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Abstract In this paper, we introduce a new faster iteration scheme and establish convergence results for

approximation of fixed points of nonexpansive mappings in the framework of Banach spaces. Further, we

show that our iteration process is faster than a number of existing iteration processes. We support our

analytic proof by numerical examples in which we approximate the fixed point by a computer using Matlab

program. Furthermore, we apply our results to find solutions of constrained minimization problems, split

feasibility problems and image deblurring problems. Our results are the extension, improvement and

generalization of many known results in the literature of iterations in fixed point theory.
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1. Introduction

Once the existence of a fixed point of some mapping is established, then to find the
value of that fixed point is not an easy task, that is why we use iterative processes
for computing them. By time, many iterative processes have been developed and it is
impossible to cover them all.
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Numerical reckoning fixed points for nonlinear operators is nowadays an active research
direction of nonlinear analysis. This because they found applications to variational in-
equalities, equilibrium problems, computer simulation, image encoding and much more.
Classical iterations such as Picard, Mann and Ishikawa represent pioneers research work
in this regard; please, see Mann [1] and Ishikawa [2]. Nowadays, this research direction
is developed by Agarwal et al. [3] and Noor [4]. Speed of convergence play important
role for an iteration process to be preferred on another iteration process. In [5], Rhoades
mentioned that the Mann iteration process for decreasing function converges faster than
the Ishikawa iteration process and for increasing function the Ishikawa iteration process
is better than the Mann iteration process. Also the Mann iteration process appears to be
independent of the initial guess (see also [6]). In [3], the authors claimed that Agarwal
iteration process converge at a rate same as that of the Picard iteration process and faster
than the Mann iteration process for contraction mappings.

Let E be a uniformly convex Banach space, C be a nonempty closed convex subset of
E. Throughout this paper, N denotes the set of all positive integers and F (T ) := {x :
Tx = x}. A mapping T : C → C is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for
all x, y ∈ C and for all n ∈ N. For arbitrary chosen x1 ∈ C, construct a sequence {xn},
where xn is defined iteratively for each positive integer n ≥ 1 by:

xn+1 = Txn, (1)

xn+1 = (1− αn)xn + αnTxn, (2){
xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn.
(3)

The sequences {xn} generated by (1), (2) and (3) are called Picard, Mann [1] and
Ishikawa [7] iteration sequences respectively.

In 1955, Krasnoselskii [8] showed that the Picard iteration scheme (1) for a nonexpan-
sive mapping T may fail to converge to fixed point of T even if T has a unique fixed point,
but the Mann sequence (2) for αn = 1

2 ,∀n ≥ 1 converges strongly to the fixed point of T .
Mann and Ishikawa iteration methods have been studied by several authors for ap-

proximation fixed points of nonexpansive mappings, see, e.g., [2, 9–19].
In 2000, Noor [4] defined the following iterative scheme, by x1 ∈ C and

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTzn,

zn = (1− γn)xn + γnTxn

(4)

for all n ≥ 1, where {αn}, {βn} and {γn} are sequences in (0,1).
Recently, Agarwal et al. [3] introduced the following iteration process. For arbitrary

chosen x1 ∈ C construct a sequence {xn} by{
xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)xn + βnTxn, n ∈ N,
(5)

where {αn} and {βn} are in (0,1). They showed that this process converges at a rate that
is the same as that of the Picard iteration (1) and faster than the Mann iteration (2) for
contractions mapping.
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Motivated by the previous ones, we introduce a new faster iteration process for nu-
merical reckoning fixed points of nonexpansive mappings, where the sequence {xn} is
generated iteratively by x1 ∈ C and

xn+1 = (1− αn)Txn + αnTyn,

yn = (1− βn)Txn + βnTzn,

zn = (1− γn)xn + γnTxn,

(6)

where {αn}, {βn} and {γn} are real sequences in (0,1).
The purpose of this paper is to prove convergence results for nonexpansive mappings

using the iteration (6). We also prove that the iteration (6) converges faster than Picard,
Mann, Ishikawa, Noor and Agarwal et al. iteration processes for contractive mappings in
the sense of Berinde [20]. We also present numerical examples to compare the convergence
of (6) with Picard, Mann, Ishikawa, Noor and Agarwal et al. iterations. Moreover, we
apply our results to find solutions of constrained minimization problems, split feasibility
problems and image deblurring problems.

2. Preliminaries

Let E be a Banach space and SE = {x ∈ E : ‖x‖ = 1} unit sphere on E. For all
λ ∈ (0, 1), and x, y ∈ SE with x 6= y, if ‖(1 − λ)x + λy‖ < 1, then E is called strictly
convex. If E is a strictly convex Banach space and ‖x‖ = ‖y‖ = ‖αx + (1 − α)y‖ for
x, y ∈ E and α ∈ (0, 1), then x = y.

The space E is said to be smooth if

lim
t→0

‖x+ ty‖ − ‖x‖
t

(7)

exists for each x and y in SE . In this case, the norm of E is called Gateaux differentiable.
For all y ∈ SE , if the limit (7) is attained uniformly for x ∈ SE , then the norm is said to
be uniformly Gateaux differentiable or Frechet differentiable.

