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1. INTRODUCTION

Throughout this paper, we always assume that H is a real Hilbert space and let B :
H — 2" be a set-valued mapping with D(B) = {z € H : B(z) # 0}. In 2011, Moudafi
[1] introduced the split variational inclusion inclusion problem (SVIP) which is to find
z* € Hy such that

Op, € Bi(z*) and Og, € Bo(Ax™), (1.1)

where Hy and Hy are real Hilbert spaces, By : H; — 2H1 and By : Hy — 22 are set-
valued maximal monotone mappings, A : Hy — Hs is a linear and bounded operator,
and A* is the adjoint of A. This problem has a variety of specific applications in real
world such as image reconstruction and signal processing. The split variational inclusion
inclusion problem (SVIP) can be apply to split minimization problem, split feasibility
problem, relaxed split feasibility problem and linear inverse problem. Some related works
can be found in [2-13].

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright © 2020 by TJM. All rights reserved.
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In 2011, Byrne et al. [14] proposed the iterative method for solving the split variational
inclusion problem in Hilbert spaces as following:
Tna1 :ng(xn—vA*(I—ng)Axn)7 n €N, (1.2)

where 3,7 are real positive numbers and JﬁB1 (x) = (I + BB)~!(z) for each z € H which
is a resolvent mapping of B order .

Recently, in 2016, Chuang [15] studied algorithm for solving the SVIP in Hilbert spaces
as following:

Algorithm 1.1. Let xg,z1 € H; and set

Up = Tp+O0n(Tn —Tpo1),
Yo = PN (un — WA = J57) Auy), (1.3)
where {6,} C [0,1) and 7, > 0 satisfies
Wl A*(I = T5?) Auy, — A*(I = JF?) Ayn || < 8)lun — ynll,0 < 6 < 1. (1.4)
Define
Tyl = J[il (U, — A D(Un,Vn))s (1.5)
where

and
o, = (Un = Yn, D(Un, 10))
1D (wn, vn)|I?
Chuang [15] proved its weak convergence theorem under suitable conditions.
In this paper, inspired by the algorithm proposed by Chuang [15], we introduce algo-

rithm for the SVIP and prove its strong convergence in real Hilbert spaces. We give some
numerical experiments in signal recovery to support our main results.

2. PRELIMINARIES

In this section, we provide some basic definitions and lemmas which will be used in the
sequel. Let H be a real Hilbert space. In what follows, we use the following notations:

e the symbols — stands for the weak convergence.

e the symbols — stands for the strong convergence.
Recall that a mapping T : H — H is said to be

(1) nonexpansive if

[Tz =Tyl < ||z = yll, Va,y € H.
(2) firmly-nonexpansive if
(Te — Ty,x —y) > |Te — Ty|*, Yo,y € H.

We note that if T is firmly-nonexpansive, then I — T is also firmly-nonexpansive. In a
real Hilbert space H, we know the following relations:

1 1 1
(@y) = gll=l* + Swl* = Sllz = ol*, Yo,y € H (2.1)
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and
laz+(1—a)y|* = allz]®* + (1 -a)|y|* —a(l-a) |z —y|* Y2,y € H and a € R.

A mapping f : H — H is said to be a contraction on H if there exists a constant a € (0, 1)
such that

1f(x) = FW)ll < alle —yll, Yo,y € H. (2.2)

A set-valued mapping B : H — 2 is called monotone if for all z,y € H

(u—v,z—y) >0, u€ Bx and v € By.
For a set-valued mapping B, graph(B) is defined as graph(B) := {(z,u) € H x H : u €
B(z)}. A monotone mapping B : H — 2 is said to be maximal if the graph(B) is not
properly contained in the graph of any other monotone mapping. Let B : H — 2 be a

set-valued maximal monotone operator. The resolvent operator J BB : H — H associated
with B is defined by

JBB(QT) =(I+6B) ! (z), Vz € H,

where 8 > 0. It is well known that the resolvent operator is single-valued and firmly
non-expansive.

