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1. Introduction

Let D∗ be the dual space of a real normed space, D and H, a real Hilbert space except
stated otherwise. A map J : D ⇒ D∗ defined by

Ju := {u∗ ∈ D∗ : 〈u, u∗〉 = ‖u‖‖u∗‖, ‖u‖ = ‖u∗‖},

is called the normalized duality map, where 〈·, ·〉 denotes the duality pairing between
elements of D and D∗. It is well known that if D is strictly convex, smooth and reflexive,
then, J is one-to-one, single-valued and onto. For more properties of the normalized
duality map (see, e.g., [1, 2]).
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A map A : D ⇒ D is called accretive, if for each u, v ∈ D, there exists j(u− v) ∈ J(u− v)
such that,

〈ηu − ηv, j(u− v)〉 ≥ 0, ηu ∈ Au, ηv ∈ Av. (1.1)

Consider the evolution inclusion 0 ∈ du
dt + Au, where A is an accretive map. For solving

this inclusion problem at equilibrium state, i.e.,

0 ∈ Au, (1.2)

Browder [3] in the year 1967, introduced a self map, T on H defined by T := I −A, where
I is the identity map. He called such a map pseudocontractive. Clearly, solutions of (1.2)
correspond to fixed points of T . Therefore, approximating zeros of accretive maps is
equivalent to approximating fixed points of pseudocontractive maps, assuming existence
of such zeros, which is also, the equilibrium state of some dynamical systems.

An important class of pseudocontractive maps is the class of nonexpansive maps. It
is well known that for a nonexpansive map T with a nonempty fixed point set, the
classical Picard iterative sequence un+1 = Tun, u0 ∈ D(T ), n ≥ 0, where D(T ) denotes
the domain of T does not always converge to a fixed point of T, assuming existence.
However, following the pioneering research efforts by Mann [4], Krasnoselkii [5], Schaefer
[6], Ishikawa [7], Edelstein [8–10], Reinermann [11], Edelstein and OBrian [10], Chidume
[12], Reich [13] and a host of other authors, the following recursion formula, called Mann
recursion formula, was developed and found to be effective for approximating fixed points
of nonexpansive maps, assuming existence of solutions.

Let C be a nonempty and convex subset of a normed space, D and T : C → C be a
nonexpansive map. Let the sequence {un} in C be defined by

u0 ∈ C, un+1 = (1− an)un + anTun, n ≥ 0, (1.3)

where {an} is a sequence in (0, 1) satisfying the following conditions:

(i) lim an = 0 and (ii)
∑
an =∞.

Ishikawa [7] proved that if, the sequence {un} is bounded, then, the sequence is an
approximate fixed point sequence.

Remark 1.1. The recursion formula (1.3) can only yield weak convergence to a fixed
point of T (see e.g., Reich [13]). To obtain strong convergence to a fixed point of T ,
some compactness condition must be imposed either on the domain of the operator or
the operator itself (see e.g., Chidume [14]).

For the more general class of Lipschitz pseudocontractive maps, attempts to use the Mann
formula, which has been successfully employed for nonexpansive maps, to approximate a
fixed point of a Lipschitz pseudocontractive map even on a compact convex domain in a
real Hilbert space proved abortive (see, e..g., Chidume and Mutangadura [15]).

However, in the year 2007, Chidume et al. [16] proved the following theorem for a class
of strictly pseudocontractive maps in a real Banach space.

Theorem 1.2 (Chidume et al., [16]). Let D be a real Banach space. Let C be a nonempty,
closed and convex subset of E. Let T : C → C, be a strictly pseudocontractive map in the
sense of Browder and Petryshyn with Fix(T ) 6= ∅. For u0 ∈ C, define the sequence {un}
by

un+1 = (1− αn)un + αnTun,∀ n ≥ 0, (1.4)



A Common Fixed Point of an Infinite Family of Pseudocontractive Maps 1389

where {αn} is a real sequence satisfying the following conditions:
(i)

∑
αn =∞, (ii)

∑
α2
n <∞. Then, (a) {un} is bounded

(b) lim ||u∗ − un|| exists, for any u∗ ∈ Fix(T ) (c) lim inf ||un − Tun|| = 0.

