Thai Journal of Mathematics Volume 6(2008) Number 1 : 1–8

www.math.science.cmu.ac.th/thaijournal

Pairwise T_S - Spaces

K. Chandrasekhara Rao and D. Narasimhan

Abstract : The aim of this paper is to introduce the concept of pairwise T_S - space and study its basic properties in bitopological spaces.

Keywords : pairwise T_s - space; pairwise T_b - space; pairwise $_{\alpha}T_b$ - space; pairwise *T_p - space; pairwise T_p^* - space.

2000 Mathematics Subject Classification: 54E55

1 Introduction

Dunham, P. Bhattacharya and B.K. Lahiri, J. Duntchev, Y. Gnanambal introduced $T_{1/2}$, semi - $T_{1/2}$, semi pre - $T_{1/2}$ and pre regular $T_{1/2}$ spaces respectively. R. Devi et.al introduced T_b , T_d and $_{\alpha}T_b$, $_{\alpha}T_d$ spaces respectively. M.K.R.S. Veera Kumar introduced $T_{1/2}^*$, $*T_{1/2}$, T_p^* , $*T_p$ spaces. K.Chandrasekhara Rao and K. Joseph introduced the concept of s^*g - closed sets in topological spaces. Using this,K. Chandrasekhara Rao and D. Narasimhan introduced the concept of T_S spaces in topological spaces.

K. Chandrasekhara Rao and K. Kannan introduced the concept of $\tau_1 \tau_2 - s^* g$ closed sets in bitopological spaces. In this paper we introduce the concept of pairwise T_S space and study its basic properties in bitopological spaces.

2 Preliminaries

Let (X, τ_1, τ_2) or simply X denote a bit opological space. For any subset $A \subseteq X$, the closure [resp. semi closure, pre closure, α - closure] of a subset A of a space (X, τ_1, τ_2) is the intersection of all closed [resp. semi closed, pre closed, α - closed] sets that contain A and is denoted by cl(A) [resp. scl(A), pcl(A), α cl(A)]. Similarly, for any subset $A \subseteq X$, the interior [resp. semi interior] of a subset A of a space (X, τ_1, τ_2) is the intersection of all open [resp. semi open] sets that contained in A and is denoted by int (A) [resp. sint (A)]. A^C denotes the complement of the set A in X unless explicitly stated. We shall require the following known definitions.

Definitions 2.1

A set A of a bitopological space (X, τ_1, τ_2) is called

(a) $\tau_1\tau_2$ -semi open if there exists an τ_1 -open set U such that $U \subseteq A \subseteq \tau_2 - cl(U)$, (b) $\tau_1\tau_2$ -semi closed if X - A is $\tau_1\tau_2$ -semi open,

Equivalently, a set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -semi closed if there exists a τ_1 - closed set F such that τ_2 -int $(F) \subseteq A \subseteq F$,

(c) $\tau_1\tau_2$ -generalized closed ($\tau_1\tau_2$ - g closed) if τ_2 -cl (A) \subseteq U whenever A \subseteq U and U is τ_1 - open in X,

(d) $\tau_1\tau_2$ - generalized open ($\tau_1\tau_2 - g$ open) if X - A is $\tau_1\tau_2 - g$ closed,

(e) $\tau_1\tau_2$ -semi generalized closed ($\tau_1\tau_2$ - sg closed) if τ_2 -scl (A) \subseteq U whenever A \subseteq U and U is τ_1 - semi open in X,

(f) $\tau_1 \tau_2$ - semi generalized open ($\tau_1 \tau_2 - sg$ open) if X - A is $\tau_1 \tau_2 - sg$ closed,

(g) $\tau_1 \tau_2$ - generalized semi open ($\tau_1 \tau_2 - gs$ open) if $F \subseteq \tau_2 - sint(A)$ whenever $F \subseteq A$ and F is τ_1 - closed in X,

(h) $\tau_1\tau_2$ - generalized semi closed ($\tau_1\tau_2 - gs$ closed) if X - A is $\tau_1\tau_2 - gs$ open, (i) $\tau_1\tau_2$ - semi star generalized closed ($\tau_1\tau_2 - s^*g$ closed) if $\tau_2 - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - semi open in X,