We call the space E satisfies the Opial’s condition [21] if for any sequence {xn} in E,
xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y 6= x.
A mapping T : C → E is demiclosed at y ∈ E if for each sequence {xn} in C and each

x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and Tx = y.
The following definitions about the rate of convergence are due to Berinde [20].

Definition 2.1. Let {an} and {bn} be two sequences of real numbers converging to a

and b respectively. If limn→∞
|an−a|
|bn−b| = 0, then {an} converges faster than {bn}.

Definition 2.2. Suppose that for two fixed-point iteration processes {xn} and {un},
both converging to the same fixed point p, the error estimates

‖xn − p‖ ≤ an for all n ≥ 1,

‖un − p‖ ≤ bn for all n ≥ 1

are available, where {an} and {bn} are two sequences of positive numbers converging to
zero. If {an} converges faster than {bn}, then {xn} converges faster than {un} to p.
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We state the following lemmas to be used later on.

Lemma 2.3 ([22]). Let C be a nonempty closed convex subset of a uniformly convex
Banach space E, and T a nonexpansive mapping on C. Then, I − T is demiclosed at
zero.

Lemma 2.4 ([23]). Suppose that E is a uniformly convex Banach space and 0 < p ≤
tn ≤ q < 1 for all n ∈ N. Let {xn} and {yn} be two sequences of E such that
lim supn→∞ ‖xn‖ ≤ r, lim supn→∞ ‖yn‖ ≤ r and lim supn→∞ ‖tnxn + (1 − tn)yn‖ = r
hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.5 ([3]). Let E be a reflexive Banach space satisfying the Opial’s condition, C
a nonempty convex subset of E, and T : C → X an operator such that I − T demiclosed
at zero and F (T ) 6= ∅. Let {xn} be a sequence in C such that limn→∞ ‖xn − Txn‖ = 0
and limn→∞ ‖xn−p‖ exists for all p ∈ F (T ). Then {xn} converges weakly to a fixed point
of T .

3. Rate of Convergence

In this section, we show that the iteration process (6) converges faster than the iteration
of Picard (1). To support our understanding using MATLAB software, we provide two
numerical examples.

Theorem 3.1. Let C be a nonempty closed convex subset of a norm space E. Let T be
a contraction with a contraction factor k ∈ (0, 1) and fixed point p. Let {un} be defined
by the iteration process (1) and {xn} by (6), where {αn}, {βn} and {γn} are in [ε, 1− ε]
for all n ∈ N and for some ε in (0, 1). Then {xn} converges faster than {un}. That is,
our process (6) converges faster than (1).

Proof. Using (6), we have

‖zn − p‖ = ‖(1− γn)xn + γnTxn − p‖
= ‖(1− γn)(xn − p) + γn(Txn − p)‖
≤ (1− γn)‖xn − p‖+ γn‖Txn − p‖
≤ (1− γn)‖xn − p‖+ kγn‖xn − p‖
= (1− γn + kγn)‖xn − p‖
= 1− (γn − kγn)‖xn − p‖
= (1− (1− k)γn)‖xn − p‖,

and so

‖yn − p‖ = ‖(1− βn)Txn + βnTzn − p‖
= ‖(1− βn)(Txn − p) + βn(Tzn − p)‖
≤ (1− βn)‖Txn − p‖+ βn‖Tzn − p‖
≤ k(1− βn)‖xn − p‖+ kβn‖zn − p‖
= k(1− βn)‖xn − p‖+ kβn((1− (1− k)γn)‖xn − p‖)
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= k(1− βn)‖xn − p‖+ (kβn − (1− k)kβnγn)‖xn − p‖
= k((1− βn) + βn − (1− k)βnγn)‖xn − p‖
= k(1− (1− k)βnγn)‖xn − p‖.

This implies that

‖xn+1 − p‖ = ‖(1− αn)Txn + αnTyn − p‖
= ‖(1− αn)(Txn − p) + αn(Tyn − p)‖
≤ (1− αn)‖Txn − p‖+ αn‖Tyn − p‖
≤ k(1− αn)‖xn − p‖+ kαn‖yn − p‖
= k(1− αn)‖xn − p‖+ kαn(k(1− (1− k)βnγn)‖xn − p‖)
= k(1− αn)‖xn − p‖+ k2αn(1− (1− k)βnγn)‖xn − p‖
= k(1− αn) + k2αn(1− (1− k))βnγn‖xn − p]‖
= k((1− αn) + kαn(1− (1− k)βnγn))‖xn − p‖
= k((1− αn) + k(αn − (1− k)αnβnγn))‖xn − p‖
< k((1− αn) + (αn − (1− k)αnβnγn))‖xn − p‖
= k(1− (1− k)αnβnγn)‖xn − p‖.

Repetition of above processes gives the following inequalities

‖xn+1 − p‖ ≤ k(1− (1− k)αnβnγn)‖xn − p‖,
‖xn − p‖ ≤ k(1− (1− k)αn−1βn−1γn−1)‖xn−1 − p‖,
‖xn−1 − p‖ ≤ k(1− (1− k)αn−2βn−2γn−2)‖xn−2 − p‖,

...

