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Abstract In this paper, we proposed a new derivative-free three-term spectral conjugate gradient

(DFTTS) method via extending the direction proposed by Birgin and Mertinez [E.G. Birgin, J.M. Mar-

tinez, A spectral Conjugate Gradient Method for Unconstrained Optimization, Appl. Math. Optim. 43

(2) (2001) 117–128] to three-term together with the classical Newton’s direction. One of the important

properties of the proposed method is that, it generated a descent direction using inexact line search. The

global convergence of the proposed algorithm was established under appropriate conditions. Numerical

results for the benchmark test problems demonstrated an improved efficiency of the method over some

existing ones.
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1. Introduction

We consider the following system of nonlinear equations:

F (x) = 0, (1.1)

where F : Rn −→ Rn, is a nonlinear map.
Throughout this paper, we take yk = Fk+1 − Fk, sk = xk+1 − xk and F (xk) = Fk and
we used ‖.‖ to denote the Euclidean norm of vectors. Also, (1.1) can be obtained from
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an unconstrained optimization problem, a saddle point and equality constrained problem
[2]. Let f be a function defined by:

f(x) =
1

2
‖F (x)‖2. (1.2)

Problem (1.1) is equivalent to the unconstrained optimization problem:

minf(x), x ∈ Rn. (1.3)

Several methods have been developed for solving nonlinear systems of equations. Most
of these methods fall into the Newton’s and quasi-Newton’s approaches and are partic-
ularly welcomed because of their rapid convergence properties from a sufficiently good
initial guess.

Newton’s and quasi-Newton’s methods are unattractive for large-scale nonlinear sys-
tems of equations because they require computation and storage of the Jacobian matrix
and its inverse or its approximation, they however, require solving n linear system of
equations in each iteration, or convergence may even be lost when the Jacobian is singu-
lar. Hence, various methods have been developed to handle such problems. For some of
the numerical methods for solving (1.1) see [2–5]. Newton’s method generates sequence
of points via xk+1 = xk − F ′kFk, k = 0, 1, 2, 3, ...., where F ′k is the Jacobian of F at xk.

The conjugate gradient method was proposed in order to reduce or overcome the short-
comings of Newton’s and Quasi-Newton’s methods. It is a popular method used to solve
(1.1) and efficient for handling large-scale problems because of its convergence properties,
simple implementation and low storage requirement [6]. A sequence of iterates {xk} via

xk+1 = xk + αkdk, (1.4)

where k = 0, 1, 2, ... and αk > 0 is the step-size which is obtained using line search, and
the conjugate gradient direction dk using:

dk =

{
−Fk, if k = 0,

−Fk + βkdk−1, if k > 1,
(1.5)

where βk is the CG-parameter. Different CG-algorithms correspond to different choices
of βk in (1.5). Some of the well known βk

′s are:

βHSk =
FT

k+1yk

dTk yk
[7], βFRk = ‖Fk+1‖2

‖Fk‖2 [8], βPRPk =
FT

k+1yk
‖Fk‖2 [9, 10], βCDk = −‖Fk+1‖2

dTk Fk
[11],

βLSk = −F
T
k+1yk

dTk Fk
, [12] and βDYk = ‖Fk+1‖2

dTk yk
[13].

This choice gives rise to distinct CG methods with different computational efficiency
and convergent properties.

Spectral gradient method was introduced so as to solve potentially large-scale uncon-
strained optimization problems whereby only gradient directions are used at each line
search which makes the method to outperforms conjugate gradient algorithms in many
problems [14]. It generates an iterative sequence of points {xk} via (1.4) and the direction
dk is obtained by:

dk =

{
−gk, if k = 0,

−θkgk + βkdk−1, if k > 1,
(1.6)

where θk is the Spectral Parameter and gk is the gradient of f .
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In Waziri et al. [15], states that the major shortcoming of CG-methods atimes is their
inability to generate descent directions and the global convergence of conjugate gradient
methods is relatively connected to the sufficient descent condition:

FTk dk 6 −λ‖Fk‖2. (1.7)

In order to improve the efficiency of the classical conjugate gradient method, a type of
three-term conjugate gradient methods was developed.

