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1. Introduction

Let C and Q be nonempty closed convex subsets of RN and RM , respectively, let A be
an M ×N real matrix. We consider the problem of finding

x∗ ∈ C such that Ax∗ ∈ Q.
This problem is called the split feasibility problem (SFP ) which was first studied in
Euclidean spaces by Censor and Elfving [1]. It was subsequently studied by Xu [2] in
Hilbert spaces.

Byrne [3] introduced the CQ algorithm which takes an initial point x0 arbitrarily, and
defines the iterative step as

xk+1 = PC(I − γAT (I − PQ)A)xk, (1.1)

where 0 < γ < 2/ρ(ATA) and ρ(ATA) is the spectral radius of ATA. Recently, He et al.
[4] developed a self-adaptive method for solving a variational problem. Subsequently, a
number of self-adaptive projection methods were presented to solve SFP , see also [5–13].
Preliminary numerical results show that they are generally promising. The implementa-
tion of these algorithms, however, involves the computation of the projections PC and PQ
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and therefore causes additional difficulty in the case PC and PQ do not have closed-form
expressions.

In 2004, Yang [5] introduced the relaxed CQ algorithm, by replacing PC and PQ by
the projection of half-spaces Ck and Qk which are given by

Ck = {x ∈ RN : c(xk) ≤ 〈ξk, x− xk〉}, (1.2)

where ξk ∈ ∂c(xk) and

Qk = {y ∈ RM : q(Axk) ≤ 〈ηk, y −Axk〉}, (1.3)

where ηk ∈ ∂q(Axk).

In 2012, López et al. [14] introduced a new way to select the stepsize and also practiced
this way of selecting stepsizes for variants of the CQ algorithm, including relaxed CQ
algorithm. They introduced the following:

Algorithm 1.1. Choose an initial guess x0 ∈ RN arbitrarily. Assume that xk ∈ C has
been constructed and ∇fk(xk) 6= 0. Then we calculate the (k + 1) iterate xk+1 via the
formula

xk+1 = PCk
(xk − βk(AT (I − PQk

)Axk)),∀k ≥ 0, (1.4)

where the stepsize βk is defined by

βk =
ρkfk(xk)

‖∇fk(xk)‖2
, (1.5)

and {ρk} is a sequence in (0, 4) such that lim infk→∞ ρk(4 − ρk) > 0 and fk(xk) =
1
2‖(I − PQk

)Axk‖2, k ≥ 1.

It was proved that the sequence {xk} generated by Algorithm 1.1 converges to a solu-
tion of SFP .

In 2005, Qu and Xiu [15] modified the relaxed CQ algorithm by adopting Armijo-line
searches in Euclidean spaces. Subsequently, Gibali et al. [16] extended results of Qu and
Xiu [15] to Hilbert spaces as follows:

xk+1 = PCk
(xk − βk∇fk(yk)) (1.6)

yk = PCk
(xk − βk∇fk(xk)), (1.7)

where βk = γlmk and mk is the smallest nonnegative integer, and γ > 0, l ∈ (0, 1) and
µ ∈ (0, 1) such that

βk‖∇fk(xk)−∇fk(yk)‖ ≤ µ‖xk − yk‖. (1.8)

Dang and Gao [17], using the extragradient strategy, proposed two double projection
algorithms for SFP , as follows:

For every k, define the function Fk : RN → RN as

Fk(x) := AT (I − PQk
)Ax .
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Algorithm 1.2. Step 0. Select a point x0 ∈ C arbitrarily. For any γ > 0, l ∈ (0, 1), λ >
1, tk ∈ (0, 2). Set k = 0.
Step 1. Find yk = PCk

(xk−βkFk(xk)), where βk = γmk and mk is smallest nonnegative
integer such that

〈Fk(xk), xk − yk〉 ≥ λ〈Fk(xk)− Fk(yk), xk − yk〉. (1.9)

Step 2. Compute

xk+1 = PCk
[xk − tk

〈Fk(yk), xk − yk〉
‖Fk(yk)‖2

Fk(yk)]. (1.10)

Set k = k + 1 and go to step 1.

It was shown that Algorithm 1.2 converges to a solution of SFP .
In this paper, we modify Algorithm 1.2 by replacing the stepsize that satisfies (1.9)

by a new stepsize. Moreover, we use only one projection in computation.We then prove
that the sequence generated by our algorithm converges to a solution of SFP . Numerical
experiments show that the proposed methods are more efficient than other methods in
comparison.