‖x2 − p‖ ≤ k(1− (1− k)α1β1γ1)‖x1 − p‖,
‖x1 − p‖ ≤ k(1− (1− k)α0β0γ0)‖x0 − p‖.

From above inequalities, we derive

‖xn+1 − p‖ ≤ ‖x0 − p‖kn+1
n∏
j=0

(1− (1− k)αjβjγj).

It follows that

‖xn+1 − p‖ ≤ ‖x0 − p‖kn+1(1− (1− k)αβγ)n+1

for all n ∈ N and for some α, β, γ > 0 such that α ≤ αn < 1, β ≤ βn < 1 and γ ≤ γn < 1.
By the definition of the Picard iteration process, we have

‖un+1 − p‖ ≤ k‖un − p‖

for all n ∈ N. Note that ‖un+1 − p‖ ≤ ‖u0 − p‖kn+1.
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Let
an = kn+1‖u0 − p‖

and

bn = kn+1(1− (1− k)αβγ)n+1‖x0 − p‖.

Then

bn
an

=
kn+1(1− (1− k)αβγ)n+1‖x0 − p‖

kn+1‖u0 − p‖

=
(1− (1− k)αβγ)n+1‖x0 − p‖

‖u0 − p‖
.

Define θn = (1− (1− k)αβγ)n+1. Therefore, we have

lim
n→∞

θn+1

θn
=

(1− (1− k)αβγ)n+2

(1− (1− k)αβγ)n+1

= 1− (1− k)αβγ

< 1.

It thus follows from well-known ratio test that
∑∞
n=0 θn <∞.Hence, we have limn→∞ θn =

0 which implies that

lim
n→∞

bn
an

= 0.

Consequently {xn} converges faster than {un}.

Now, we present an example which shows that our iteration process (6) converges at a
rate faster than Agarwal et al. iteration process (5), Mann iteration process (2), Ishikawa
iteration process (3), Noor iteration process (4) and Picard iteration process (1).

Example 3.2. Let E = R and C = [1, 50]. Let T : C → C be a mapping, which is
defined by

T (x) =
√
x2 − 8x+ 40

for all x ∈ C. Choose αn = 0.85, βn = 0.65, γn = 0.45, with the initial value x1 = 40.
The corresponding our iteration process, Agarwal et al. iteration process, Noor iteration
process, Ishikawa iteration process, Mann iteration process and Picard iteration processes
are respectively given in Table 1.

All sequences converges to x∗ = 5. Comparison shows that our iteration process (6)
requires least number of iterations among all the iterations mentioned below.
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Step Picard Mann Ishikawa Noor Agarwal New iteration
1 40.0000000000 40.0000000000 40.0000000000 40.0000000000 40.0000000000 40.0000000000
2 36.3318042492 36.8820336118 34.8751575132 33.9816211055 34.3249281505 32.3527454021
3 32.7008496221 33.7905308732 29.8335259837 28.0887816012 28.7529148550 24.9217277329
4 29.1159538575 30.7306375124 24.9067432334 22.3811620460 23.3289757744 17.8627609012
5 25.5892777970 27.7090706072 20.1467307646 16.9736024952 18.1321892967 11.5463790857
6 22.1381326176 24.7347891266 15.6449263114 12.0962209155 13.3147454600 6.9395376930
7 18.7880774656 21.8200359935 11.5741197024 8.2289280979 9.1939307941 5.2225332988
8 15.5784221001 18.9820007784 8.2638548016 6.0182077910 6.3717274607 5.0138389524
9 12.5721859009 16.2455313784 6.1736938982 5.2517005165 5.2434387591 5.0007808271
10 9.8733161157 13.6475866165 5.3185408455 5.0576355955 5.0298139084 5.0007808271
11 7.6482574613 11.2442765494 5.0768890301 5.0129587850 5.0033662656 5.0000024535
12 6.1081734180 9.1201110370 5.0179832209 5.0029016212 5.0003761718 5.0000001375
13 5.3333287129 7.3913650188 5.0041744485 5.0006491038 5.0000419870 5.0000000077
14 5.0771808572 6.1732610225 5.0009673150 5.0001451769 5.0000046858 5.0000000004
15 5.0160062399 5.4814708358 5.0002240577 5.0000324684 5.0000005229 5.0000000000
16 5.0032258274 5.1725897008 5.0000518932 5.0000072614 5.0000000584 5.0000000000
17 5.0006461643 5.0576419946 5.0000120186 5.0000016240 5.0000000065 5.0000000000
18 5.0001292729 5.0187159301 5.0000027835 5.0000003632 5.0000000007 5.0000000000
19 5.0000258562 5.0060176595 5.0000006447 5.0000000812 5.0000000001 5.0000000000
20 5.0000051713 5.0019286052 5.0000001493 5.0000000182 5.0000000000 5.0000000000
21 5.0000010343 5.0006174572 5.0000000346 5.0000000041 5.0000000000 5.0000000000
22 5.0000002069 5.0001976174 5.0000000080 5.0000000009 5.0000000000 5.0000000000
23 5.0000000414 5.0000632408 5.0000000019 5.0000000002 5.0000000000 5.0000000000
24 5.0000000083 5.0000202374 5.0000000004 5.0000000000 5.0000000000 5.0000000000
25 5.0000000017 5.0000064760 5.0000000001 5.0000000000 5.0000000000 5.0000000000
26 5.0000000003 5.0000020723 5.0000000000 5.0000000000 5.0000000000 5.0000000000
27 5.0000000001 5.0000006631 5.0000000000 5.0000000000 5.0000000000 5.0000000000
28 5.0000000000 5.0000002122 5.0000000000 5.0000000000 5.0000000000 5.0000000000
29 5.0000000000 5.0000000679 5.0000000000 5.0000000000 5.0000000000 5.0000000000
30 5.0000000000 5.0000000217 5.0000000000 5.0000000000 5.0000000000 5.0000000000
31 5.0000000000 5.0000000070 5.0000000000 5.0000000000 5.0000000000 5.0000000000
32 5.0000000000 5.0000000022 5.0000000000 5.0000000000 5.0000000000 5.0000000000
33 5.0000000000 5.0000000007 5.0000000000 5.0000000000 5.0000000000 5.0000000000
34 5.0000000000 5.0000000002 5.0000000000 5.0000000000 5.0000000000 5.0000000000
35 5.0000000000 5.0000000001 5.0000000000 5.0000000000 5.0000000000 5.0000000000
36 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000 5.0000000000