Lemma 2.1 (Demiclosedness principle, [16]). Let C' be a nonempty closed conver subset
of a real Hilbert space H and let T : C — C' be a nonexpansive mapping. If v, = x € C
and lim ||z, —Tz,| =0, then z = Tx.

n—oo

In order to study the SVIP, we recall some lemmas which are needed in our proof. We
denote by B~1(0) = {# € H : 0 € Bz}, D(T) the domain of T" and Fiz(T) the fixed
point set of T, that is, Fiz(T) ={x € H : x = Tz}.

Lemma 2.2 ([17, 18]). Let H be a real Hilbert space, B : H — 28 be a set-valued
mazimal monotone mapping. Thus,

(i) JBB is a single-valued and firmly nonexpansive mapping for each B > 0;

(i) D(Jé?) = H and Fix(JéB) ={x €D(B):0¢€ Bz},

(iii) |z — JFz| < ||z — JPz| for all 0 < 3 <~ and for all x € H;

(iv) Suppose that B=*(0) # 0. Then ||z — JFz|* + || J§ — 2*||> < ||z — 2*|]? for each
x € H, each x* € B~1(0), and each B > 0.

(v) Suppose that B=1(0) # 0. Then (z — J[?J;,ng —w) > 0 for each x € H, each
w € B7Y(0), and each B > 0.

The next lemma gives a crucial characterization of the solution sets of the SVIP and
the fixed point sets of the resolvent operator.

Lemma 2.3 ([17]). Let Hy and Hs be real Hilbert spaces, A : Hi — Hy be a bounded
linear operator. Let B3 > 0, v > 0, By : Hi — 2H1 and By : Hy — 2H2 be set-valued
mazximal monotone mappings. Given any x* € Hy.

(i) If * is a solution of (SVIP), then ng (x* —yA*(I — sz)A:z:*) =z*.

(i) Suppose that ng (x* —yA*(I — J[?Q)Ax*) = z* and the solution set of (SVIP) is
nonempty. Then x* is a solution of (SVIP).

Lemma 2.4 ([17]). Let Hy and Hy be real Hilbert spaces, A : Hi — Hs be a bounded
linear operator and 3 > 0. Let B : Hy — 212 be a set-valued maximal monotone mapping.
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Define a mapping T : Hy — Hy by Tax .= A*(I — JE)AZ‘ for each x € Hy. Then
(i) |(I = IF) Az — (I = TF)Ay|* < (Tw — Ty,x —y) for all x,y € Hy;
(1) || A*(I — Jé?)Aac — A*(I — JBB)AyH2 < ||A||?-(Tx — Ty,x —y) for all x,y € Hy.

We also need the following tools in convergence analysis.

Lemma 2.5 ([19, 20]). Let {a,} and {c,} be sequences of nonnegative real numbers such
that
ant1 < (1 —=0p)an +by+cny n>1, (2.3)

where {6,} is a sequence in (0,1) and {b,} is a real sequence. Assume Y .~ ¢, < 0o.
Then the following results hold:

(i) If by, < 6, M for some M > 0, then {a,} is a bounded sequence.

(ii) If Y07 6, = o0 and limsup,,_, b, /8, <0, then lim,_,o a, = 0.
Lemma 2.6 ([21]). Assume a, € [0,00) and 6,, € [0,00) satisfy:

(’L) Apt1 — Qp < en(an - anfl) + ¢n,

+oo
(i1) Z o, < 00,

n=1
(iii) {0,} C [0,0], where 8 € [0,1). Then the sequence {a,} is convergent with
+oo

Z[anH — ap)+ < 00, where [t]+ = max{t,0} (for any t € R).

n=1

Lemma 2.7 ([22]). Assume {s,} is a sequence of nonnegative real numbers such that
Sn41 S (]- - Cn)sn + Cnln, (24)
Sp+1 < Sy — An + ©ns (25)

for all n > 1 where {c,} is a sequence in (0,1), {\,} is a sequence of nonnegative real
numbers and {6} and {p,} are two sequences in R such that

o0
(i) Z Cp = 00;
n=1
(ii) lim ¢, =0;
n—oo
(#3) limg 00 Ap,, = 0 implies limsup n,, < 0 for any subsequence {n} of {n}.

k—o0

Then lim s, = 0.
n—oo

3. MAIN RESULTS

In this section, we introduce algorithm involving the linesearch and inertial techniques
and prove the strong convergence theorem. Throughout this paper, we denote by €2 the
solution set of the SVIP and assume that €2 is nonempty. Let H; and H> be real Hilbert
spaces, A : Hy — Hs be a linear and bounded operator, and A* be the adjoint operator
of A. Let B; : Hy — 2"+ and By : Hy — 282 be set-valued maximal monotone operators.