A three-term CG direction which possessed both sufficient descent and trust region
property independent of line search were both the direction and the line search technique
are the derivative-free approach was proposed by Yuan and Zhang [16]. Furthermore,
a fast and efficient method without computing Jacobian and gradient and with lower
storage requirement was derived in Waziri, et. al [15], which was compared to some
existing methods using a derivative-free line search proposed by Li and Li (2011).
Also, Waziri and Muhammad [17], proposed a descent direction:

dk+1 = −gk+1 − δksk − ηkyk,

where δk = (1 −min
{

1, ||yk||
2

yTk sk

}
)
sTk gk+1

yTk sk
− yTk gk+1

yTk sk
and ηk =

sTk gk+1

yTk sk
, where the strategies

of acceleration and restart were incorporated in designing the algorithm to improve its
numerical performance which shows the efficiency of the method than other existing ones.

In this work, we are interested in deriving a derivative free 3-term CG method which
will be used to handle large-scale problems with a low storage requirement that is globally
convergent. This method is widely used for handling large-scale problems due to their
efficiency, convergence properties, simple implementation as well as low storage [18]. Still,
the study of three-terms CG methods for large-scale symmetric nonlinear systems of
equations is very rear, which is why we are motivated to have this paper.

The recent proposed nonmonotone spectral CG slgorithm [19] falls under the matrix
free methods. Li and Wang [20] proposed a modified Fletcher-Reeves CG based on the
work of Zhang et al. [21] where the results shows that their proposed method is promis-
ing. Furthermore, studies on CG are inspired for solving large-scale nonlinear symmetric
equations. The work of Zhang et al. [22] where a descent PRP method was proposed,
which was further extended by Zhou and Shen [23] by combining it with the work of Li
and Fukushima [2] and successfully used for solving symmetric system of equation (1.1).

The combination of CG algorithms and the Newton’s direction was first proposed
by Andrei [24, 25]. The direction proposed by Birgin and Martinez[1] was combined
with classical Newton’s direction where an enhanced CG parameter βk was proposed by
Waziri and Jamilu [26]. Motivated by their work, we present a new enhanced matrix and
derivative free CG parameter βk. This is made possible by combining our proposed three-
term direction with classical Newton’s direction. More recently, new CG algorithms were
presented for solving monotone convex constraints nonlinear equations with applications,
see [27–31].

The remaining part of this paper is organized as; the derivation of the proposed method
is presented in section 2 followed by the convergence analysis in section 3 then numerical
results and comparisons in section 4. Finally, conclusions are drawn in section 5.

2. Derivation of the Proposed Method

We derive our proposed CG parameter βk which will be obtain by combining the
proposed three-term spectral direction obtained by extending the direction proposed by
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Birgin and Mertinez [1] and that of classical Newton’s direction to present our proposed
search direction as: i.e.

dk =

{
−Fk, if k = 0,

−θkFk + βksk − εkyk, if k > 1,
(2.1)

where θk =
sTk sk
sTk yk

, (see [32]) and εk =
θks

T
k Fk

yTk sk
, (see [6]).

Recall the classical Newton’s direction:

dk = −(F ′k)−1Fk. (2.2)

Combining (2.1) and (2.2), we have:

−(F ′k)−1Fk = −θkFk + βksk − εkyk. (2.3)

Multiplying (2.3) by Jk we get:

−Fk = −θk(F ′k)Fk + βk(F ′k)sk − εk(F ′k)yk, (2.4)

then, multiplying (2.4) by sTk we get:

−sTk Fk = −θksTk (F ′k)Fk + βks
T
k (F ′k)sk − εksTk (F ′k)yk. (2.5)

Also from Secant condition:

(F ′k)sk = yk. (2.6)

After taking the transpose of (2.6) and the symmetric property of (F ′k)we therefore get:

sTk (F ′k) = yTk . (2.7)

Now, from (2.5) and (2.7) we get:

−sTk Fk = −θkyTk Fk + βky
T
k sk − εkyTk yk. (2.8)

We, therefore, obtain our proposed βk as:

βk = βWJ
k +

εky
T
k yk

yTk sk
, (2.9)

where βWJ
k = (θkyk−sk)TFk

yTk sk
(see [26]).