Table 1. Comparative results.
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Figure 1. Convergence behavior of the Mann, the Picard, the Ishikawa, the Noor,

the Argarwal and new iterations for the function given in Example 3.2.
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Example 3.3. Let E = R and C = [1, 50]. Let T : C → C be a mapping, which is
defined by

T (x) =
√
x2 − 9x+ 54

for all x ∈ C. Choose αn = βn = γn = 3
4 , with the initial value x1 = 30. The

corresponding our iteration process, Agarwal et al. iteration process, Noor iteration
process, Ishikawa iteration process, Mann iteration process and Picard iteration processes
are respectively given in Table 2.

Step Picard Mann Ishikawa Noor Agarwal New iteration
1 30.0000000000 30.0000000000 30.0000000000 30.0000000000 30.0000000000 30.0000000000
2 26.1533936612 27.1150452459 25.0119824036 23.4891033190 24.0503308189 31.8347714371
3 22.4191761010 24.2907437151 20.2547559071 17.4668190633 18.4372719353 14.5055413771
4 18.8373796516 21.5420343135 15.8509087868 12.3265857284 13.3938203603 8.9907882699
5 15.4696624163 18.8892775011 12.0133051549 8.7275766163 9.3725555853 6.5301998399
6 12.4130372403 16.3606498049 9.0688620373 6.9585711603 6.9939357160 6.0555659291
7 9.8166266286 13.9954171304 7.2820400289 6.3102146269 6.1862068754 6.0050669583
8 7.8750567432 11.8475686983 6.4668031480 6.0979255677 6.0283693653 6.0045473127
9 6.7187058292 9.9869851099 6.1600652383 6.0306808428 6.0041338820 6.0000407497
10 6.2187342406 8.4900396666 6.0537250393 6.0095903071 6.0095981884 6.0000407497
11 6.0583865336 7.4083030742 6.0179028366 6.0029956076 6.0000864719 6.0000032715
12 6.0148623083 6.7246651786 6.0059514305 6.0009354914 6.0000124982 6.0000000293
13 6.0037328233 6.3468134658 6.0019768478 6.0002921200 6.0000018064 6.0000000026
14 6.0009342942 6.1586728531 6.0006564620 6.0000912177 6.0000002611 6.0000000002
15 6.0002336418 6.0708846663 6.0002179755 6.0000284834 6.0000000377 6.0000000000
16 6.0000584147 6.0313055772 6.0000723757 6.0000088941 6.0000000055 6.0000000000
17 6.0000146039 6.0137535390 6.0000240311 6.0000027772 6.0000000008 6.0000000000
18 6.0000036510 6.0060282506 6.0000079791 6.0000008672 6.0000000001 6.0000000000
19 6.0000009128 6.0026394884 6.0000026493 6.0000002708 6.0000000000 6.0000000000
20 6.0000002282 6.0011551843 6.0000008797 6.0000000846 6.0000000000 6.0000000000
21 6.0000000570 6.0005054713 6.0000002921 6.0000000264 6.0000000000 6.0000000000
22 6.0000000143 6.0002211587 6.0000000970 6.0000000082 6.0000000000 6.0000000000
23 6.0000000036 6.0000967598 6.0000000322 6.0000000026 6.0000000000 6.0000000000
24 6.0000000009 6.0000423330 6.0000000107 6.0000000008 6.0000000000 6.0000000000
25 6.0000000002 6.0000185208 6.0000000035 6.0000000003 6.0000000000 6.0000000000
26 6.0000000001 6.0000081029 6.0000000012 6.0000000001 6.0000000000 6.0000000000
27 6.0000000000 6.0000025450 6.0000000004 6.0000000000 6.0000000000 6.0000000000
28 6.0000000000 6.0000015509 6.0000000001 6.0000000000 6.0000000000 6.0000000000
29 6.0000000000 6.0000006785 6.0000000000 6.0000000000 6.0000000000 6.0000000000
30 6.0000000000 6.0000002969 6.0000000000 6.0000000000 6.0000000000 6.0000000000
31 6.0000000000 6.0000001299 6.0000000000 6.0000000000 6.0000000000 6.0000000000
32 6.0000000000 6.0000000586 6.0000000000 6.0000000000 6.0000000000 6.0000000000
33 6.0000000000 6.0000000249 6.0000000000 6.0000000000 6.0000000000 6.0000000000
34 6.0000000000 6.0000000109 6.0000000000 6.0000000000 6.0000000000 6.0000000000
35 6.0000000000 6.0000000048 6.0000000000 6.0000000000 6.0000000000 6.0000000000
36 6.0000000000 6.0000000021 6.0000000000 6.0000000000 6.0000000000 6.0000000000
37 6.0000000000 6.0000000009 6.0000000000 6.0000000000 6.0000000000 6.0000000000
38 6.0000000000 6.0000000004 6.0000000000 6.0000000000 6.0000000000 6.0000000000
39 6.0000000000 6.0000000002 6.0000000000 6.0000000000 6.0000000000 6.0000000000
40 6.0000000000 6.0000000001 6.0000000000 6.0000000000 6.0000000000 6.0000000000
41 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000 6.0000000000