2. Preliminaries

In this section, we provide some basic concepts and notation. Let I denotes the identity
operator, Fix(T ) denotes the set of the fixed points of an operator T i.e.,

Fix(T ) := {x : x = Tx}.
Here Γ denotes the solution set of SFP, that is

Γ = {y ∈ C : Ay ∈ Q}. (2.1)

Definition 2.1. Let f : RN → R be convex. The subdifferential of f at x is defined as

∂f(x) = {ξ ∈ RN : f(y) ≥ f(x) + 〈ξ, y − x〉,∀ y ∈ RN}. (2.2)

Lemma 2.2 ([18, 19]). Suppose that f : RN → R is convex. Then its subdifferential are
uniformly bounded on any bounded subsets of RN.

Definition 2.3. Let T : C → H. Then T is said to be β-inverse strongly monotone(ism)
if there exists β > 0 such that for any x, y ∈ C,

β‖x− y‖2 ≤ 〈x− y, Tx− Ty〉. (2.3)

Definition 2.4. Given T : RN → RN. Then
a) T is said to be monotone if

〈Tx− Ty, x− y〉 ≥ 0,∀x, y ∈ RN,

b) T is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖,∀x, y ∈ RN,

c) T is said to be co-coercive on RN with modulus α > 0 if

〈Tx− Ty, x− y〉 ≥ α‖Tx− Ty‖2,∀x, y ∈ RN,
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d) T is said to be Lipschitz continuous on RN with constant L > 0 if

‖Tx− Ty‖ ≤ L‖x− y‖,∀x, y ∈ RN.

Definition 2.5. A function f : RN → R is said to be lower semi-continuous (lsc) at x if
xk → x implies

f(x) ≤ lim inf
k→∞

f(xk). (2.4)

We know that the orthogonal projection of x onto C is defined as

PCx := min
y∈C
‖x− y‖2, x ∈ RN. (2.5)

Lemma 2.6 ([20]). Let C be a nonempty closed convex subset of RN. Then for any
x, y ∈ RN and z ∈ C,
(i) 〈PCx− x, z − PCx〉 ≥ 0,
(ii) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉,
(iii) ‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2.

From Lemma 2.6, the operator I−PC is also firmly nonexpansive, i.e., for any x, y ∈ RN,

〈(I − PC)x− (I − PC)y, x− y〉 ≥ ‖(I − PC)x− (I − PC)y‖2. (2.6)

3. A Novel Projection Algorithm and Its Convergence

As in [5], the following conditions are supposed to be satisfied:
(H1) The set C is defined as

C = {x ∈ RN : c(x) ≤ 0},
where c : RN → R is convex and C is nonempty.
The set Q is defined as

Q = {y ∈ RM : q(y) ≤ 0},
where q : RM → R is convex and Q is nonempty.
(H2) For any x ∈ RN and y ∈ RM , a subgradient ξ ∈ ∂c(x) and a subgradient η ∈ ∂q(y)
can be calculated.

We define the following halfspaces at point xk, respectively,

Ck = {x ∈ RN : c(xk) + 〈ξk, x− xk〉 ≤ 0},
where ξk ∈ ∂c(xk), and

Qk = {y ∈ RM : q(Axk) + 〈ηk, y −Axk〉 ≤ 0},
where ηk ∈ ∂q(Axk).

Obviously, by the definition of subgradient, we know that the orthogonal projections
onto Ck and Qk may be computed directly by reason of the specific forms of Ck and Qk,
see [21].

In the following, for every k, we define the function Fk : RN → RN as

Fk(x) := AT (I − PQk
)Ax
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and

fk(x) =
1

2
‖(I − PQk

)Ax‖2, k ≥ 1.

We next define our method as follows:

Algorithm 3.1. Step 0. Select a point x0 ∈ C arbitrarily, choose parameters 0 < tk <
2, 0 < ρk < 4. Set k = 0.

Step 1. Find yk = xk − βkFk(xk), where βk =
ρkfk(xk)

‖Fk(xk)‖2
.

Step 2. Compute

xk+1 = PCk

[
yk − tk

(
〈Fk(xk)− Fk(yk), yk − xk〉

‖Fk(yk)‖2

)
Fk(yk)

]
. (3.1)

Set k = k + 1 and go to Step 1.