Furthermore, we used the derivative-free line search proposed by Li and Fukushima [2]
in order to compute our step-length αk. Suppose that, ω1 > 0, ω2 > 0 and r ∈ (0, 1) be
constants and let {ηk} be a given positive sequence such that

∞∑
k=0

ηk < η <∞. (2.10)

Hence, the step-length αk can be computed as follows:

f(xk + αkdk)− f(xk) ≤ −ω1‖αkF (xk)‖2 − ω2‖αkdk‖2 + ηkf(xk). (2.11)

Let ik be the smallest non negative integer i such that (2.11) holds for α = ri. and let
αk = rik . We then describe our algorithm as follows:

Algorithm (1) (DFTTS)
STEP 1: Given x0 ∈ Rn, ε = 10−4, d0 = −F0, set k = 0.
STEP 2: Compute Fk.
STEP 3: If ‖Fk‖ ≤ ε then stop, else go to STEP 4.
STEP 4: Compute the step length αk using (2.11).
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STEP 5: Determine θk, εk and βk using (2.1) and (2.9).
STEP 6: Evaluate the search direction using (2.1).
STEP 7: Set xk+1 = xk + αkdk.
STEP 8: Set k = k + 1 and go to step 2.

3. Convergence Analysis

In this section, convergence analysis of the algorithm (DFTTS) is presented under the
following assumptions on the function F.
Let the level set be defined as:

Ω = { x ∈ Rn| ‖F (x)‖ ≤ ‖F (x0)‖}, (3.1)

which is bounded, that is, there exists a constant K > 0, such that,

‖x‖ ≤ K ∀x ∈ Ω. (3.2)

Assumption 1:
(1) There exists x∗ ∈ Rn, such that F (x∗) = 0.
(2) F is continuously differentiable in a neighborhood of Ω containing x∗.
(3) In some neighborhood of Ω, F is Lipschitz continuous. That is, there exists a

positive constant L, such that:

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ Ω. (3.3)

(4) The Derivative of F (x), that is the Jacobian, is Symmetric.

However, it follows from the level set and assumption 1 that, there exists a positive
constant M, such that,

‖F (x)‖ ≤M, ∀x ∈ Ω. (3.4)

Lemma 3.1. Suppose assumption 1 holds and {xk} is generated by the algorithm (DFTTS),
then:

lim
k→∞

‖αkdk‖ = lim
k→∞

‖sk‖ = 0, (3.5)

and

lim
k→∞

‖αkFk‖ = 0. (3.6)

Proof. From (2.10) and (2.11), we have for all k > 0.

ω2‖αkdk‖2 ≤ ω1‖αkF (xk)‖2 + ω2‖αkdk‖2,
≤ ‖F (xk)‖2 − ‖F (xk+1)‖2 + ηk‖F (xk)‖2.

(3.7)
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By summing up (3.7) upto kth term, we have:

ω2

k∑
i=0

‖αidi‖2 ≤
k∑
i=0

(
‖F (xi)‖2 − ‖F (xi+1)‖2

)
+

k∑
i=0

ηi‖F (xi)‖2,

= ‖F (x0)‖2 − ‖F (xk+1)‖2 +

k∑
i=0

ηi‖F (xi)‖2,

≤ ‖F (x0)‖2 + ‖F (x0)‖2
k∑
i=0

ηi,

≤M2 +M2
∞∑
i=0

ηi.

(3.8)

So from assumption 1 and the fact that {ηk} satisfies (2.10), then the series

∞∑
i=0

‖αidi‖2 is

convergent, which implies (3.5). By similar arguments as the above but with ω1‖αkF (xk)‖2
on the left hand side, we obtain (3.6).

Next, the following result shows that the proposed DFTTS-method is globally conver-
gent.

Theorem 3.2. Suppose that assumption 1 holds, the sequence {xk} generated by the
algorithm (DFTTS) converges globally. That is:

lim inf
k→∞

‖Fk‖ = 0. (3.9)

Proof. We prove by contradiction, that is, suppose that (3.9) is not true and there exists
a positive constant τ and τ0 such that

‖Fk‖ ≥ τ, (3.10)

and

‖F 0
k ‖ ≥ τ0. (3.11)

We divide the prove into two (2) parts:
Case (i): Consider lim sup

k→∞
αk > 0. Then from (3.6) we have (3.9), with Lemma 4.1,

shows that lim
k→∞

‖Fk‖ = 0, which contradicts (3.10).