(j) $\tau_1\tau_2$ - semi star generalized open ($\tau_1\tau_2-s^*g$ open) if X-A is $\tau_1\tau_2-s^*g$ closed in X,

(k) $\tau_1 \tau_2 - \alpha$ open if $A \subseteq \tau_2 - int\{\tau_1 - cl[\tau_2 - int(A)]\},\$

(1) $\tau_1 \tau_2 - \alpha$ closed if $\tau_2 - cl\{\tau_1 - int[\tau_2 - cl(A)]\} \subseteq A$,

(m) $\tau_1 \tau_2 - \alpha g$ closed if $\tau_2 - \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open,

(n) $\tau_1 \tau_2 - g^*$ closed if $\tau_2 - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 - g$ open,

(o) $\tau_1 \tau_2 - g^* p$ closed if $\tau_2 - pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_1 - g$ open,

(p) $\tau_1 \tau_2 - gp$ closed if $\tau_2 - pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - open.

Definition 2.2

A bit opological space (X,τ_1,τ_2) is called a

(a) pairwise $T_{1/2}$ - space if every $\tau_1 - g$ closed set is τ_2 - closed and every $\tau_2 - g$ closed set is τ_1 - closed,

(b) pairwise $T^*_{1/2}$ - space if every $\tau_1\tau_2 - g^*$ closed set is τ_2 - closed and every $\tau_2\tau_1 - g^*$ closed set is τ_1 - closed,

(c) pairwise T_b - space if every $\tau_1\tau_2 - gs$ closed set is τ_2 - closed and every $\tau_2\tau_1 - gs$ closed set is τ_1 - closed,

(d) pairwise $_{\alpha}T_{b}$ - space if every $\tau_{1}\tau_{2}-\alpha g$ closed set is τ_{2} - closed and every $\tau_{2}\tau_{1}-\alpha g$ closed set is τ_{1} - closed,

(e) pairwise T_p - space if $\tau_1 \tau_2 - gp$ closed set is $\tau_1 \tau_2 - g^*p$ closed,

(f) pairwise $T_p^*\text{-}$ space if every $\tau_1\tau_2-g^*p\text{-}$ closed set is $\tau_2\text{-}$ closed,

(g) pairwise complemented space if every $\tau_2\text{-}$ open set is τ_1 -closed and $\tau_1\text{-}$ open set is τ_2 -closed

(h) pairwise door space if every sub set of X is either τ_1 - open or τ_2 - closed and τ_2 - open or τ_1 - closed

Remark 2.1

In X, every τ_2 -closed set is $\tau_1\tau_2 - s^*g$ closed

Proof

Suppose that A is τ_2 -closed. Then τ_2 - cl (A) = A. Let U be τ_1 -semi open and $A \subseteq U$. But then τ_2 - cl $(A) = A \subseteq U$. Hence the remark is true.

2

Pairwise T_S - Spaces

3 Pairwise T_S - Spaces

Definition 3.1

A bitopological space (X, τ_1, τ_2) is called a pairwise T_{S} - space if every $\tau_1\tau_2 - s^*g$ closed set is τ_2 - closed in X and every $\tau_2\tau_1 - s^*g$ closed set is τ_1 - closed in X. **Example 3.1**

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, c\}\}$. Then $\{X, \tau_1, \tau_2\}$ is a pairwise T_S - space.

Proposition 3.1

Let (X, τ_1, τ_2) be a $\tau_1 \tau_2 - T_S$ space.

(a) If Y is a τ_2 - closed subspace of X, then $(Y, \tau_{1/Y}, \tau_{2/Y})$ is a $\tau_1 \tau_2 - T_S$ space and (b) If Y is a τ_1 - closed subspace of X, then $(Y, \tau_{1/Y}, \tau_{2/Y})$ is a $\tau_2 \tau_1 - T_S$ space **Proof**

Let X be a pairwise T_S - space and Y be a τ_2 - closed subspace of X. Let A be $\tau_1\tau_2 - s^*g$ closed in Y. Let $A \subseteq U$ and U is τ_1 - semi open in Y

Then, $\tau_2 - cl_Y(A) \subseteq U$. Since U is τ_1 - semi open in Y, we have $U = G \cap Y$ where G is τ_1 - semi open in X. Therefore $A \subseteq G$ and G is τ_1 - semi open in X. Since A is $\tau_1\tau_2 - s^*g$ closed in Y, we have $A = H \cap Y$ where H is $\tau_1\tau_2 - s^*g$ closed in X. But X is a pairwise T_S - space.