We are in position to prove our convergence theorem of Algorithm 3.1.

Theorem 3.2. Let {xk} be a sequence generated by Algorithm 3.1 and Γ 6= ∅. If
lim inf
k→∞

ρk(4 − ρk) > 0 and lim inf
k→∞

tk(2 − tk) > 0, then {xk} converges to a solution of

SFP .

Proof. Let z ∈ Γ and set αk = 〈Fk(xk)−Fk(yk), yk−xk〉
‖Fk(yk)‖2 . Since z ∈ Γ and C ⊂ Ck , Q ⊂ Qk,

it follows that z = PC(z) = PCk
(z) and Az = PQ(Az) = PQk

(Az). Hence z ∈ Ck and
Fk(z) = 0 for all k = 0, 1, 2, ..... From Lemma 2.6 (iii), we obtain

‖xk+1 − z‖2 = ‖PCk
(yk − tnαkFk(yk))− z‖2

≤ ‖yk − tnαkFk(yk)− z‖2 − ‖xk+1 − yk + tkαkFk(yk)‖2

= ‖yk − z‖2 + t2kα
2
k‖Fk(yk)‖2 − 2tkαk〈Fk(yk), yk − z〉

−‖xk+1 − yk + tkαkFk(yk)‖2. (3.2)

From (2.6) and Fk(z) = 0, we have

〈Fk(yk), yk − z〉 = 〈Fk(yk)− Fk(z), yk − z〉
= 〈AT (I − PQk

)Ayk −AT (I − PQk
)Az, yk − z〉

= 〈(I − PQk
)Ayk − (I − PQk

)Az,Ayk −Az〉
≥ ‖(I − PQk

)Ayk‖2

= 2fk(yk).

It also follows that

〈Fk(xk), xk − z〉 ≥ 2fk(xk). (3.3)

By (3.3), we see that

‖yk − z‖2 = ‖xk − βkFk(xk)− z‖2

= ‖xk − z‖2 + β2
k‖Fk(xk)‖2 − 2βk〈Fk(xk), xk − z〉

≤ ‖xk − z‖2 + β2
k‖Fk(xk)‖2 − 4βkfk(xk). (3.4)
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Since Fk(z) = 0 and Fk is monotone, we obtain

〈Fk(yk), yk − z〉 = 〈Fk(yk), yk − xk〉+ 〈Fk(yk), xk − z〉
= 〈Fk(yk)− Fk(xk), yk − xk〉+ 〈Fk(xk), yk − xk〉+ 〈Fk(yk), xk − z〉
≥ 〈Fk(xk), yk − xk〉+ 〈Fk(yk), xk − z〉
= 〈Fk(xk), yk − xk〉+ 〈Fk(yk), xk − yk〉+ 〈Fk(yk)− Fk(z), yk − z〉
≥ 〈Fk(xk)− Fk(yk), yk − xk〉. (3.5)

Combining (3.2)-(3.5), we obtain

‖xk+1 − z‖2 ≤ ‖xk − z‖2 + β2
k‖Fk(xk)‖2 − 4βkfk(xk) + t2kα

2
k‖Fk(yk)‖2

−2tkαk〈Fk(xk)− Fk(yk), yk − xk〉 − ‖xk+1 − yk + tkαkFk(yk)‖2

= ‖xk − z‖2 +
ρ2kf

2
k (xk)

‖Fk(xk)‖4
‖Fk(xk)‖2 − 4

ρkfk(xk)

‖Fk(yk)‖2
fk(xk)

+t2k
〈Fk(xk)− Fk(yk), yk − xk〉2

‖Fk(yk)‖4
‖Fk(yk)‖2

−2tk
〈Fk(xk)− Fk(yk), yk − xk〉2

‖Fk(yk)‖2
− ‖xk+1 − yk + tkαkFk(yk)‖2

= ‖xk − z‖2 − ρk(4− ρk)
f2k (xk)

‖Fk(xk)‖2

−tk(2− tk)
〈Fk(xk)− Fk(yk), yk − xk〉2

‖Fk(yk)‖2

−‖xk+1 − yk + tkαkFk(yk)‖2. (3.6)

Since 0 < ρk < 4 and 0 < tk < 2 , it implies that

‖xk+1 − z‖ ≤ ‖xk − z‖. (3.7)