Algorithm 3.1. Let 0 > 0, p € (0,1), § € (0,1), {Br}nen be a sequence in (0,00) and
{0, }nen be a sequence in [0,60) C [0,1). Take arbitrarily zo,2; € Hy and compute
Un = Tp+O0n(Tn — Tp1) (3.1)
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where vy, = op™" and m,, is the smallest nonnegative integer such that

Yl AT = J52) Aun — A*(I = J52) Ayal| < 8lun — yall- (3.2)
Define

Tn1 = an f(20) + (1= ) J5 (un — 6€, D, 7)) (3.3)
where ¢ € (0, 2),

D(un,yn) = tn — Yn — Yn (A" — J512)Aun —A*(I - JBEif)Ayn)

and
¢ = (Un = Y, D(un, 1)) + (1 — Jgfjf)Ayn”Q (3.4)
" 1D (tn, vn) |2
Following the proof line as in [23], we obtain the following lemma:

Lemma 3.2. The linesearch (3.2) is well defined. Besides, v < v, < o, where
~" = min{o, %’)} and L = ||A|?.

Theorem 3.3. Assume that {a,} and {0,} satisfy the assumptions:

(a1) limy, o0ty = 0 and Y07 | v, = 00;

(a2) im0 O‘%Hxn — Zp—1|| = 0.

Then the sequence {x,} generated by Algorithm 3.1 converges strong to a point Pq f(z)
in €.

Proof. Let z = Pof(2). Then z € By*(0) and Az € By *(0). By the definitions of y,, and
D(un,vn), we get

Yn = J5" (Un — (W A™ (I = J52) Ayn — D(tn, 1)))- (3.5)
By Lemma 2.2 (v), it follows that
(Yn = 2, D(tn, V) — A" (I = J52) Ayn) > 0 (3.6)
which implies that
(Un = 2, D(tn, V) = Yy — 2, A*(1 — J52) Ayy,). (3.7)
Moreover, we have J ,52 Az = Az. Tt also follows that
Valyn — 2, AT =I5 Ayn) = Anlyn — 2 AL = J52) Ay — A*(I = JF?) Az2)
= Yo (Ay, — Az, (I — Jif)Ayn - (I - J[]ff)Az>
> (I = J57) Ayl (3.8)

Using Lemma 2.2 (v) and (3.8), we get
(Yn = 2, D(un, 1)) = (Yn = 2t — Yo — (A" (I = J52) Aup, — A*(T = J52) Ayn))
= (Un— 2 Un — Yo — WA (I = J5?) Au,,)
Y (yn — 2, A*(1 = J52) Ayn)
Wl = J572) Ayal* (3.9)

Y
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From (3.9), we obtain

Up — Yn + Yn — ZaD(una’Yn»
Up — yn,D(Um%» + <yn - ZaD(una'Yn»

<un -z, D(unvr}/n» <
(

> (U = Y D(tn, 1)) + 1l (I = TF2) Ay . (3.10)
(

We observe that, by the linesearch (3.2),

(Un = Yn, D(tn,1n))
= (tn = Yoy tn = Yo = (AL = J52) Aun — A*(I = J52) Ayn))
(tn = Y, n = Yn) = (Un = Y, W (A* (I = J5?) Ay, — A*(I — J572) Ayy))
n = ynll® = Y (tn = g, AL = JE?) Auy — A*(1 = J52) Ayn)
[tn = ynll* = Ynlltn — yn|[I|A*(1 = TF?) Auy, — A*(I = J5?) Ay, |
[tn = ynll* = 8llun — ynl?
= (1= 0)]un —ynl*. (3.11)

AV ||

v

On the other hand, we obtain the following estimation

1D )P = Ntn =y — Y (A" = J52) Auy — A*(I — J52) Ayy)||?
= lun —yal® + 2 1A = J52) Auy — A*(1 = J52) Ayn |
295 (U — Y, AL = TF?) Aup, — A*(I = JF?) Ayy))