- \Rightarrow H is τ_2 closed in X.
- $\Rightarrow H \cap Y$ is τ_2 closed in X.
- $\Rightarrow A \text{ is } \tau_2 \text{- closed in } X.$
- $\Rightarrow A \cap Y$ is τ_2 closed in Y.
- $\Rightarrow A \text{ is } \tau_2\text{-} \text{ closed in } Y.$
- (b) As we proved in (a)

Theorem 3.1

Let I be a index set. Let $\{X_i, i \in I\}$ be pairwise T_S - spaces. Then their product $X = \prod X_i$ is a pairwise T_S - space.

Proof

Let $A = p_j(A) \times \prod X_i$, $i \neq j$ be $\tau_1 \tau_2 - s^* g$ closed in $X = \prod X_i$ where $p_j : \prod X_i \longrightarrow X_j$ be the j^{th} projection map which is a surjection. Then $\tau_2 - cl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1 - semi open in X. Since U is τ_1 - semi open in $X = \prod X_i$, $U = \prod X_i \times U_j$, $j \neq i$, where U_j is τ_1 - semi open in X_j . Since $p_j : \prod X_i \longrightarrow X_j$, $i \neq j$, be the j^{th} projection map, we have $p_j(U) = U_j$. Also $A \subseteq U$. Hence $p_j(A) \subseteq p_j(U) = U_j$. Since A is $\tau_1 \tau_2 - s^* g$ closed in X, $p_j(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X_j . Hence $A_j = \tau_2 - cl_{X_j}(A_j)$. Therefore $A_j \times \prod X_i = \tau_2$ - cl $_X(A_j) \times \prod X_i = \tau_2$ - cl $(A_j) \times \prod X_i = \tau_2$ - cl $(A_j) \times \prod X_i$.

Therefore every $\tau_1 \tau_2 - s^* g$ closed set is τ_2 - closed. Similarly, we can prove every $\tau_2 \tau_1 - s^* g$ closed set is τ_1 - closed. Hence X is a pairwise T_S - space.

Lemma 3.1

The inverse image of a $\tau_1\tau_2 - s^*g$ closed set under a pairwise continuous bijection map $f: X \to Y$ is $\tau_1\tau_2 - s^*g$ closed, where Y is another bitopological space. **Proof**

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise continuous bijection. Let A be

 $\sigma_1\sigma_2 - s^*g$ closed in Y. We shall show that $f^{-1}(A)$ is $\tau_1\tau_2 - s^*g$ closed in X. Let $f^{-1}(A) \subseteq U$, where U is τ_1 - semi open in X. Then $A \subseteq f(U)$ and f(U) is σ_1 -semi open in Y. Since A is $\sigma_1\sigma_2 - s^*g$ closed in Y, We have $\sigma_2 - \operatorname{cl}(A) \subseteq f(U)$. Therefore $\tau_2 - cl[f^{-1}(A)] \subseteq f^{-1}[\sigma_2 - cl(A)] \subseteq f^{-1}[f(U)] = U$ { Since f is pairwise continuous and bijection }.

 $\Rightarrow \tau_2 - cl[f^{-1}(A)] \subseteq U$. Then $f^{-1}(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X. **Theorem 3.2**

The image of a pairwise T_S - space under a pairwise continuous bijection map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a pairwise T_S - space, where Y is another bitopological space.

Proof

Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a pairwise continuous bijection map. Since f is onto, we have Y = f(X). Let A be $\sigma_1 \sigma_2 - s^* g$ closed in Y. We shall show that A is σ_2 - closed in Y. By Lemma 1, we have $f^{-1}(A)$ is $\tau_1 \tau_2 - s^* g$ closed in X. But, X is a pairwise T_S - space. Hence $f^{-1}(A)$ is τ_2 - closed in $X. \Rightarrow f^{-1}(A) = \tau_2 - cl[f^{-1}(A)]$. This implies $A = f[\tau_2 - cl[f^{-1}(A)] \supseteq \sigma_2 - cl(A)$. Hence $\sigma_2 - cl(A) \subseteq A$. Obviously $A \subseteq \sigma_2 - cl(A)$.

