµF,C(x∗)(x
∗ − µT (x∗)) + µTJµF,C(x∗)(x

∗ − µT (x∗)) = 0.
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Now, we use the equivalent formulation to suggest a dynamical system associated with
the quasi mixed equilibrium problem (DSQMEP). Let F : H ×H → R be a bifunction,
C : H → CC(H) be a set valued mapping and T : C(x) → C(x) be a nonlinear single
valued mapping for all x ∈ H. Fixed x∗ ∈ C(x∗). Then, the problem (DSQMEP) as
follows:

dx∗

dt
= λ

{
JµF,C(x∗)(x

∗ − µT (x∗))− µTJµF,C(x∗)(x
∗ − µT (x∗)) + µT (x∗)− x∗

}
, (3.16)

where x(t0) = x0 in H and λ is a positive constant with a positive real number t0.

Notice that the right hand side is related to the resolvent and it is discontinuous on
the boundary of C(x∗). It is clear from the definition that the solution to (3.16) always
stay in the constraint set C(x∗) for x∗ ∈ C(x∗). This implies that the qualitative results
such as the existence, uniqueness and continuous dependence of the solution on the given
data of (3.16) can be studied.

Theorem 3.5. Let T : C(x)→ C(x) be a nonlinear mapping for all x ∈ H. Assume that
all of assumptions of Theorem 3.3 hold. Then, for each x0 ∈ H, there exists the unique
continuous solution x(t) of the problem (3.16) with x(t0) = x0 over [t0,∞).

Proof. Let λ be a positive constant and define the mapping A : H → H by

A(x) = λ
{
JµF,C(x)(x− µT (x))− µTJµF,C(x)(x− µT (x)) + µT (x)− x

}
,

with x ∈ C(x) for x ∈ H and for some µ > 0. Next, we will show that A is a Lipschitz
continuous mapping. Let x ∈ C(x) and y ∈ C(y). By using the nonexpansive mapping of
JµF,C(x) and (3.13), we see that

‖A(x)−A(y)‖ = ‖λ
{
JµF,C(x)(x− µT (x))− µTJµF,C(x)(x− µT (x)) + µT (x)− x

}
− λ

{
JµF,C(y)(y − µT (y))− µTJµF,C(y)(y − µT (y)) + µT (y)− y

}
‖

≤ λ{‖JµF,C(x)(x− µT (x))− JµF,C(y)(y − µT (y))‖
+ ‖µTJµF,C(y)(y − µT (y))−µTJµF,C(x)(x− µT (x))‖+ ‖µT (x)−µT (y)‖
+ ‖y − x‖}

≤ λ{(1+µβ)‖JµF,C(x)(x−µT (x))−JµF,C(y)(y − µT (y))‖+(1 + µβ)‖x−y‖}
≤ λ(1 + µβ){‖x− µT (x)− y + µT (y)‖+ η‖x− y‖+ ‖x− y‖}

≤ λ(1 + µβ)(
√

1− 2µγ + µ2β2 + η + 1)‖x− y‖.

This implies that A is Lipschitz continuous. Hence, for each x0 ∈ H, there exists a
unique continuous solution x(t) ∈ C(x(t)) of the problem (3.16), defined in an interval
t0 ≤ t < Γ with the interval condition x(t0) = x0.

Let [t0,Γ) be its maximal interval of existence, we will show that Γ = ∞. By the
assumptions of Theorem 3.3 hold and Lemma 3.1, we have the problem (3.1) has a unique
solution x∗ ∈ C(x∗) such that

x∗ = JµF,C(x∗)(x
∗ − µT (x∗)),
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for some µ > 0. Let x ∈ C(x). By using (3.13), we obtain that

‖Ax‖ =
wwwλ{JµF,C(x)(x− µT (x))− µTJµF,C(x)(x− µT (x)) + µT (x)− x

}www
≤ λ

{wwwJµF,C(x)(x− µT (x))− x
www+

wwwµT (x)− µTJµF,C(x)(x− µT (x))
www}

≤ λ(1 + µβ)
wwwJµF,C(x)(x− µT (x))− x

www
= λ(1 + µβ)

wwwJµF,C(x)(x− µT (x))− x∗ + x∗ − x
www

≤ λ(1 + µβ)
{wwwJµF,C(x)(x− µT (x))− JµF,C(x∗)(x

∗ − µT (x∗))
www+ ‖x∗ − x‖

}
≤ λ(1 + µβ)(

√
1− 2µγ + µ2β2 + η + 1){‖x∗‖+ ‖x‖}

= λ(1 + µβ)(
√

1− 2µγ + µ2β2 + η + 1)‖x∗‖
+λ(1 + µβ)(

√
1− 2µγ + µ2β2 + η + 1)‖x‖.