< ”“n_yn”2+52Hun_yn”2
29 (U — i, A*(I = J52) Auy — A*(I = J52) Ayn))|
< ”“n_yn”2+52Hun_yn”2

+27ltn — yn|[|A*(I — JE?)AUH - A1 - Jgiz)Ayn)”
l|wn — yn||2 + 52Hun - yn||2 + 20|upn — yn||2
(14 6)2||up — ynl* (3.12)

Combining (3.11) and (3.12), we obtain

<un_yn,D(una’Yn)> N 1-9§
ID(un, )2~ (1+6)2

Y 2 (3.13)

From (3.3), (3.4) and (3.10), we have

IN

175! (tn = $€nD(tn, 1)) — 2|

[tn = G0 D (1, V) = 21> = [ T52 (tn = $€n D (i ¥n)) = tn + G0 D (1t )|
[un = 2l|* = 20& (un — 2, D(tn, 1n)) + S22 D (tn, ) |12

—1J5 (= & D (tny Yn)) = tn + $En D (tn, 1) |

= 2[1* = 20&n ((un = Yy D(n, 1)) + Yl (T = T52) Aya®)

+O2E2 ) D, y)|1? = 175 (. — $n D(tn, n)) — tn + $€n D (1t ) ||

(Un = Yn, D(un, 1)) + (1 — J,(?z)AyRHZ
||un - 2”2 - 2¢§n< = -||D una’}/n) 2)
1D, ) P 1P Gn, o)l

+SE D (s yu) 1> = 15 (tn = €D (tn, Yn)) = thn + ¢&n Dt )|
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= = 21* = 20€2 1D (tn, o) lI* + O*E2 1D (1) |1
— (175! (tn = $€nD (1, 1)) — th + G0 D (i, ) |I°
= lun — 2] = (2 = )& D, 7 ) ||
—[| 5 (tn = $En D (tn, Yn)) = tn + $&n D, 1) || (3.14)

From (3.14) and ¢ € (0,2), we have
1957 (n — $€n D (un, 1)) = 21| < flun — 2| (3.15)
On the other hand, we see that

||xn + Hn(xn - xn—l) - Z||2

= |zn — 2>+ 200 (x0 — 2,20 — Tn1) + 02|20 — 20> (3.16)

Hun_z|l2

Using (2.1), we also obtain
1 1 1
(00— 2120 — 1) = Lllan = 22+ Sl — @aca? 3 lzacs 2% (317

Combining (3.16) and (3.17), it follows that

Uy — 2 = |z, —2 N — Tr—1 nllxn — 2
| 12 [ 12+ 62| 12+ 6, 12
+0n||2n — :cn,1||2 —Op||lzn—1 — z||2 (3.18)

< lwn = 207 + On(llon — 207 = llzn—1 = 201%) + 200]l2n — zpll*.
From (3.14) and (3.18), we have

zner =2l = [l(anf(@n) + (1= an) 5 (un = ¢ D(un, 1)) = 2|
= (anf(zn) + (1 - an)J/ﬁ: (un = @& D(tn;n)) = 2, Tn41 — 2)
= an(f(zn) = f(2),Zn41 — 2) + o (f(2) — 2, Zp41 — 2)
+(1— O‘n)<J/3Bn1 (un — @€ D(tn;n)) — 2, Tny1 — 2)

< ganallan — 2l + Sonlenis — 22 + anlf(2) ~ 2 a1~ 2)
5 (L @) |5 (66 Dlatn, 7)) — 2+ 3 (1= a)rnn — 2P
< Lonallan — 2P + 2 lanss — 2P + 2 (01— o) zn — 2|
- 2 2 2
0= @)l — 21 — frns — 2l?) + (1 — @) ln — 20
n)Un n n—1 n)Un n n—1