Therefore, $\sigma_2 - cl(A) = A$. Now, $\sigma_2 - cl_Y(A) = \sigma_2 - cl(A) \cap Y = A \cap Y = A$. Therefore, A is σ_2 - closed in Y. Similarly we can prove every $\sigma_2\sigma_1 - s^*g$ closed set is σ_1 - closed in Y. Hence Y is pairwise T_S - space.

Theorem 3.3

In a pairwise T_S - space,

(a) the intersection of two $\tau_1\tau_2 - s^*g$ closed sets is $\tau_1\tau_2 - s^*g$ closed,

(b) the union of two $\tau_1\tau_2-s^*g$ open sets is $\tau_1\tau_2-s^*g$ open.

Proof

(a) Let A and B be two $\tau_1\tau_2 - s^*g$ closed sets in (X, τ_1, τ_2) . Since X is a pairwise T_S - space, A and B are τ_2 - closed in X. Hence $A \cap B$ is τ_2 - closed in X. Consequently $A \cap B$ is $\tau_1\tau_2 - s^*g$ closed in X.

(b) Let A and B be two $\tau_1\tau_2 - s^*g$ open sets in (X, τ_1, τ_2) . Then A^C and B^C are $\tau_1\tau_2 - s^*g$ closed in X. By (a), $A^C \cap B^C = (A \cup B)^C$ is $\tau_1\tau_2 - s^*g$ closed in X. Therefore $A \cup B$ is $\tau_1\tau_2 - s^*g$ open in X.

Theorem 3.4

(a) Every pairwise $T_{1/2}$ - space is a pairwise T_S - space,

(b) Every pairwise T_b - space is a pairwise T_s - space,

(c) Every pairwise $_{\alpha}T_{b}$ - space is a pairwise T_{S} - space,

(d) Every pairwise door space is a pairwise T_{S} - space.

Proof

(a) Suppose that X is a pairwise $T_{1/2}$ - space. Since every $\tau_1\tau_2 - s^*g$ closed set is τ_2 - closed in a pairwise $T_{1/2}$ - space, X is a pairwise T_S - space.

(b) Suppose that X is a pairwise T_b - space. Let A be $\tau_1\tau_2 - s^*g$ closed in X. Then A is $\tau_1\tau_2 - gs$ closed in X. Since X is a pairwise T_b - space, A is τ_2 - closed in X. Hence X is a pairwise T_S - space.

(c) Suppose that X is a pairwise $_{\alpha}T_{b}$ - space. Let A be $\tau_{1}\tau_{2} - s^{*}g$ closed in X. Then A is $\tau_{1}\tau_{2} - \alpha g$ closed in X. Since X is a pairwise $_{\alpha}T_{b}$ - space, A is τ_{2} - closed in X. Therefore X is a pairwise T_{S} - space.

Pairwise T_S - Spaces

(d) Let X be a pairwise door space. Then X is pairwise $T_{1/2}$. From (a), we have X is a pairwise T_S - space.

Remark 3.1

The converses of the above theorem are not true as can be seen from the following example.

Example 3.2

In Example 3.1, (X, τ_1, τ_2) is a pairwise T_{S} - space but not a pairwise $T_{1/2}$ - space, pairwise T_b - space, pairwise αT_b - space or a pairwise door space.

Theorem 3.5

(a) Every $\tau_1 \tau_2 - gs$ closed set in a pairwise T_b - space is $\tau_1 \tau_2 - s^* g$ closed,

(b) Every $\tau_1 \tau_2 - sg$ closed set in a pairwise T_b - space is $\tau_1 \tau_2 - s^*g$ closed,

(c) Every $\tau_1 \tau_2 - \alpha g$ closed set in a pairwise $_{\alpha}T_b$ - space is $\tau_1 \tau_2 - s^*g$ closed.