Hence,

‖x(t)‖ ≤ ‖x(t0)‖+

∫ t

t0

‖A(x(s))‖ds

≤ ‖x(t0)‖+

∫ t

t0

(λ(1 + µβ)(1 + η +
√

1− 2µγ + µ2β2)‖x(s)‖

+λ(1 + µβ)(1 + η +
√

1− 2µγ + µ2β2)‖x∗‖)ds

= ‖x(t0)‖+ k1(t− t0) + k2

∫ t

t0

‖x(s)‖ds,

where k1 = λ(1 + µβ)(1 + η +
√

1− 2µγ + µ2β2)‖x∗‖ and k2 = λ(1 + µβ)(1 + η +√
1− 2µγ + µ2β2). By Gronwall’s Lemma, we obtain that

‖x(t)‖ ≤ {‖x(t0)‖+ k1(t− t0)}ek2(t−t0),

where t ∈ [t0,Γ). Therefore, the solution x(t) is bounded on [t0,Γ), if Γ is finite. We
conclude that Γ =∞. This completes the proof.

Theorem 3.6. Assume that all of the assumptions of Theorem 3.5 hold and satisfy the
following conditions:

η <
1− µβ
1 + µβ

−
√

1− 2µγ + µ2β2 (3.17)

where γ >
4β + µβ2(1 + µβ)2

2(1 + µβ)2
. (3.18)

Then the problem (3.16) converges a globally exponentially stable to the unique solution
of the problem (3.1).

Proof. By Theorem 3.5, we known that the problem (3.16) has a unique continuous
solution x(t) ∈ C(x(t)) over [t0,Γ) for any fixed x0 ∈ H. Let x0(t) = x(t, t0;x0) be a
solution of the initial value problem (3.16) and, by Theorem 3.3, there exists a solution
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of the problem (3.1), x∗ ∈ C(x∗). Now, we define Lyapunov function as follows: Let
L : H → R by

L(x) =
1

2
‖x− x∗‖2,

with x ∈ C(x) for any x ∈ H. We see that

dL

dt
=
dL

dx
· dx
dt

=
〈
x− x∗, λ

{
JµF,C(x)(x− µT (x))− µTJµF,C(x)(x− µT (x)) + µT (x)− x

}〉
= −λ

〈
x− x∗, x− JµF,C(x)(x− µT (x)) + µTJµF,C(x)(x− µT (x))− µT (x)

〉
= −λ

〈
x− x∗, x− x∗+ x∗− JµF,C(x)(x− µT (x))+µTJµF,C(x)(x−µT (x))−µT (x)

〉
= −λ‖x−x∗‖2+λ

〈
x−x∗, JµF,C(x)(x−µT (x))−µTJµF,C(x)(x−µT (x))+µT (x)−x∗

〉
≤ −λ‖x−x∗‖2+λ‖x−x∗‖‖JµF,C(x)(x−µT (x))−µTJµF,C(x)(x−µT (x))+µT (x)−x∗‖

≤ −λ‖x− x∗‖2

+ λ‖x− x∗‖{‖JµF,C(x)(x− µT (x))− JµF,C(x∗)(x
∗ − µT (x∗))‖

+ µβ‖x− x∗ + x∗ − JµF,C(x)(x− µT (x))‖}

≤ −λ‖x− x∗‖2

+ λ‖x− x∗‖{(η +
√

1− 2µγ + µ2β2)‖x− x∗‖+ µβ‖x− x∗‖

+ µβ(η +
√

1− 2µγ + µ2β2)‖x∗ − x‖}

≤ −λ‖x−x∗‖2+λ(η+
√

1− 2µγ+µ2β2+µβ+µβ(η+
√

1−2µγ+µ2β2))‖x−x∗‖2

= λ(η +
√

1− 2µγ + µ2β2 + µβ + µβ(η +
√

1− 2µγ + µ2β2)− 1)‖x− x∗‖2

≤ λω‖x− x∗‖,

where ω = η+
√

1− 2µγ + µ2β2+µβ+µβ(η+
√

1− 2µγ + µ2β2)−1. By the assumption
of (3.17) and (3.18), we obtain that ω < 0. Thus,

‖x(t)− x∗‖ ≤ ‖x0 − x∗‖+

∫ t

t0

‖L(x(s))‖ds

≤ ‖x0 − x∗‖+ ω

∫ t

t0

‖x(s)− x∗‖ds

≤ ‖x0 − x∗‖eω(t−t0).