If in addition, T is demicompact, then {un} converges strongly to fixed point of T in C.

Motivated by the result of Chidume et al., Zegeye and Shahzad [17] in the year 2009,
proved the following theorem:

Theorem 1.3 (Zegeye and Shahzad, [17]). Let D be a real reflexive Banach space which
has a uniformly Gáteaux differentiable norm. Assume that every nonempty closed convex
and bounded subset of D has the fixed point property for nonexpansive mappings. Let
Ai : D → D, i = 1, . . . be a countably infinite family of αi-inverse strongly accretive maps
such that ∩∞i=1A

−1(0) 6= ∅. Suppose that α := inf{αi} > 0. For any u ∈ D, let {xn} be a
sequence generated from arbitrary x1 ∈ D

xn+1 = xn − λnAxn − λnθn(xn − u),∀ n ≥ 1, (1.5)

where A :=
∑∞
i=1 aiAi, for ai ∈ (0, 1), i = 1, 2, · · ·

∑∞
i=1 ai = 1 Then, {xn} convergences

strongly to a common zero point Qu of {A1, A2, . . . }, where Q is the unique sunny non-
expansive retraction from D onto ∩∞i=1A

−1
i (0).

In addition, they applied their theorem to prove a strong convergence theorem whose
sequence approximates a fixed point of an infinite family of strictly pseudocontractive
maps. In fact, they studied the following algorithm:

x1 ∈ C, xn+1 = xn − λn(xn − Txn)− λnθn(xn − u),∀ n ≥ 1, (1.6)

where T is a self map on C given by T :=
∑∞
i=1 ai(I − Ti), for ai ∈ (0, 1), i = 1, 2, . . .∑∞

i=1 ai = 1 and C is a nonempty, closed and convex subset of E. Then, {xn} conver-
gences strongly to a common fixed point Qu of {T1, T2, . . . }, where Q is the unique sunny
nonexpansive retraction from D onto ∩∞i=1F (Ti).

Remark 1.4. The compactness condition imposed on the map T in the theorem of
Chidume et al. has been dispensed with in the thoerem of Zegeye and Shahzad, although,
the algorithms are slightly different.

For more and earlier results on approximation of fixed points of pseudocontractions, see
e.g., Browder and Petryshyn [18], Chidume and Chidume [19], Chidume et al. [16], Reich
[13], Bruck [20], Takahashi and Ueda [21], Schu [22], Kirk [23], Berinde [24], Chidume
[14], Ofoedu et al., [25], Ofoedu [26], Chidume [27, 28], Romanus et al. [29] and Monday
[30].

It is well known that algorithms whose sequences approximate zeros of accretive operators
are in general, very slow. This is because accretive operators are generally not differen-
tiable. Therefore, algorithms which improve the speed of iterative sequences such as the
Newton-Kantorovich algorithm may not be used. A lot of efforts are now being put in
constructing iterative algorithms that improve and speed up convergence of sequences
there by given a better approximation.

One method that is now being studied extensively is to incorporate inertial extrapolation
term in the algorithms.
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In 1964, Polyak [31] introduced and studied the inertial extrapolation algorithm from the
heavy ball experiment of two order time dynamical system, given by:

w
′′
(s) + ξw

′
(s) +∇ψ(w(s)) = 0, (1.7)

where ξ > 0 and ψ : H → R is a differentiable function. The dynamical system (1.7) is
discretized using numerical method such that, given the previous two iterates, wn and
wn−1, the next iterate wn+1, can be determined by

wn+1 − 2wn + vn−1
k2

+ γ
wn − wn−1

k
+∇φ(w(t)) = 0, (1.8)

where k is the step size. Equation (1.8) gives the following algorithm:

wn+1 = wn + β(wn − wn−1)− α∇ψ(wn), n ≥ 0, (1.9)

where β = 1 − γk, α = k2 and β(wn − wn−1) is called the inertial extrapolation term,
which is intended to speed up the convergence of the sequence generated by equation
(1.9).

An inertial-type algorithm is a two-step iterative process in which the next iterate is
defined by making use of the previous two iterates.