Case (ii): Consider lim sup
k→∞

αk = 0. Since αk ≥ 0, this case implies that:

lim
k→∞

αk = 0. (3.12)

The inequalities (2.10), (2.11) and (3.11) shows that there exists a constant τ such that
(3.10) hold for all k ≥ 0 and:

‖Fk − F 0
k ‖ ≤ LM2

1αk−1, (3.13)

(i.e. from (3.10) and (3.11)). Then, it follows that:

‖yk‖ = ‖Fk+1 − Fk‖ ≤ ‖Fk+1 − F 0
k+1‖+ ‖F 0

k − Fk‖+ ‖F 0
k+1 − F 0

k ‖, (3.14)
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which gives:

‖Fk+1 − Fk‖ ≤ LM2
1αk−1 + LM2

1αk−2 + L1‖sk‖. (3.15)

Therefore (3.14) becomes:

‖yk‖ ≤ h1, (3.16)

from (3.6), (3.12) and (3.16),

lim
k→∞

‖yk‖ = 0. (3.17)

Next for θk =
sTk sk
sTk yk

, we have:

|θk| = |
sTk sk
sTk yk

| ≤ ‖sk‖‖sk‖
‖sk‖‖yk‖

−→ 0, (3.18)

as k −→∞, ‖sk‖ −→ 0 (from (3.5)). It follows that:

|θk| −→ 0. (3.19)

That is there exists a constant λ1 ∈ (0, 1) such that for sufficiently large λ1,

|θk| ≤ λ1. (3.20)

Next, from the definition of εk,

εk =
θks

T
k Fk

yTk sk
, (3.21)

which gives us:

|εk| = |
θks

T
k Fk

yTk sk
| ≤ |θk|‖sk‖‖Fk‖

‖yk‖‖sk‖
−→ 0 (3.22)

as k −→∞, |θk| −→ 0, (from (3.19)). It follows that:

|εk| −→ 0. (3.23)

That is there exists a constant λ2 ∈ (0, 1) such that for sufficiently large λ2,

|εk| ≤ λ2. (3.24)

Again, from the definition of βk;

|βk| = |
(θkyk − sk)TFk

yTk sk
+
εky

T
k yk

yTk sk
|, (3.25)

|βk| ≤
(|θk|‖yk‖ − ‖sk‖)‖Fk‖

‖yk‖‖sk‖
+
|εk|‖yk‖‖yk‖
‖yk‖‖sk‖

−→ 0, (3.26)

which also follows that:

|βk| −→ 0. (3.27)

That is there exists a constant λ3 ∈ (0, 1) such that for sufficiently large λ3,

|βk| ≤ λ3. (3.28)

Without loss of generality, we assume that the above inequalities holds ∀ k≥ 0. Now from
the proposed direction (2.1), using Cauchy-Swartz inequality, we have:

‖dk‖ ≤ ‖θkFk‖+ ‖βksk‖+ ‖εkyk‖, (3.29)
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‖dk‖ ≤ |θk|‖Fk‖+ |βk|‖sk‖+ |εk|‖yk‖, (3.30)

‖dk‖ ≤ λ1M + λ3‖sk‖+ λ2‖yk‖ −→ 0. (3.31)

which shows that dk is bounded. Since lim
k→∞

αk = 0, then α′k = αk

r does’nt satisfy (2.11),

that is:

f(xk + αkdk)− f(xk) > −ω1‖α′kF (xk)‖2 − ω2‖α′kdk‖2 + ηkf(xk), (3.32)

which implies:

f(xk + αkdk)− f(xk)

α′k
> −ω1‖α′kF (xk)‖2 − ω2‖α′kdk‖2. (3.33)

By the mean-value theorem, there exists δk ∈ (0, 1) such that:

f(xk + αkdk)− f(xk)

α′k
= f ′(xk + δkα

′
kdk)T dk. (3.34)

Ortega and Rheinboldt [33] presented an approximation to the gradient F ′k in order to
avoid computing exact gradient as:

Fk =
f(xk + αkdk)− f(xk)

αk
. (3.35)

Since {xk} ⊂ Ω is bounded, without loss of generality, we assume that xk → x∗. From
(3.35) and (2.1), we obtain:
lim
k→∞

dk = − lim
k→∞

θkFk + lim
k→∞

βksk − lim
k→∞

εkyk.

≤ − lim
k→∞

Fk + lim
k→∞

βksk − lim
k→∞

εkyk = −F ′(x∗). (3.36)

That is using (2.1), (3.23) and (3.27) and the fact that the sequence {dk} is bounded.
On the other hand, we have:

lim
k→∞

f ′(xk + δkα
′
kdk) = f ′(x∗). (3.37)

Therefore, from (3.33)-(3.37), it follows that −f ′(x∗)T f ′(x∗) > 0. That is ‖F (x∗)‖ = 0.
Hence contradiction with (3.11). Which completes the proof.