Table 2. Comparative results.

All sequences converges to x∗ = 6. Comparison shows that our iteration process
(6) requires least number of iterations among all the iterations mentioned above.
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Figure 2. Convergence behavior of the Mann, the Picard, the Ishikawa, the Noor,

the Argarwal and new iterations for the function given in Example 3.3.

4. Convergence Theorems

In this section, we give some convergence theorems using our iteration process (6);
please, see Table 1, Table 2, Figure 1 and Figure 2. Before proving the main theorems,
we have the following lemmas.

Example 4.1. Let C be a nonempty closed convex subset of a normed linear space E.
Let T be a nonexpansive self mapping on C, {xn} be a sequence defined by (6) and
F (T ) 6= ∅. Then limn→∞ ‖xn − p‖ exists for all p ∈ F (T ).

Proof. Let p ∈ F (T ). From (6), we have

‖zn − p‖ = ‖(1− γn)xn + γnTxn − p‖
= ‖(1− γn)(xn − p) + γn(Txn − p)‖
≤ (1− γn)‖xn − p‖+ γn‖Txn − p‖
≤ (1− γn)‖xn − p‖+ γn‖xn − p‖
= ‖xn − p‖ (8)

and

‖yn − p‖ = ‖(1− βn)Txn + βnTzn − p‖
= ‖(1− βn)(Txn − p) + βn(Tzn − p)‖
≤ (1− βn)‖Txn − p‖+ βn‖Tzn − p‖
≤ (1− βn)‖xn − p‖+ βn‖zn − p‖
≤ (1− βn)‖xn − p‖+ βn‖xn − p‖
= ‖xn − p‖. (9)
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By using (8) and (9), we have

‖xn+1 − p‖ = ‖(1− αn)Txn + αnTyn − p‖
= ‖(1− αn)(Txn − p) + αn(Tyn − p)‖
≤ (1− αn)‖Txn − p‖+ αn‖Tyn − p‖
≤ (1− αn)‖xn − p‖+ αn‖yn − p‖
≤ (1− αn)‖xn − p‖+ αn‖xn − p‖
= ‖xn − p‖.

This implies that {‖xn − p‖} is bounded and non-increasing for all p ∈ F (T ). Hence
limn→∞ ‖xn − p‖ exists, as required.

Lemma 4.2. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let T be a nonexpansive self mapping on C, {xn} be a sequence given by (6)
and F (T ) 6= ∅. Then limn→∞ ‖xn − Txn‖ = 0.

Proof. By Lemma 4.1, we see that limn→∞ ‖xn − p‖ exists. Assume that limn→∞ ‖xn −
p‖ = c. Using (8) and (9), we have

lim sup
n→∞

‖yn − p‖ ≤ c (10)

and

lim sup
n→∞

‖zn − p‖ ≤ c. (11)

Since T is nonexpensive mapping, we have

‖Txn − p‖ ≤ ‖xn − p‖, ‖Tyn − p‖ ≤ ‖yn − p‖ and ‖Tzn − p‖ ≤ ‖zn − p‖.