The study of inertial algorithms, especially in connection with the PPA, forward and back-
ward algorithm, double projection algorithm, extragradient and subgradient-extragradient
algorithms, has become a flourishing area of research for numerous mathematicians. For
more on the study of algorithms which speeds up convergence, see, for example, Alvarez
[32], Thong and Van [33], Cholamjiak and Suantai [34], Dong et al. [35], Cholamjiak et
al. [36], Shehu and Cholamjiak [37], Suantai et al. [38], Kesornprom and Cholamjiak [39],
Chidume and Monday [40] Cholamjiak and Shehu [41].

Motivated by the results of Chidume et al. [16], Zegeye and Shahzad [17] and Polyak
[31], we study in this paper, a new inertial algorithm for approximating a common fixed
point of an infinite family of strict speudocontractions in a uniformly smooth real Banach
space. The sequence of the algorithm is proved to converge strongly to a common fixed
points of the maps. This result is achieved as an application of a new inertial algorithm
whose sequence approximates a common zero of an infinite family of inverse strongly
accretive maps. As far as we know, this is the first inertial algorithm for approximating
a common fixed point of an infinite family of strict speudocontractions in this direction.
Furthermore, numerical examples are given to compare the performance of the sequences
of our algorithms over the sequences of some recent algorithms without inertial term.
Finally, the theorems proved complement, improve and extend some related results in the
literature.

2. Preliminaries

Let D be a nonempty and closed subset of a uniformly smooth real Banach space dual
space M .

The following definitions and lemmas will be needed in the sequel.

Definition 2.1. A map U : D → D called L-Lipschitz if, there exists L > 0 such that

‖Uu− Uv‖ ≤ L‖u− v‖, ∀ u, v ∈ D.
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If L = 1, then, the map U is nonexpansive.

A map U : D →M is called accretive if, for each u, v ∈ D there exists j(u− v) ∈ J(u− v)
such that 〈

Uu− Uv, j(u− v)
〉
≥ 0.

A map U is called η-inverse strongly accretive if, there exists η > 0 such that for
all u, v ∈ D, there exists j(u− v) ∈ J(u− v) such that〈

Uu− Uv, j(u− v)
〉
≥ η‖Uu− Uv‖2.

A map T : D → D is called strictly-pseudocontractive if, there exists a constant η > 0
such that

〈u− v, Tu− Tv〉 ≤ ||u− v||2 − η||(I − T )u− (I − T )v||2, ∀ u, v ∈ D. (2.1)

Remark 2.2. A map U is inverse strongly accretive, if and only if U := (I−T ) : D → D
is strictly pseudocontractive.

Lemma 2.3 (Xu, [42]). Let {βn} be a sequence of non-negative real numbers satisfying
the following relation:

βn+1 ≤ (1− σn)βn + σnbn + cn, n ≥ 1,

where {σn}, {bn} and {cn} satisfy the conditions:

(i) {σn} ⊂ [0, 1],

∞∑
n=1

σn = ∞; (ii) lim sup
n→∞

bn ≤ 0; (iii) cn ≥ 0,

∞∑
n=1

cn < ∞.

Then, lim
n→∞

βn = 0.

Lemma 2.4 (Zegeye and Shahzad, [17]). Let D be a nonempty, closed and convex subset
of a uniformly smooth real Banach space, M . Let Ui : D →M, i = 1, 2, . . . be a family
of ηi-inversely strongly accretive maps with η := infi≥1 ηi > 0 and ∩∞i=1U

−1
i (0) 6= ∅.

Define U :=
∞∑
i=1

biUi : D →M , where {bi}∞i=1 is a positive sequence such that
∞∑
i=1

bi = 1.

Setting Ti := (I − Ui) : D → D. Then, the following conclusions hold:

(a.) U is a η-inversely strongly accretive operators,

(b.) Ti is a strictly pseudocontractive for each i = 1, 2, . . . .

(c.) U−1(0) = ∩∞i=1U
−1
i (0) = ∩∞i=1F (Ti).