4. Numerical Results

In this section, we present the numerical performance of our method for solving (1.1)
which is compared with simple three-term conjugate gradient (STTCG) method in [15]
and derivative free conjugate gradient method via Broyden’s update (DFCGB) in [34].
For unbiasness, we set ω1 = 10−4, ω2 = 10−4, r = 0.2 and ηk = 1

(k+1)2 for all the three

methods.
Th codes were written in MATLAB R2014a 7.71GB and run on a personal com-

puter with Windows 10pro, intel(R) core(TM)i3-3217U 1.8 GHz CPU processor and 4GB
RAM memory. The iteration stopped if the total number of iterations exceeds 1000 or
‖F (xk)‖ ≤ 10−4.The three methods were tested using ten test problems with different
initial points and dimensions (n values).
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Problem 1:[35]
Fi(x) = x2i − 4

i = 1, 2, 3, ..., n.

x0 = (0.01, 0.01, ..., 0.01)T .

Problem 2:[36]
F1(x) = x1(x21 + x22)− 1,

Fi(x) = xi(x
2
i−1 + 2x2i + x2i+1),

Fn(x) = xn(x2n−1 + x2n).

i = 2, 3, ..., n− 1.

x0 = (0.8, 0.8, ..., 0.8)T .

Problem 3:[36]
F3i−2(x) = x3i − 2x3i−1 − x23i − 1,

F3i−1(x) = x3i−2x3i−2x3i − x23i−2 + x23i−1 − 2,

F3i(x) = e−x3i−2 − e−x3i−1 .

i = 1, ...,
n

3
.

x0 = (0.07, 0.07, ..., 0.07)T .

Problem 4:[36]

Fi(x) = (1− x2i ) + xi(1 + xixn−2xn−1xn)− 2.

i = 1, 2, ..., n.

x0 = (0.7, 0.7, ..., 0.7)T .

Problem 5:[36]

Fi(x) = xi − 0.1x2i+1,

Fn(x) = xn − 0.1x21.

i = 1, 2, ..., n− 1.

x0 = (0.03, 0.03, ..., 0.03)T .

Problem 6:[35]
Fi(x) = exi − 1.

i = 1, 2, ..., n.

x0 = (1.0, 1.0, ..., 1.0)T .

Problem 7:[35]

Fi(x) = x2i + xi − 2

i = 1, 2, ..., n.

x0 = (−0.05,−0.05, ...,−0.05)T .

Problem 8:[37]

Fi(x) = xi − 3xi(
sin(xi)

3
− 0.66) + 2.

i = 1, 2, ..., n.

x0 = (0.2, 0.2, ..., 0.2)T .
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Problem 9:[36]

F (x) =



2 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2

x+ (ex1 − 1, ..., exn − 1)T .

x0 = (0.9, 0.9, ..., 0.9)T .

Problem 10:[36]

F (x) =



2 −1
0 2 −1

. . .
. . .

. . .

. . .
. . . −1
−1 2

x+ (sinx1 − 1, ..., sinxn − 1)T .

x0 = (0.009, 0.009, ..., 0.009)T .

Table 1. Results of DFTTS, STTCG and DFCGB methods for problems 1 - 5.

DFTTS STTCG DFCGB
Prob. Dim NI T(s) ‖F (x)‖ NI T(s) ‖F (x)‖ NI T(s) ‖F (x)‖

1 100 8 0.002925 4.50E-08 14 0.005277 4.01E-05 9 0.00705 7.68E-05
1000 8 0.004364 1.49E-05 14 0.007382 6.37E-05 10 0.085515 5.83E-05
5000 8 0.016145 3.34E-05 15 0.031974 5.70E-05 11 1.592432 3.13E-05
10000 9 0.031617 1.89E-06 15 0.047541 4.03E-05 11 6.766341 4.42E-05
100000 9 0.237882 5.99E-06 16 0.430514 5.10E-05 — — —
1000000 10 3.635959 7.57E-07 16 6.056891 8.07E-05 — — —