Proof

(a) Let X be a pairwise T_b - space and A be $\tau_1\tau_2 - gs$ closed in X. Then A is τ_2 closed in X. Consequently, A is $\tau_1\tau_2 - s^*g$ closed in X.

(b) Let X be a pairwise T_b - space and A be $\tau_1\tau_2 - sg$ closed in X. Since A is $\tau_1\tau_2 - gs$ closed in X, A is $\tau_1\tau_2 - s^*g$ closed in X { by (a) }.

(c) Let X be a pairwise $_{\alpha}T_{b}$ - space and A be $\tau_{1}\tau_{2} - \alpha g$ closed in X. Then A is τ_{2} - closed in X. Consequently, A is $\tau_{1}\tau_{2} - s^{*}g$ closed in X.

Corollary 3.1

(a) Every subset of a pairwise complemented T_b - space is $\tau_1 \tau_2 - s^* g$ closed,

(b) Every subset of a pairwise complemented $T_{1/2}$ - space is $\tau_1 \tau_2 - s^* g$ closed,

(c) Every subset of a pairwise complemented $_{\alpha}T_{b}$ - space is $\tau_{1}\tau_{2} - s^{*}g$ closed. Proof

(a) Since X is pairwise complemented, every subset of X is $\tau_1\tau_2 - gs$ closed in X. Since X is a pairwise T_b - space, every subset of X is $\tau_1\tau_2 - s^*g$ closed in X. { by Theorem 5 (a) }

(b) Since X is pairwise complemented, every subset of X is $\tau_1 \tau_2 - g$ closed in X. Since X is a pairwise $T_{1/2}$ - space, every subset of X is $\tau_1 \tau_2 - s^* g$ closed in X.

(c) Since X is pairwise complemented , every subset of X is $\tau_1 \tau_2 - \alpha g$ closed. Since X is a $_{\alpha}T_{b}$ - space , every subset of X is $\tau_1 \tau_2 - s^*g$ closed in X { by Theorem 5 (c) }.

Theorem 3.6

If (X, τ_1, τ_2) is both pairwise T_p^* - space and pairwise *T_p - space then X is a pairwise T_{S^-} space.

Proof

Let A be $\tau_1\tau_2 - s^*g$ closed in X. Then A is $\tau_1\tau_2 - gp$ closed in X. Since X is a pairwise *T_p - space, A is $\tau_1\tau_2 - g^*p$ - closed in X. Therefore X is pairwise T_p^* space. Hence A is τ_2 - closed in X. Consequently X is a pairwise T_S - space.

References

- Abd El Monsef, M.E., El Deep S.N. & Mahmond, R.A. (1983) Bull. Fac. Sec. Assiut univ., 12: 77.
- [2] Bhattacharya, P. & Lahari, B.K. (1987) Indian J. Math., 29(3):375.
- [3] Chandrasekhara Rao K. & Joseph, K, (2000)Bulletin of Pure and Applied Sciences, 19 E (2), 281.
- [4] Chandrasekhara Rao, K & Kannan, K, (2005) Varahimir Journal of Mathematics 5(2):473.
- [5] Chandrasekhara Rao, K & Narasimhan, D, (2007) Proc. Nat. Acad. Sci. India 77(A), IV: 363.
- [6] Devi, R., Balachandran K. & Maki, H. (1993) Fukuoka Univ. Ed. Part II, 42:13.
- [7] Devi,R.,Balachandran K. & Maki, H.(1993) Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 14: 41.
- [8] Duntchev, J. (1995) Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16: 35 48.
- [9] Gnanambal, Y. (1997) Indian J. pure. Appl. Math., 28(3): 351.
- [10] Levine, N. (1963) Amer. Math. Monthly, 70 : 36.
- [11] Levine, N. (1970) Rend. Circ. Mat. Palermo, 19 (2): 89.
- [12] Njastad, O. (1965) Pacific J. Math., 15: 961.

Pairwise T_S - Spaces

(Received 30 May 2006)

K. Chandrasekhara Rao and D. Narasimhan Department of Mathematics, Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam - 612 001, India. e-mail : k.chandrasekhara@rediffmail.com, dnsastra@rediffmail.com.