Taking lim sup on both sides, using (10) and (11), we obtain

lim sup
n→∞

‖Txn − p‖ ≤ c,

lim sup
n→∞

‖Tyn − p‖ ≤ c

and

lim sup
n→∞

‖Tzn − p‖ ≤ c. (12)

Since

c = lim
n→∞

‖xn+1 − p‖

= lim
n→∞

‖(1− αn)(Txn − p) + αn(Tyn − p)‖,

by using (12) and Lemma (2.4), we have

lim
n→∞

‖Txn − Tyn‖ = 0. (13)
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Now

‖xn+1 − p‖ = ‖(1− αn)Txn + αnTyn − p‖
= ‖(1− αn)(Txn − p) + αn(Tyn − p)‖
= ‖(Txn − p)− αn(Txn − p) + αn(Tyn − p)‖
= ‖(Txn − p) + αn((Tyn − p)− (Txn − p))‖
= ‖(Txn − p) + αn(Tyn − p− Txn + p)‖
= ‖(Txn − p) + αn(Tyn − Txn)‖
≤ ‖Txn − p‖+ αn‖Tyn − Txn‖.

Using (13), we have

c ≤ lim inf
n→∞

‖Txn − p‖. (14)

It follows from (12) and (14) that

lim
n→∞

‖Txn − p‖ = c. (15)

On the other hand, we have

‖Txn − p‖ = ‖Txn − Tyn + Tyn − p‖
≤ ‖Txn − Tyn‖+ ‖Tyn − p‖
≤ ‖Txn − Tyn‖+ ‖yn − p‖,

and this yields that

c ≤ lim inf
n→∞

‖yn − p‖. (16)

Form (10) and (16), we get

lim
n→∞

‖yn − p‖ = c.

Since

c = lim
n→∞

‖yn − p‖ = lim
n→∞

‖(1− βn)(Txn − p) + βn(Tzn − p)‖. (17)

From (12) and (17), by using Lemma 2.4 we obtain

lim
n→∞

‖Tzn − Txn‖ = 0. (18)

In addition,

‖Txn − p‖ ≤ ‖Txn − Tzn + Tzn − p‖
≤ ‖Txn − Tzn‖+ ‖Tzn − p‖
≤ ‖Txn − Tzn‖+ ‖zn − p‖. (19)

Using (15), (18) and (19), we have

c ≤ lim inf
n→∞

‖zn − p‖. (20)

By (11) and (20), we obtain limn→∞ ‖zn − p‖ = c. Thus

c = lim
n→∞

‖zn − p‖

= lim
n→∞

‖(1− γn)(xn − p) + γn(Txn − p)‖,
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gives by Lemma 2.4 that

lim
n→∞

‖xn − Txn‖ = 0.

This completes the proof.

By using Lemma 2.3, Lemma 2.5, Lemma 4.1 and Lemma 4.2, we will establish the
following theorems.

Theorem 4.3. Let E be a real uniformly convex Banach space which satisfies the Opial’s
condition, C a nonempty closed convex subset of X and T : C → C a nonexpansive
mapping with F (T ) 6= ∅. Let {xn} be the sequence defined by iteration process (6). Then
{xn} converges weakly to a fixed point of T .

Proof. Let p ∈ F (T ). Then limn→∞ ‖xn − p‖ exists. We prove that {xn} has a unique
weak subsequential limit in F (T ). For, let u and v be weak limits of the subsequences
{xni
} and {xnj

} of {xn}, respectively. By limn→∞ ‖xnk
− Txnk

‖ = 0 and I − T is
demiclosed with respect to zero by Lemma 2.3, therefore we obtain Tu = u. Again in the
same manner, we can prove that v ∈ F (T ). Next, we prove the uniqueness. From Lemma
4.1 the limits limn→∞ ‖xn − v‖ exists. For this suppose that u 6= v, then by the Opial’s
condition

lim
n→∞

‖xn − u‖ = lim
ni→∞

‖xni − u‖ < lim
ni→∞

‖xni − v‖ = lim
n→∞

‖xn − v‖

= lim
nj→∞

‖xnj
− v‖ < lim

nj→∞
‖xnj

− u‖ = lim
n→∞

‖xn − u‖.

This is a contradiction, so u = v. Hence, {xn} converges weakly to a fixed point of F (T )
and this completes the proof.

Theorem 4.4. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let T be a nonexpansive self mapping on C, {xn} defined by (6) and F (T ) 6= ∅.
Then {xn} converges to a point of F (T ) if and only if lim infn→∞ d(xn, F (T )) = 0, where
d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}.

Proof. Necessity is obvious. Suppose that lim infn→∞ d(xn, F (T )) = 0. As proved in
Lemma 4.2, limn→∞ ‖xn − w‖ exists for all w ∈ F (T ), therefore limn→∞ d(xn, F (T ))
exists. But by hypothesis, we have lim infn→∞ d(xn, F (T )) = 0, therefore we have
limn→∞ d(xn, F (T )) = 0. We will show that {xn} is a Cauchy sequence in C. Since
limn→∞ d(xn, F (T )) = 0, for given ε > 0, there exists n0 in N such that for all n ≥ n0,

d(xn, F (T )) <
ε

2
.