Lemma 2.5 (Xu and Roach, [43]). Let D be a uniformly smooth real Banach space.
Then, there exist constants D and C such that for all x, y ∈ D, j(x) ∈ J(x), the
following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+Dmax
{
‖x‖+ ‖y‖, 1

2
C
}
ρE(‖y‖),

where ρE denotes the modulus of smoothness of D.

Lemma 2.6 (see e.g., Chidume, [14]). Let D be a normed real linear space. Then, the
following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉, ∀ x, y ∈ D, ∀ j(x+ y) ∈ J(x+ y).
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Lemma 2.7 (Reich, [44]). Let D be a uniformly smooth real Banach space, and let
A : D ⇒ D be m-accretive. Let Jtx := (I + tA)−1x, t > 0 be the resolvent of A, and
assume that A−1(0) is not empty. Then, for each x ∈ D, lim

t→∞
Jtx exists and belongs to

A−1(0).

Lemma 2.8 (Kamimura and Takahashi, [45]). Let {un} and {vn} be sequences in a
uniformly convex and uniformly smooth real Banach space such that either {un} or {vn}
is bounded. If lim

n→∞
φ(un, vn) = 0, then, lim

n→∞
||un − vn|| = 0.

Remark 2.9. It is easy to see that the converse of Lemma 2.8 is also true whenever
{un} and {vn} are bounded.

3. Main Result

The following conditions are required in Lemmas 3.1, 3.2 and 3.3 and Theorem 3.4:

(i) lim
r→∞

δr = 0, {δr} is decreasing; (ii)
∑
λrδr =∞; (iii) ξr ≤ λ4rδrγ0;

(iv) lim
r→∞

δr−1−δr
δr

λrδr
= 0, (v)

ρM (λrK)

λrK
≤ δ2rγ0,

for some constants γ0 > 0, K > 0 and {δr}, {λr} and {ξr} are sequences in (0, 1).

First, we prove the following important lemmas of this section.

Lemma 3.1. Let D be a nonempty, closed and convex subset of a uniformly smooth real
Banach space, M . Let U : D →M be a η-inverse strongly accretive map with U−1(0) 6= ∅.
Let {vr} be a sequence in D generated by

v0, v1 ∈ D,
yr = vr + ξr(vr−1 − vr),
vr+1 = (1− λrδr)yr − λr(Uyr − δrv1), ∀ r ≥ 1.

(3.1)

Then, the sequence {vr} is bounded.

Proof. Let v∗ ∈ U−1(0) and v1 ∈ D. Then, there exists α > 0 (sufficiently large) such

that v1 ∈ B(v∗, α2 ) := {v ∈ D : ‖v − v∗‖ ≤ α
2 }.

Define B := B(v∗, α) = {v ∈ D : ||v∗−v|| ≤ α}. It is sufficient to show that {vr} ∈ B, for
each r. We proceed by induction. By construction, we have that v1 ∈ B. Assume that
vr ∈ B, up to some r ≥ 1. Then, we have that ||vr|| ≤ ||v∗||+ α. Now, we show that
vr+1 ∈ B, i.e., ||vr+1− v∗|| ≤ α. First, we observe that U is a bounded map. Now, define
the following positive constants:

K0 : = sup{‖Uy + δ(y − v1)‖ : y ∈ B, δ ∈ (0, 1)}+ 1,

K1 : = sup
{
Dmax

{
‖y − v∗‖+ λK0,

C

2

}
: y ∈ B, λ ∈ (0, 1)

}
,

K : = max{K0,K1}, γ0 := min
{

1,
α2

4(K2 + 1)

}
,
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where C and D are the constants appearing in Lemma 2.5. Using Lemmas 2.5, 2.6 and
the recursion formula (3.1), we compute as follows:

||vr+1 − v∗||2 = ||(1− λrδr)yr − λr(Uyr − δrv1)− v∗||2

≤ ||yr − v∗||2 − 2λr〈 Uyr + δr(yr − v1), j(yr − v∗)〉

+ Dmax

{
||yr − v∗||+ λr||Uyr + δr(yr − v1)||, C

2

}
×

ρM (λr||Uyr + δr(yr − v1)||) . (3.2)