2

_%(1 — an)$(2 — $)E2[| Dt )|

7%(1 - o‘n)”JBE: (un — 9€n D (Un, Yn)) — Un + d’gnD(Una'Yn)”z
+an(f(2) — 2, Tpt1 — 2). (3.19)
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It follows that
lonss — 212 < (1= ((1 = a)an))lfen — 2|
(1 = an)nn—1 — 2all(fn — 2l + 201 — 2])
+(1 = an)20nllzn — zn-al* = (1= an)$(2 = )& D (un, )|
—(1- O‘n)HJ/iI (tn = $EnD(tn, Yn)) = tn + GEn D (Un, V)|
F2a,(f(2) — 2z, Zp41 — 2). (3.20)
Next, we will show that {x,} is bounded. We see that
lun =2 = ll#n = On(zn — 2p-1) — 2||
< |l = 2] + 0nllzn — Tn—1| (3.21)

From (3.15), we have

[Zn+1 — 2] = [lanf(zn) +(1— O‘n)Jg,Ll (Un — $&nD(tn,1n)) — 2|l
< an|lf(xn) — 2l + (11— O‘N)H‘]B:Ll (un — ¢€nD(tUn, ) — 2|
< anllf(zn) = FR + anllf(2) — 2l + (1 — an)[Jun — 2|
< analzn — 2| +anllf(2) = 2l + (1 = an)[zn — 2|
+(1 = an)fn|lzn — -1l
< (1= an(l—a))an — 2l + anllf() 2|

+(1 = an)Onl|xn — zn—1]. (3.22)

We see that v, = m||xn — xp—1]| — 0. Hence it is bounded. Putting M =

Qp
max{||f(z) — z||,sup,,>1 ¥} and using Lemma 2.5 (i), we conclude that the sequence
{||zn — 2||} is bounded.
Hence, we can show that {z,} is bounded. Employing Lemma 2.7 and (3.20), we set

sn = |lzn - Z||2
on = (I=an)Ollzn-1—zall(|vn — 2l + |Tn-1 — 2[]) + (1 — @) 205 |20 — xn—1||2
20, (f(2) — 2, 2py1 — 2)
2
M = m<f(z) — 2, Tny1 — 2)
(1= an) s lons =l = 21+ 21 = 2I)
20,, 9
+(1 - an)men — Zn—1]|
A = (11— an)¢(2 - ¢)§721||D(una7n)”2
+(1 - an)HJBB;l (un - ¢€nD(un7'7n)) — Up + (bgnD(una’yn)'F
ecn = (1—a)a,. (3.23)

So, (3.20) reduces to the inequalities

Snt1 < (1—cn)sn + cnin (3.24)
<

Sn+1 Sn — An + ©n- (325)
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Let {n} be a subsequence of {n} and suppose that

lim A,, =0. (3.26)
k—o0

It follows that
Tim (1 0, )6(2 — G2, 1Dt 3, )7 = 0. (3.27)

Using assumption of ¢, we obtain
klim 1D (tny s Yo )|l = 0. (3.28)
—00
By definition of D(uy,~,), we have
||unk — Yny, || = ||D(unk7 ’Vnk) + Y, (A* (I - J[ﬁi )Aunk — A" (I - Jgfk )Ay"lk)H
1D (s Y )|+ A 1A* (1 = T2 ) Ay, — A™(I = T2 ) Ay, |
||‘D(unk’ ’Y’nk)” + 5Hunk — Yny ”

IA A

This shows that

(1= O)luny = yni | < (1D (wny, Y (3.29)
which yields
lim ||un, — Yn, || = 0. (3.30)
k—o0
By (3.1), we see that
lim ||tp, — zn, || = 0. (3.31)
k—o0

From (3.30) and (3.31), we obtain
[ne = ynill - < N@ng = wng [l 4 [t — Yl
— 0ask— oo. (3.32)
Consider
[Zng41 —tne | = o, f(zn,) + (1 - ank)Jgi: (Un = $&nD(tUn, Yn)) — Un, ||
= |lan, f(2n,) + (1 - ank)Jg; (Un — @& D (tUn, Yn)) — Un,
+¢&n D (tn, Yn) — $&n D (un, Vo) |
|| f(Tny) = un, || + (1 — O‘nk)”J/g:k (Uny, — P&y D (Uny, Yoy, )
~Uny, + Gy, D(Uny, Yo, )|l + (1 = g )€ [ D(wny , Yoy, )l
— 0, as k — oo. (3.33)
By (3.31) and (3.33), we get
[+t = Znll - < Nen1 = tn | + un, — 0, |l
— 0ask— oo. (3.34)
From Lemma 3.2, (3.9) and (3.28), we get