2 100 127 0.043803 9.61E-05 199 0.070788 9.70E-05 49 0.034648 8.91E-05
1000 79 0.057418 9.58E-05 107 0.079023 9.33E-05 47 0.344276 7.22E-05
5000 52 0.151704 8.94E-05 64 0.199595 9.93E-05 53 7.787202 9.17E-05
10000 39 0.174559 9.45E-05 73 0.38685 9.49E-05 52 30.39018 8.91E-05
100000 94 5.568504 9.44E-05 84 4.365787 9.09E-05 — — —
1000000 47 32.42524 9.97E-05 72 51.44887 9.18E-05 — — —

3 100 50 0.021764 6.63E-05 147 0.088916 8.08E-05 16 0.016298 5.25E-05
1000 77 0.077419 9.80E-05 143 0.178363 9.73E-05 17 0.133175 8.75E-05
5000 58 0.175897 9.57E-05 153 0.831172 8.44E-05 19 2.806844 4.93E-05
10000 70 0.390715 5.29E-05 148 1.147393 9.98E-05 19 11.455431 6.97E-05
100000 69 3.890869 5.08E-05 145 10.87078 9.91E-05 — — —
1000000 73 50.24391 7.70E-05 161 148.0232 9.58E-05 — — —

4 100 7 0.004652 2.68E-06 12 0.007203 8.93E-05 9 0.021984 2.81E-05
1000 8 0.007606 7.31E-08 13 0.009938 5.86E-05 9 0.06871 8.89E-05
5000 8 0.03458 1.63E-07 14 0.050523 5.24E-05 10 1.501034 4.77E-05
10000 8 0.046677 1.46E-05 13 0.072794 9.34E-05 10 6.261546 6.75E-05
100000 8 0.352478 4.62E-05 15 0.796191 4.72E-05 — — —
1000000 9 6.020842 5.87E-06 15 10.42624 7.48E-05 — — —

5 100 2 0.002606 2.71E-06 4 0.002851 5.73E-05 2 0.009846 8.14E-06
1000 2 0.002438 2.56E-08 2 0.002534 2.56E-08 2 0.018175 2.57E-05
5000 2 0.013633 5.73E-08 2 0.006859 5.73E-08 2 0.289538 5.76E-05
10000 2 0.009631 8.10E-08 2 0.009819 8.10E-08 2 1.153537 8.14E-05
100000 2 0.064651 2.56E-07 2 0.073813 2.56E-07 — — —
1000000 2 0.766187 8.10E-07 2 0.892765 8.10E-07 — — —
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Table 2. Results of DFTTS, STTCG and DFCGB methods for problems 6 - 10.

DFTTS STTCG DFCGB
Prob. Dim NI T(s) ‖F (x)‖ NI T(s) ‖F (x)‖ NI T(s) ‖F (x)‖

6 100 5 0.004417 1.94E-05 8 0.002743 4.91E-05 7 0.010756 1.36E-05
1000 5 0.004085 6.01E-07 5 0.004036 6.01E-07 7 0.057597 4.29E-05
5000 5 0.017718 1.34E-06 5 0.061304 1.34E-06 7 1.019867 9.59E-05
10000 5 0.018356 1.90E-06 5 0.018386 1.90E-06 8 4.88343 6.04E-08
100000 5 0.137455 6.01E-06 5 0.140794 6.01E-06 — — —
1000000 5 1.798991 1.90E-05 5 1.788291 1.90E-05 — — —

7 100 9 0.003056 8.17E-07 15 0.0265 8.97E-05 12 0.01136 5.32E-05
1000 10 0.007421 1.66E-07 17 0.012741 4.58E-05 13 0.096964 5.39E-05
5000 10 0.358979 9.67E-05 18 0.078574 4.11E-05 14 2.009807 3.86E-05
10000 11 0.048413 2.19E-05 18 0.084278 5.82E-05 14 8.447479 5.45E-05
100000 12 0.457668 1.11E-05 19 0.735334 7.36E-05 — — —
1000000 13 6.628422 5.61E-06 20 10.34492 9.31E-05 — — —

8 100 6 0.002947 9.50E-06 11 0.004356 8.60E-05 9 0.019582 3.27E-05
1000 6 0.00471 3.00E-05 13 0.01004 4.35E-05 10 0.073247 2.46E-05
5000 7 0.01916 2.70E-06 13 0.036364 4.88E-05 10 1.442949 5.50E-05
10000 7 0.033885 3.82E-06 13 0.062909 6.90E-05 10 6.104019 7.78E-05
100000 8 0.337238 4.86E-07 14 0.60931 4.38E-05 — — —
1000000 8 4.653664 1.54E-06 15 9.00762 5.54E-05 — — —