Applying the definitions of U , γ0 and Lemma 2.6, it follows from inequality (3.2) that:

||vr+1 − v∗||2 ≤ ||yr − v∗||2 − 2λr〈Uyr − Uv∗, j(yr − v∗)〉 − 2λrδr〈yr − v1, j(yr − v∗)〉
+ KρM (λrK)

≤ ||yr − v∗||2 − λrη||Uyr − Uv∗||2 − 2λrδr||yr − v∗||2 + λrδr||v∗ − v1||2

+ λrδr||yr − v∗||2 +KρM (λrK)

≤ (1− λrδr)||yr − v∗||2 + λrδr||v∗ − v1||2 + KρM (λrK)

≤ (1− λrδr)||vr − v∗||2 + 2Kξr + λrδr||v∗ − v1||2 +
KρM (λrK)

λrK
λrK

≤ (1− λrδr)α2 + 2Kλrδrγ0 +
λrδrα

2

4
+ K2λrδrγ0

= α2. (3.3)

Therefore, {vr} is bounded. Consequently, {yr} is bounded. The proof of this lemma
is complete.

Lemma 3.2. Let D be a nonempty, closed and convex subset of a uniformly smooth real
Banach space, M . Let U : D →M be a η-inverse strongly accretive map with U−1(0) 6= ∅.
Let {vr} be a sequence in D generated by

v0, v1 ∈ D,
yr = vr + ξr(vr−1 − vr),
vr+1 = (1− λrδr)yr − λr(Uyr − δrv1), ∀ r ≥ 1.

(3.4)

Then, the sequence {vr} converges strongly to v∗ ∈ U−1(0).

Proof. Set pr := Jtrv1, where v1 is an arbitrary fixed vector in D ⊂M, tr = δ−1r , ∀ r ≥ 1
in Lemma 2.7 and observe that with tr, the sequence {pr} satisfies the following conditions:

δr(pr − v1) +Apr = 0, ∀ r ≥ 1, and pr → p∗ ∈ A−10, (3.5)

where A in this case is single-valued. Using Lemma 2.5, we have that:

||vr+1 − pr||2 = ||(1− λrδr)yr − λr(Uyr − δrv1)− pr||2 (3.6)

≤ ||yr − pr||2 − 2λr〈Uyr + δr(yr − v1), j(yr − pr)〉+KρM (λrK) .

Using the definition of U, we have that:

〈Uyr + δr(yr − v1), j(yr − pr)〉 = 〈Uyr − Upr, j(yr − pr)〉+ δr||yr − pr||2

+ 〈Upr + δr(pr − v1), j(yr − pr)〉

≥ η||Uyr − Upr||2 +
δr
2
||yr − pr||2. (3.7)
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Substituting inequality (3.7) in inequality (3.6), we have that:

||vr+1−pr||2 ≤ (1− λrδr) ||yr−pr||2 −2λrη||Uyr−Upr||2 + KρM (λrK) . (3.8)

Using the definition of U and equation (3.5), we have that:

||pr−1 − pr|| ≤ ||pr−1 − pr +
1

δr
(Upr−1 − Upr)||

≤
∣∣∣∣δr−1 − δrδr

∣∣∣∣ (||yr−1||+ ||v1||) , (3.9)

By Lemma 2.6, we have that:

||yr − pr||2 ≤ ||yr − pr−1||2 + 〈pr−1 − pr, j(yr − pr)〉
≤ ||yr − pr−1||2 + ||pr−1 − pr|| ||yr − pr||. (3.10)

From inequalities (3.8), (3.9) and (3.10), and also, by Lemma 2.6 and for some constant
C∗ > 0, we have that:

||vr+1 − pr||2 ≤ (1− λrδr)||yr − pr−1||2 + C∗
∣∣∣∣δr−1 − δrδr

∣∣∣∣+ KρM (λrK)

= (1− λrδr)||vr − pr−1||2 + 2Kξr + (λrδr)θr + K
ρM (λrK)

λrK
λrK,

≤ (1− λrδr)||vr − pr−1||2 + λrδrK (θr + δrγ0) +Kλ4rδrγ0,

where σr := λrδr, θr :=

∣∣∣ δr−1−δr
δr

∣∣∣
λrδr

, βr := ||vr−pr−1||2, br := K (θr + δrγ0) , cr := λ4rδr.