IN

HAynk - JéglAynk ”2 S <ynk - % D(unk77nk)>

n

H‘Q\‘H

S Sl = 2D G el

— 0Oas k— 0. (3.35)
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By Lemma 2.2(i), we have

< ||Aunk - Jf?fk Aunk - Ay'ﬂk + J;}B.:fk Ay’ﬂk ” + ||Aynk - ngzk Ay’ﬂk ”
< 2| Alllluny, = Yo |+ 1AYn, — 52 Ay, .
By (3.30) and (3.35), we have

A

Jim | Aup, - J/i"‘k Auy,, || = 0. (3.36)
By Lemma 2.2(iii), we have
Jim || A, — TP Ay, || < Jim || Auy, — Jgjfk Auy,, || = 0. (3.37)
By (3.1), (3.36) and Lemma 2.2(%), we have
||ynk - JBBnlk Uny, ” = ”JB,le (u’nk - rYTLkA* (I - ngzk )Aunk) - J/ilk Uny, H
< AT = T2 ) Aun, |
— 0ask— oo (3.38)
From (3.30) and (3.38), we get
||unk - J/ilk Uny, ” = Hunk ~ Ynp T Ynp — J,BB,Ilk Uny, ”
— 0ask — 0. (3.39)
By Lemma 2.2(ii%), we obtain
So, by (3.31) and (3.37), we obtain
|Az,, — JgkamnkH = |4z, — Ji’f’kAxnk — Aug, + JgkaunkH

< 20 ANz, — a4 ([ Aun, — J5? Auy, |
— 0as k — oco. (3.41)
By(3.31), (3.40) and Lemma 2.2(), we get

Hxnk _'][flxnkn = Hxnk = Uny, + Un, _‘]glunk +J§1unk _Jéglxnk”

A\

— 0ask— oo (3.42)

Since {zn, } is bounded then there exists a subsequence {xn, } of {zy,} such that z,,, —
x*. By (3.41), (3.42), Lemma 2.1 and Lemma 2.2(ii), we have z* € Q.
From Lemma 2.2 (v), we obtain

s, =t | + [ln,, = T |+ 15 ey, = T3 |

limsup(f(2z) — z,2n, —2) = lLm(f(2) — 2,24, —2)
k—o00 1o '

= (f(z) — 22" —2)
< 0. (3.43)
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From (3.34) and (3.43), we obtain

limsup(f(z) — 2z, zn,+1 — 2) <0. (3.44)

k—o0

Hence, we get
lim sup n,,, <O0. (3.45)

k—o0

Using Lemma 2.7, we conclude that the sequence {z,} converges strongly to z = Pq f(z).
"

4. NUMERICAL EXPERIMENTS

In this section, we give some numerical examples to the signal recovery in compressed
sensing. Compressed sensing can be modeled as the following under determinated linear
equation system:

y = Az + €, (4.1)

where € RY is a vector with m nonzero components to be recovered, y € RM is the
observed or measured data with noisy €, and A : RY — RM (M < N) is a bounded linear
operator. It is known that to solve (1.1) can be seen as solving the LASSO problem:

1 2
Jnin, S|y — Axflz + Az, (4.2)
where A > 0. So we can apply our method for solving (1.1) in case f(z) = 1|y — Az|]3
and g(z) = Alall1.
Find z* € H; such that
*e i d Az* € i ,
2" € arg min f (z) and Az" € arg min 9(y)

where f : Hy — R and g : Hy — R are proper, lower semicontinuous, and convex
functions.

In a real Hilbert space H, the proximal operator of f is defined by
1
proxg ;(z) == arggéill_rll {f(v) + %Hv — a:2} for each © € H.

It is well-known that
prowg ¢(x) = (I + Bof)~ () = I} (),
where Jf is the subdifferential of f defined by
Of(x):={a* € H: f(x) + (y —x,2*) < f(y) for each y € H}.

From [24], 0f is a maximal monotone operator and proxg, s is firmly nonexpansive.