Thus lim
k→∞

‖xk − z‖ exists and {xk} is bounded. Again, from (3.6), it follows that

lim inf
k→∞

ρk(4− ρk)
f2k (xk)

‖Fk(xk)‖2
= 0, (3.8)

and

lim inf
k→∞

tk(2− tk)
〈Fk(xk)− Fk(yk), yk − xk〉2

‖Fk(yk)‖2
= 0 (3.9)

which implies by our assumptions that

lim
k→∞

f2k (xk)

‖Fk(xk)‖2
= 0 (3.10)

and

lim
k→∞

〈Fk(xk)− Fk(yk), yk − xk〉2

‖Fk(yk)‖2
= 0 . (3.11)
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On the other hand, we can check that {‖Fk(xk)‖} is bounded. So we get lim
k→∞

fk(xk) =

0. This means lim
k→∞

‖(I − PQk
)Axk‖ = 0. We note that

βk‖Fk(xk)‖ =
ρkfk(xk)

‖Fk(xk)‖2
‖Fk(xk)‖ → 0, as k →∞. (3.12)

Furthermore, by (3.6), we see that

lim
k→∞

‖xk+1 − yk + tkαkFk(yk)‖ = 0. (3.13)

So, we get

tkαk‖Fk(yk)‖ = tk
〈Fk(xk)− Fk(yk), yk − xk〉

‖Fk(yk)‖2
‖Fk(yk)‖ → 0, as k →∞. (3.14)

By (3.13) and (3.14), we obtain lim
k→∞

‖xk+1 − yk‖ = 0. On the other hand, from (3.12)

and yk = xk − βkFk(xk), we get lim
k→∞

‖yk − xk‖ = 0. Hence lim
k→∞

‖xk+1 − xk‖ = 0. Since

{xk} is bounded, there exists a subsequence {xki} of {xk} such that xki → x̄ ∈ RN.
We will show that x̄ ∈ Γ. Since xki+1 ∈ Cki

, by the definition of Cki
, we have

c(xki
) + 〈ξki

, xki+1 − xki
〉 ≤ 0,∀i = 1, 2, ....., (3.15)

where ξki
∈ ∂c(xki

). From (3.15), it follows that

c(xki
) ≤ ‖ξki

‖‖xki+1 − xki
‖. (3.16)

By the lsc of c, xki → x̄, the boundedness of ∂c and (3.16), we conclude that

c(x̄) ≤ lim inf
i→∞

c(xki) ≤ 0. (3.17)

Thus x̄ ∈ C.
Next, we show that Ax̄ ∈ Q. Since PQki

(Axki
) ∈ Qki

, we have

q(Axki
) + 〈ηki

, PQki
(Axki

)−Axki
〉 ≤ 0,∀i = 1, 2, ....., (3.18)

where ηki
∈ ∂q(Axki

). Then we get

q(Axki
) ≤ ‖ηki

‖‖PQki
(Axki

)−Axki
‖. (3.19)

By the lsc of q, Axki
→ Ax̄, the boundedness of ∂q and (3.19), we obtain

q(Ax̄) ≤ lim inf
i→∞

q(Axki
) ≤ 0. (3.20)

Thus Ax̄ ∈ Q. Hence x̄ is a solution of the SFP . This completes the proof.

4. Numerical Experiments

In this section, we will test two numerical examples to show that our proposed method
converges faster than that of Dang and Gao [17].

Example 4.1. Consider the following LASSO problem [22]:
min

{
1
2‖Ax− b‖

2 : x ∈ R5, ‖x‖1 ≤ 1
}

,
where
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A =


1 −3 2 1 0
5 −6 1 −1 1
4 2 3 0 −2
0 2 −2 1 9
0 −1 3 0 1

 and b = (6, 12, 9, 0, 1).