By Lemma 2.8, lim
r→∞
‖vr − pr−1‖ = 0. Since lim

r→∞
pr = p∗ ∈ A−1(0), then, {vr} converges

to p∗ ∈ U−1(0). This completes the proof.

Lemma 3.3. Let D be a nonempty, closed and convex subset of a uniformly smooth real
Banach space, M . Let {Ui}∞i=1: D →M be a family of ηi-inverse strongly accretive maps

η := infi≥1 ηi > 0 with ∩∞i=1U
−1(0) 6= ∅. Let {bi} a positive sequence such that

∞∑
i=1

bi = 1

and {vr} be a sequence in D generated by
v0, v1 ∈ D,
yr = vr + ξr(vr−1 − vr),

vr+1 = (1− λrδr)yr − λr
( ∞∑
i=1

biUiyr − δrv1
)
, ∀ r ≥ 1.

(3.11)

Then, the sequence {vr} converges strongly to v∗ ∈ ∩∞i=1U
−1(0).

Proof. Applying Lemma 2.4, we have that U =
∞∑
i=1

biUi is an ηi-inverse strongly accretive,

for each i = 1, 2, . . . and U−1(0) = ∩∞i=1U
−1(0). Hence, by Lemma 3.2, the conclusion of

Theorem 3.3 is immediate.

Now, we prove our main theorem.
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Theorem 3.4. Let D be a nonempty, closed and convex subset of a uniformly smooth
real Banach space, M . Let {Ti}∞i=1: D → D be a family of ηi-strictly pseudocontractive
maps such that η := infi≥1 ηi > 0 with ∩∞i=1U

−1(0) 6= ∅. Let {bi} be a positive sequence

such that
∞∑
i=1

bi = 1 and {vr} be a sequence in D generated by
v0, v1 ∈ D,
yr = vr + ξr(vr−1 − vr),

vr+1 = (1− λrδr)yr − λr
( ∞∑
i=1

bi(I − Ti)yr − δrv1
)
, ∀ r ≥ 1.

(3.12)

Then, the sequence {vr} converges strongly to v∗ ∈ ∩∞i=1F (Ti).

Proof. Setting Ui := I − Ti. By Lemma 2.4, Ui is an ηi-inverse strongly accretive map,
for each i = 1, . . . , and ∩∞i=1U

−1
i (0) = ∩∞i=1F (Ti). Thus, by Lemma 3.3, the proof of

Theorem 3.4 is immediate.

Remark 3.5. Theorem 3.4 is applicable in Lp, lp or W
m
p (Ω) spaces, 1 < p <∞, where

Wm
p (Ω) denote the usual Sobolev space, since these spaces are uniformly smooth. The

analytical representations of the duality map in the spaces indicated where p−1 + q−1 = 1,
are known precisely (see e.g., Theorem 3.1 of [1]; page 36).

4. Numerical Illustration

In this section, we present some numerical examples to show the efficiency of our
algorithms, Algorithms (3.11) and (3.12) over Algorithms (1.5) and (1.6). Numerical
experiments are carried out on Matlab R2020a version. All programs are run on MacBook
Pro with 2.6 GHz Dual-Core Intel Core i5 and 8GB 1600 MHz DDR3.

Example 4.1. Let M = Rn and U, Ui : Rn → Rn, i = 1, 2, . . . be defined by Uiv = 2v
and Uv =

∑∞
i=1 σiUiv = 2v, for each v ∈ Rn, where bi = 1

2i , a sequence in (0, 1).