Particularly, inf{‖xn0 − p‖ : p ∈ F (T )} < ε
2 . Hence, there exist p∗ ∈ F (T ) such that

‖xn0 − p∗‖ < ε
2 . Now, for m,n ≥ n0,

‖xn+m − xn‖ ≤ ‖xn+m − p∗‖+ ‖xn − p∗‖ ≤ 2‖xn0
− p∗‖ < ε.

Hence {xn} is a Cauchy sequence in C. Since C is a closed in the Banach space E, so
that there exists a point p in C such that limn→∞ xn = p. Now limn→∞ d(xn, F (T )) = 0
gives that d(p, F (T )) = 0. Since F is closed, p ∈ F (T ). This completes the proof.
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A mapping T : C → C, where C is a subset of a normed space E, is said to satisfy
Condition (A) [14] if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0, for all r ∈ (0, 1), such that ‖x − Tx‖ ≥ f(d(x, F (T )), for all x ∈ C,
where d(x, F (T )) = inf{‖x− p‖ : p ∈ F (T )}.

It is to be noted that Condition (A) is weaker than compactness of the domain C.
Applying Theorem 4.4, we obtain a strong convergence of the process (6) under Con-

dition (A) as follows:

Theorem 4.5. Let C be a nonempty closed convex subset of a uniformly convex Banach
space E. Let T be a nonexpansive self mapping on C, {xn} defined by (6) and F (T ) 6= ∅.
Let T satisfy Condition (A), then {xn} converges strongly to a fixed point of T .

Proof. We proved in Lemma 4.2 that

lim
n→∞

‖xn − Txn‖ = 0. (21)

From Condition (A) and (21), we get

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

‖xn − Txn‖ = 0,

i.e., limn→∞ f(d(xn, F (T ))) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function
satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞), we have

lim
n→∞

d(xn, F (T )) = 0.

Therefore, by Theorem 4.4, the sequence {xn} converges strongly to a point of F (T ). The
proof is completed.

5. Application to Constrained Minimization Problems, Split
Feasibility Problems and Image Deblurring Problems

This section is devoted to some applications. Let H be a real Hilbert space with inner
product 〈·, ·〉 and norm ‖ · ‖, respectively. Let C be a nonempty closed convex subset of
H and T : C → H a nonlinear operator. T is said to be:
(i) monotone if 〈Tx− Ty, x− y〉 ≥ 0 for all x, y ∈ C,
(ii) λ-strongly monotone if there exists a constant λ > 0 such that

〈Tx− Ty, x− y〉 ≥ λ‖x− y‖2

for all x, y ∈ C,
(iii) v-inverse strongly monotone (v-ism) if there exists a constant v > 0 such that

〈Tx− Ty, x− y〉 ≥ v‖Tx− Ty‖2

for all x, y ∈ C.
Construction of fixed points of nonexpansive operators is an important subject in the

theory of nonexpansive operators and has applications in a number of applied areas such as
image recovery and signal processing (see, [24–26]). For instance, split feasibility problem
of C and T (denoted by SFP (C, T )) is to find a point

x in C such that Tx ∈ Q, (22)
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where C is a closed convex subset of a Hilbert space H1, Q is a closed convex subset of
another Hilbert space H2 and T : H1 → H2 is a bounded linear operator. The SFP (C, T )
is said to be consistent if (22) has a solution. It is easy to see that SFP (C, T ) is consistent
if and only if the following fixed point problem has a solution:

find x ∈ C such that x = PC(I − γT ∗(I − PQ)T )x, (23)

where PC and PQ are the orthogonal projections onto C andQ, respectively; γ > 0, and T ∗

is the adjoint of T . Note that for sufficient small γ > 0, the operator PC(I−γT ∗(I−PQ)T )
in (23) is nonexpansive.

Application to constrained minimization problems. Let C be a closed convex
subset of a Hilbert space H, PC the metric projection of H onto C and T : C → H
a v-ism where v > 0 is a constant. It is well known that PC(I − µT ) is nonexpansive
operator provided that µ ∈ (0, 2v).

The algorithms for signal and image processing are often iterative constrained opti-
mization processes designed to minimize a convex differentiable function T over a closed
convex set C in H. It is well known that every L-Lipschitzian operator is 2/L-ism.

Therefore, we have the following result which generates the sequence of vectors in
the constrained or feasible set C which converges weakly to the optimal solution which
minimizes T .

Theorem 5.1. Let C be a closed convex subset of a Hilbert space H and T a convex and
differentiable function on an open set D containing the set C. Assume that 5T is an
L-Lipschitz operator on D, µ ∈ (0, 2/L) and minimizers of T relative to the set C exist.
For a given x1 ∈ C, let {xn} be a sequence in C generated by

xn+1 = (1− αn)PC(I − µ5 T )xn + αnPC(I − µ5 T )yn,

yn = (1− βn)PC(I − µ5 T )xn + βnPC(I − µ5 T )zn,

zn = (1− γn)xn + γnPC(I − µ5 T )xn, n ∈ N,

where {αn}, {βn} and {γn} are sequences in [δ, 1−δ] for all n ∈ N and for some δ ∈ (0, 1).
Then {xn} converges weakly to a minimizer of T .