9 100 19 0.076075 4.80E-05 38 0.172302 8.35E-05 33 0.662208 9.53E-05
1000 21 0.450805 6.26E-05 41 1.05524 9.35E-05 31 1.25946 9.42E-05
5000 23 7.12335 8.10E-05 44 15.62872 8.96E-05 31 18.533882 8.94E-05
10000 17 19.0201 8.34E-05 35 46.69017 9.76E-05 81 202.69164 9.94E-05
100000 — — — — — — — — —
1000000 — — — — — — — — —

10 100 34 0.626957 9.28E-05 54 0.260427 9.70E-05 24 0.243119 8.61E-05
1000 39 0.955638 7.54E-05 59 1.485643 9.33E-05 28 1.213629 9.87E-05
5000 38 12.69361 8.22E-05 59 20.52936 8.58E-05 23 14.639339 9.82E-05
10000 40 50.14935 8.53E-05 55 72.14628 9.84E-05 24 59.088595 9.07E-05
100000 — — — — — — — — —
1000000 — — — — — — — — —

Table 3. Summary of results from Table 1 and 2 for DFTTS, STTCG and DFCGB methods.

Method NI Percentage CPUTime Percentage
DFTTS 34 56.67% 47 78.33%
STTCG 1 1.67% 6 10.00%
DFCGB 10 16.67% 3 5.00%
Undecided 15 25.00% 4 6.67%
Total 60 100.00% 60 100.00%

The numerical results of the three methods are presented in Tables 1 and 2, where NI
and T stands for total number of iterations and the CPU time in seconds respectively,
while ‖F (xk)‖ is the norm of the residual at the stopping point. From Tables 1 and 2, we
can easily observe that both the methods attempt to solve systems of nonlinear equations
in (1.1).

In Table 3, the summary of the reported numerical results from Table 1 and 2 are
presented in order to show which, among the three methods, is a winner with respect
to number of iterations and CPU time. The summary indicates that DFTTS method
is more effective interms of number of iterations as it solves 56.67% (34 out of 60) of
all the problems with least number of iterations compared to STTCG which solves just
1.67%(1 out of 60) and DFCGB which solves 16.67% (10 out of 60). For the undecided,
it indicates that 25.00% (15 out of 60)of the problems were either solved by two or all
the three methods with thesame number of iterations, or failed by all the three methods
concurrently.
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Similarly, from Table 3, it indicates that DFTTS method outperforms the other meth-
ods with respect to CPU time as it solves 78.33% (47 out of 60) of all the problems with
least CPU time than STTCG and DFCGB algorithms which solved just 10.00% (6 out of
60) and 5.00% (3 out of 60) respectively. For the undecided under CPU time, it indicates
that 6.67% (4 out of 60)of the problems failed for all the three algorithms concurrently.

Furthermore, on average, our ‖F (xk)‖ is too small compared to the other method,
which signifies that the solution obtained is a good approximation to the exact solution
compared with the remaining two methods.

Figure 1. Performance profile of DFTTS, STTCG and DFCGB methods with
respect to the number of iteration for problem 1-10.

Figure 2. Performance profile of DFTTS, STTCG and DFCGB methods with
respect to the CPU time (in seconds) for problems 1-10.
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Figures (1-2), shows the performance of our method relative to the number of iterations
and CPU time which were evaluated using the profiles of Dolan and Moré [38] which is
a tool for evaluating and comparing the performance of iterative methods. The profile
of each method is measured according to the ratio of its computational outcome, that
is, for each method we plot the fraction F (µ) of the problems for which the method is
within a factor µ of the best time where the top curve, which is the most effective, stand
for our proposed DFTTS method and the bottom curves stand for STTCG and DFCGB
methods.

5. Conclusion

In this paper, we present a derivative-free three-term spectral conjugate gradient
(DFTTS) method for solving synnetric nonlinear equations and its performance was
compared with that of simple three-term conjugate gradient(STTCG) method [36] and
derivative free conjugate gradient method via Broydens update (DFCGB) [34] by conduct-
ing some numerical experiments. We, however, proved the convergence of our proposed
method using a derivative-free type line search proposed in [2]. The numerical results
show that our proposed method is more efficient interms of accuracy and robustness and
hence promising.

Future Research

This research will be applied to the experiments on the l1-norm regularization problems
in compressive sensing.
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