In our experiment, the sparse vector € RY is generated from uniform distribution
in the interval [-2,2] with m nonzero elements. The matrix A € RM*¥ is generated from
a normal distribution with mean zero and variance one. The observation y is generated
by white Gaussian noise with signal-to-noise ratio SNR=40. The restoration accuracy is
measured by the error as follows:

Ep = |Zni1 — 2nllz < 1074 (4.3)

Choose f(z) = %, an = 1p575 20 = [0,0,...,0], 21 = [1,1,..,1], § = 0.2, 0 = 2 and
p = 0.2. Then the numerical results are reported as follows:
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TABLE 1. Numerical results for Algorithm 3.1 with difference dimensions.

N =512 N =1024 N = 2048 N = 4096
M =256 M =512 M =1024 M = 2048
m = 10 m = 20 m = 40 m = 100

Iter 380 789 1460 2801

cpu time | 1.0818 14.5757 176.3547  1.4355x103

We provide the graphs of original signal and recovered signal by Algorithm 3.1 for
each dimensions in Figures 1-4, respectively. The convergence behavior of the error E,
for each dimensions in Figure 5.

Original signal (N = 512, M = 256, 10 spikes)
T T T T T
I | | I I

Il Il Il Il Il Il
50 100 150 200 250 300 350 400 450 500
Measured values with SNR = 40

T T

100 150
Recovered signal by Algorithm 3.1 (380 iterations, CPU = 1.0818)
T T T T T

T T
I [ | | | I || I
A L L L L L L I L \I L L

50 100 150 200 250 300 350 400 450 500

FIGURE 1. From top to bottom: original signal, observation data, re-
covered signal by Algorithm 3.1 with NV = 512, M = 256 and m = 10,

respectively.

Original signal (N = 1024, M = 512, 20 spikes)
T T T T

1 T
| | | I | 1 I
| I I | I I I

Il Il
100 200 300 400 500 600 700 800 900 1000
Measured values with SNR = 40
T T T

I I I I I I I I I

-1
100 200 300 400 500 600 700 800 900 1000

150 200 250 300 350 4
Recovered signal by Algorithm 3.1 (789 iterations, CPU = 14.5757)
T T T T T

FIGURE 2. From top to bottom: original signal, observation data, re-
covered signal by Algorithm 3.1 with N = 1024, M = 512 and m = 20,
respectively.
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Original signal (N = 2048, M = 1024, 40 spikes)
T T

| | | | I | I |‘
o N I I | I I II r I I 1 | M
1 || Il I Il | Il Il | Il Il Il
200 400 600 800 1000 1200 1400 1600 1800 2000
Measured values with SNR = 40
T T T T T T T T T T
20—
0
20 | | | | | | | | | |
100 200 300 400 500 600 700 800 900 1000
P Recovered signal by Algorithm 3.1 (1460 iterations, CPU = 176.3547)
T | T T |\ T | \I T T |\
o | | I RN 1] .
A | Il l Il Il Il | Il Il Il
200 400 600 800 1000 1200 1400 1600 1800 2000

Fi1cURE 3. From top to bottom: original signal, observation data, recov-
ered signal by Algorithm 3.1 with N = 2048, M = 1024 and m = 40,

respectively.

Original signal (N = 4096, M = 2048, 100 spikes)
T T

H

I
500

I
4000

1000 1500 2000 2500 3000 3500
40 Measured values with SNR = 40
T T T T T T
20 '
o
-20
40 1 [ 1 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600 1800 2000
P Recovered signal by Algorithm 3.1 (2801 iterations, CPU = 1.4355x103)
T T T T T T T
0 sl | L I | e e I J J || 1 I 1 [ " L
T I ' | ' ™
4 1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000

FIGURE 4. From top to bottom: original signal, observation data, recov-
ered signal by Algorithm 3.1 with N = 4096, M = 2048 and m = 100,

respectively.

10°

—N=512, M=256
—N=1024, M=512
—N=2048, M=1024
— N=4096, M=2048

10
10’

10°

Number of iterations

FIGURE 5. E,, versus number of iterations for each dimensions
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5. CONCLUSIONS

In this work, we proposed algorithm for the split variational inclusion problem (SVIP)
and proved strong convergence theorem. Numerical results in signal recovery show that
our algorithm has efficiency.
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