Clearly, U is 1
2 -inverse strongly monotone and T := I − U is a strict pseudocontractive

map. Furthermore, v∗ = 0 is a solution of Uv = 0 which is also a fixed point of T . In

Algorithms (3.11) and (3.12), we take λr = (r + 1)
− 1

4 , δr = (r + 1)
− 1

8 and ξr = (r + 1)
− 9

8 ,

and in Algorithms (1.5) and (1.6), we take λn = (n+ 1)
− 1

4 and θn = (n+ 1)
− 1

8 , where
n = r →∞. Then, we obtain the following iterates:

Table 1. Computational results of Example 4.1

N Algorithm (1.5) Algorithm (1.6) Algorithm (3.11) Algorithm (3.12)
||vN||2 ||vN||2 ||vN||2 ||vN||2

10 7.212899× 10−1 7.212899× 10−1 1.108282× 10−3 9.427619× 10−9

100 3.104400× 10−1 5.094462× 10−1 0.000000 0.000000
1000 2.462945× 10−1 4.195862× 10−1 0.000000 0.000000
10000 1.930853× 10−1 3.397905× 10−1 0.000000 0.000000
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Table 2. Computational time of Example 4.1

N Algorithm (1.5) Algorithm (1.6) Algorithm (3.11) Algorithm (3.12)
Comp. time Comp. time Comp. time Comp. time

10 0.008321 0.005743 0.010976 0.018517
100 0.009927 0.019063 0.018546 0.037572
1000 0.016240 0.039444 0.019051 0.033098
10000 0.031547 0.042202 0.018616 0.030862

Figure 1. Figure 2.

Figure 3. Figure 4.

Example 4.2. Let M = LR
p ([0, 1]), p := 3. Let U, {Ui}∞i=1 : LR

p ([0, 1]) → LR
p ([0, 1]) be

defined by

(Uiv)(t) =
1

t+ 1
v(t) and (Uv)(t) =

∞∑
i=1

ai(Uiv)(t) =
1

t+ 1
v(t), for each t ∈ [0, 1],

where ai = 1
2i , a sequence in (0, 1). Clearly, U is inverse strongly monotone and T := I−U

is a strictly pseudocontraction map. Furthermore, v∗(0) = 0 is a solution of (Uv)(t) = 0
which is also a fixed point of T . In Algorithms (3.11), (3.12), Algorithms (1.5) and (1.6),
we take our parameters as in Example 4.1. Then, we obtain the following iterates:
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Table 3. Computational results of Example 4.2

N Algorithm (1.5) Algorithm (1.6) Algorithm (3.11) Algorithm (3.12)
||vN||2 ||vN||2 ||vN||2 ||vN||2

5 5.516058× 10−1 2.970616× 10−1 7.728360× 10−3 1.689166× 10−2

10 6.050354× 10−1 2.847487× 10−1 5.324458× 10−4 6.759885× 10−4

Table 4. Computational time of Example 4.2

N Algorithm (1.5) Algorithm (1.6) Algorithm (3.11) Algorithm (3.12)
Comp. time Comp. time Comp. time Comp. time

5 0.087513 0.094006 0.038490 0.034549
10 10.192401 68.222725 27.616478 30.107333

Figure 5. Figure 6.

Figure 7. Figure 8.

Remark 4.3. Tables 1 - 4 represent computational results and CPU time of Algorithms
(1.5), (1.6), (3.11) and (3.12). As observed in Figures 2 and 4, Algorithms (3.11) and
(3.12) before 10 iterations, converged to a zero of U and a fixed point of T in 0.010976
seconds and 0.018517 seconds, respectively, whereas, Algorithms (1.5) and (1.6) are yet
to converge to solution after 100. Similarly, in Figures 6 and 8, Algorithms (3.11) and
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(3.12) before 6 iterations, converged to a zero of U and a fixed point of T in 0.038490
seconds and 0.034549 seconds, respectively, whereas, Algorithms (1.5) and (1.6) are yet
to converge to solution after 10.

5. Conclusion

In this paper, we introduced a new inertial algorithm for approximating a common fixed
point of an infinite family of strict speudocontractions without imposing any compactness
condition on the maps or their domains. The sequence of the algorithm is proved to
converge strongly to a common fixed point of the maps in a uniformly smooth real Banach
space. This result is achieved as an application of a new inertial algorithm whose sequence
approximates a common zero of an infinite family of inverse strongly accretive maps.
Furthermore, given the test examples, the sequences of our inertial algorithms, Algorithms
(3.11) and (3.12) performed much better when compared with the sequences of Algorithms
(1.5) and (1.6) of Theorem 1.3 without inertial term. Finally, the theorems proved improve
and complement most related results in the literature.
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