In Algorithm 1.2 and Algorithm 3.1, we take tk = 1 and ρk = 0.14 .
We define C = {x ∈ R5 : ‖x‖1 ≤ 1} and Q = {b}. Since the projection onto the

closed convex C does not have a closed form solution, we will make use of the subgradient
projection. Define a convex function c(x) = ‖x‖1 − 1 and denote the level set Ck by:

Ck = {x ∈ R5 : c(xk) + 〈ξk, x− xk〉 ≤ 0}, (4.1)

where ξk ∈ ∂c(xk). Then the orthogonal projection onto Ck can be calculated by the
following:

PCk
(x) =

x, if c(xk) + 〈ξk, x− xk〉 ≤ 0,

x− c(xk) + 〈ξk, x− xk〉
‖ξk‖2

ξk, otherwise.
(4.2)

It is worth noting that the subdifferential ∂c at xk is

∂c(xk) =


1, if xk > 0,

[−1, 1], if xk = 0,

−1, if xk < 0.

(4.3)

The iteration process is stopped when Ek = ‖xk+1 − xk‖2 < 10−4. We denote CPU
and Iter by CPU time and number of iteration, respectively.

TABLE 1. The numerical results of Example 4.1

Initial point Method CPU Iter

Case1 x0 = (−1, 0, 2, 0,−1) Algorithm 1.2 0.0198 60
Algorithm 3.1 0.0016 50

Case2 x0 = (−2, 1, 2, 1, 9) Algorithm 1.2 0.0091 71
Algorithm 3.1 0.00003 63

Case3 x0 = (−2, 1, 4, 0, 2) Algorithm 1.2 0.0116 69
Algorithm 3.1 0.00004 58

From Table 1, we see that our proposed method which is defined by Algorithm 3.1
converges faster than Algorithm 1.2 of Dang and gao [17].

The convergence behavior of the error Ek for each cases is shown in Figures 1-3,
respectively.
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Figure 1. Error plotting Ek for Case 1
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Figure 3. Error plotting Ek for Case 3
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Example 4.2. In Algorithm 1.2 and Algorithm 3.1, we take tk = 1 and ρk = 0.14.

The real M ×N matrix A, b ∈ RM and x0 ∈ RN are chosen randomly.

TABLE 2. The numerical results of Example 4.2

Method CPU Iter

Case1 M = 100, N = 100 Algorithm 1.2 0.0426 95
Algorithm 3.1 0.0076 60

Case2 M = 200, N = 200 Algorithm 1.2 0.043 107
Algorithm 3.1 0.0026 61

Case3 M = 300, N = 300 Algorithm 1.2 0.0771 100
Algorithm 3.1 0.0064 64

From Table 2, we see that our proposed method which is defined by Algorithm 3.1
converges faster than Algorithm 1.2 of Dang and gao [17].

The convergence behavior of the error Ek for each cases is shown in Figures 4-6,
respectively.
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Figure 4. Error plotting Ek for Case 1.

Next, we provide some numerical experiments to the sparse signal recovery in com-
pressed sensing. In signal processing, compressed sensing can be modeled as the following
under determinated linear equation system:

y = Ax+ ε, (4.4)

where x ∈ RN is a vector with m nonzero components to be recovered, y ∈ RM is the
observed or measured data with noisy ε, and A : RN → RM (M < N) is a bounded
linear observation operator. A is sparse, and the range of it is not closed in most inverse
problems; thus, A is often ill-condition and the problem is also ill-posed. When x is a
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Figure 6. Error plotting Ek for Case 3.

sparse expansion, finding the solutions of (4.4) can be seen as solving the LASSO problem
which is the following:

min
x∈RN

1

2
‖y −Ax‖2 subjectto ‖x‖1 ≤ t, (4.5)

where t > 0 is a given constant. In particular, if C = {x ∈ RN : ‖x‖1 ≤ t} and Q = {y},
then the LASSO problem can be considered as the SFP (1). From this point of view, we
can apply the CQ algorithm to solve (4.5).

Example 4.3. In our experiment, we test two cases as follows:
Case 1 : N = 512,M = 256 and m = 20.
Case 2 : N = 1024,M = 512 and m = 30.

In what follows, let γ = 0.5, l = 0.8, λ = 1.1 and tk = 0.5 in that of Algorithm 1.2 and
let with tk = 0.5 and ρk = 0.5 in Algorithm 3.1.
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The sparse vector x ∈ RN is generated from uniform distribution in the interval [−2, 2]
with m nonzero elements. The matrix A ∈ RM×N is generated from a normal distribution
with mean zero and variance one. The observation y is generated by white Gaussian noise
with signal-to-noise ratio SNR=40.The process is started with t = m and initial point
x1 = 0.