Since ω < 0, we have the problem (3.16) is a globally exponentially stable with degree
−ω at x∗. We conclude that the solutions of the problem (3.16) converges globally expo-
nentially to the unique solution of the problem (3.1). This completes the proof.

Remark 3.7. In our results, for any x, y ∈ H, if we let F (x, y) = ϕ(y)−ϕ(x) where ∂ϕ is
a subdifferential of proper, convex and lower-semicontinuous function ϕ : H → R∪{+∞}
and C(x) = K for all x ∈ H and K is a closed and convex subset of H, then the problem
(3.1) reduces to the mixed variational inequality problem which was studied by M. A.
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Noor [11], that is, to find x∗ ∈ K such that

ϕ(x)− ϕ(x∗) + 〈T (x∗), x− x∗〉 ≥ 0, (3.19)

for all x ∈ K. By the lemma of H. Brezis [22] that for a give z ∈ H,u ∈ H satisfies the
inequality

〈u− z, v − u〉+ ρϕ(v)− ρϕ(u) ≥ 0, ∀v ∈ H,
if and only if

u = Jϕ(z),

where Jϕ(u) := (I + ρ∂ϕ)−1(u) for all u ∈ H with ∂ϕ is a subdifferential of a proper,
convex and lower-semicontinuous function and ϕ : H → R∪{+∞} is a maximal monotone
operators and ρ > 0 is a constant. Thus, in this case, JµF,K(x) which is defined in Definition

2.5 is Jϕ(x). We can be obtain the same as results of M. A. Noor [11] that is

dx

dt
= λ {Jϕ(x− µT (x))− µTJϕ(x− µT (x)) + µT (x)− x} . (3.20)

So the following corollaries are obtained which is the same results of M. A. Noor [11].

Corollary 3.8. Let T : H → H be a γ-strongly monotone mapping and a β-Lipschitz
continuous mapping and the following conditions satisfy:

(a) 0 < 1− 2µγ + µ2β2 < 1;
(b) β2 < γ2.

Then, the problem (3.20) has a unique solution.

Corollary 3.9. Assume that all of assumptions of Corollary 3.8 hold. Then, for each
x0 ∈ H, there exists a unique continuous solution x(t) of the problem (3.20) with x(t0) =
x0 over [t0,∞).

Corollary 3.10. Assume that all of the assumptions of Corollary 3.8 hold and satisfy
the condition (3.18). Then the problem (3.20) converges a globally exponentially stable to
the unique solution of the problem (3.19).

Remark 3.11. Furthermore, if we let F = 0 then the problem (3.16) reduces to the
problem (3.7) and, moreover, if C(x) = K for all x ∈ H then the problem (3.16) reduces
to the Stampacchia’s variational inequality problem, that is, find x∗ ∈ K such that

〈T (x∗), x− x∗〉 ≥ 0, (3.21)

for all x ∈ K. By the well known the projection property, for given x ∈ H and z ∈ K
satisfy

〈z − x, y − z〉 ≥ 0,∀y ∈ K,
if and only if

z = ProjK(x),

where ProjK is the projection of H onto K. Hence, in this case, the JµF,K(x) which is

defined in Definition 2.5 is ProjK(x). Hence, the problem (3.16) reduced to

dx

dt
= λ {ProjK(x− µT (x))− µTProjK(x− µT (x)) + µT (x)− x} , (3.22)

which this problem was studied by M. A. Noor [12]. In the same assumptions of Corollary
3.8 to Corollary 3.10, we can obtain the same results in [12], that is, there exists a unique
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continuous solution and the problem (3.22) converges a globally exponential stable to the
unique solution of the problem (3.21).

4. Conclusion

In this work, we showed the existence of the quasi mixed equilibrium problem. To
present the dynamical system associated with the quasi mixed equilibrium problem, we
considered the resolvent equation which is equivalent to the quasi mixed equilibrium
problem, so we obtained that if a solution of the quasi mixed equilibrium problem exists
then there exists a solution of such resolvent equation and conversely; obvious. Using the
previous relation, we introduced the dynamical system associated with the quasi mixed
equilibrium problem. Furthermore, the existence and the convergent globally exponential
of such dynamical system was presented.
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