We next give some numerical results by using the relaxed CQ algorithms defined by
Algorithm 1.2 and Algorithm 3.1.

The restoration accuracy is measured by the mean squared error as follows:

MSE =
1

N
‖xk − x∗‖2 < 10−5, (4.6)

where xk is the recovered signal signal and x∗ is the original signal.

TABLE 3. The numerical results of Example 4.3

Method CPU

Case1 N = 512,M = 256,m = 20 Algorithm 1.2 2.7195

Algorithm 3.1 0.0069

Case2 N = 1024,M = 512,m = 30 Algorithm 1.2 7.0966
Algorithm 3.1 0.0741

Original signal ( N=512, M=256, 20 spikes )

50 100 150 200 250

-1

0

1

 measured values with SNR=40

50 100 150 200 250 300 350 400 450 500

-10

0

10

Recovered signal by Algorithm 3.1 ( 68 iterations, CPU=0.0069 )

50 100 150 200 250

-1

0

1

Recovered signal by Algorithm 1.2 ( 14 iteration, CPU=2.7195 )

50 100 150 200 250

-1

0

1

Figure 7. From top to bottom: original signal, observation data, recov-
ered signal by Algorithm 3.1, recovered signal by Algorithm 1.2 in Case
1, respectively.

5. Conclusions

We have proposed a new spliting algorithm for solving the split feasibility problem by
using the self-adaptive technique. The convergence theorem was proved under suitable
conditions. The numerical experiments were performed to show the efficiency of our
algorithms. The reports revealed that our method outperforms other methods in CPU
time and number of iterations.
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Original signal ( N=1024, M=512, 30 spikes )
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Figure 8. From top to bottom: original signal, observation data, recov-
ered signal by Algorithm 3.1, recovered signal by Algorithm 1.2 in Case
2, respectively.
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Figure 9. MSE versus number of iterations in Case 1.
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Figure 10. MSE versus number of iterations in Case 2.

Acknowledgments

The authors would like to thank University of Phayao for supporting.



1372 Thai J. Math. Vol. 18 (2020) /T. Saelii et al.

References

[1] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a
product space, Numerical Algorithms 8 (1994) 221–239.

[2] H. Xu, A variate Krasnosel´ ski-Mann algorithm and the multiple-set split feasibility
problem, Inverse Problems 22 (2006) 2021–2034.

[3] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility prob-
lem, Inverse Problems 18 (2002) 441–453.

[4] B. He, Inexact implicit methods for monotone general variational inequalities, Math-
ematical Programming 35 (1999) 199–217.

[5] Q. Yang, The relaxed CQ algorithm solving the split feasibility problem, Inverse
Problems 20 (2004) 1261–1266.

[6] Y.N. Yang, Q. Yang, S. Zhang, Modified alternating direction methods for the mod-
ified multiple-sets split feasibility problems, Journal of Optimization Theory and
Applications 163 (2014) 130–147.

[7] W.X. Zhang, D. Han, Z.B. Li, A self-adaptive projection method for solving the
multiplesets split feasibility problem, Inverse Problem, 25 (2009) 115001, 16 pages.

[8] J.L. Zhao, Q. Yang, Self-adaptive projection methods for the multiple-sets split fea-
sibility problem, Inverse Problem, 27 (2011) 035009 13 pages.

[9] J. Zhao, Q. Yang, Several solution methods for the split feasibility problem, Inverse
Problems 21 (2005) 1791–1799.

[10] S. Kesornprom, N. Pholasa, P. Cholamjiak, On the convergence analysis of the
gradient-CQ algorithms for the split feasibility problem, Numer. Algor. 84 (2019)
997–1017.

[11] S. Suantai, N. Pholasa, P. Cholamjiak, The modified inertial relaxed CQ algorithm
for solving the split feasibility problems, J. Indust. Manag. Optim. 14 (2018) 1595–
1615.

[12] S. Suantai, U. Witthayarat, Y. Shehu, P. Cholamjiak, Iterative methods for the split
feasibility problem and the fixed point problem in Banach spaces, Optimization 68
(2019) 955–980.

[13] S. Suantai, Y. Shehu, P. Cholamjiak, O.S. Iyiola, Strong convergence of a self-
adaptive method for the split feasibility problem in Banach spaces, J. Fixed Point
Theory Appl. (2018) https://doi.org/10.1007/s11784-018-0549-y.
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