Application to image deblurring problems. Let us consider the linear system:
find x ∈ C such that

Ax = b,

where A : H → H is bounded linear operator and b ∈ H is fixed. An algorithm in
Theorem 5.1 can be applied directly to solve

min
x
‖b−Ax‖2, (24)

by setting

T =
1

2
‖b−Ax‖22.
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Theorem 5.2. Let H be a real Hilbert space. Let A : H → H be a bounded linear operator
and b ∈ H. Let {xn} be a sequence generated by C1 = H, x0 ∈ H and

xn+1 = (1− αn)
(
xn − µAT (Axn − b)

)
+ αn

(
yn − µAT (Ayn − b)

)
,

yn = (1− βn)
(
xn − µAT (Axn − b)

)
+ βn

(
zn − µAT (Azn − b)

)
,

zn = (1− γn)xn + γn
(
xn − µAT (Axn − b)

)
, n ∈ N,

where µ ⊂
(

0, 2
||A||22

)
and {αn}, {βn} and {γn} are sequences in [δ, 1 − δ] for all n ∈ N

and for some δ in (0, 1). Then {xn} converges weakly to its solution.

The algorithm in Theorem 5.2 (implemented algorithm) can be used in solving image
restoration problem

b = Ax+ υ.

Here b is the observed blurred and noisy image (degraded image), υ is an unknown
gaussian noise, and A is a blurring matrix. The blurring matrix A is often ill-conditioned.
The aim is to compute an approximation of the original image x. In the most case, the
blur generally has much more significant effect than the noise, and thus, the emphasis is
on removing the blur. Therefore, the original image x can be approximated by solving
an equation (24). We call this kind of problem solving as image deblurring problem.
An implemented algorithm is proposed in solving the image deblurring problem. Two
kinds of image deblurring consists of Gaussian blur and motion blur are used to test the
implemented algorithm.

The original grey and its degraded images on Figure 3 from a Gaussian blur of size
9 × 9, σ = 4 and the motion blur with len = 21, θ = 11 respectively are used to test an
implemented algorithm.

Figure 3. Data used in numerical experiments. The true grey image of size 336×
252 and two types of its degraded image.

The parameters αn, βn, γn and µ on an implemented algorithm in solving the image
deblurring problem is set as

αn =
n

n+ 1
, βn =

n√
4n3 + 2

, γn =
n+ 1

5n+ 3
, µ = 1/ (||A||1||A||∞) .

These parameters is called as the default choice of set parameter. The quality improve-
ments of the reconstructed grey images sized 336×252 being used implemented algorithm
are illustrated in Figure 4 and Figure 5.
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50
th

 Iteration 1000
th

 Iteration 10000
th

 Iteration 20000
th

 Iteration

Figure 4. The reconstructed images being 50th, 1000th, 10000th and 20000th used

iterations of the Gaussian blurred image on Figure 3.

50
th

 Iteration 1000
th

 Iteration 10000
th

 Iteration 20000
th

 Iteration

Figure 5. The reconstructed images being 50th, 1000th, 10000th and 20000th used

iterations of the motion blurred image on Figure 3.

Next, we are also apply our algorithm in solving the color deblurring problems. The
following RGB images illustrate example of blurring adjustment. The three independent
deblurring problem consists of red green and blue deblurring channel which are solved
with the default parameter.

Figure 6. Data used in numerical experiments. The true RGB image of size

336 × 252 × 3, Degraded image with Gaussian blur of size 9 × 9 and σ = 4 and the
motion blur image with len = 21 and θ = 11.
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The quality improvements of the reconstructed RGB images sized 336× 252× 3 being
used the implemented algorithm are also illustrated on Figure 7 and Figure 8.

50
th

 Iteration 1000
th

 Iteration

10000
th

 Iteration 20000
th

 Iteration

Figure 7. The reconstructed images being 50th, 1000th, 10000th and 20000th used

iterations of the Gaussian blurred image on Figure 6.

50
th

 Iteration 1000
th

 Iteration

10000
th

 Iteration 20000
th

 Iteration

Figure 8. The reconstructed images being 50th, 1000th, 10000th and 20000th used
iterations of the Motion blurred image on Figure 6.

It can be seen that the restored images on Figures 4, 5, 7, 8 are clearly evident and we
also essentially have the original image when the number of iteration is sufficient.
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Application to split feasibility problems. Recall that a mapping T in a Hilbert
space H is said to be averaged if T can be written as (1−α)I +αS, where α ∈ (0, 1) and
S is a nonexpansive map on H. Set

q(x) :=
1

2
‖(T − PQT )x‖, x ∈ C.

Consider the minimization problem

find min
x∈C

q(x).

By [27], the gradient of q is 5q = T ∗(I − PQ)T , where T ∗ is the adjoint of T . Since
I − PQ is nonexpansive, it follows that 5q is L-Lipschitzian with L = ‖T‖2. Therefore,
5q is 1/Lism and for any 0 < µ < 2/L, I−µ5 q is averaged. Therefore, the composition
PC(I − µ5 q) is also averaged. Set T := PC(I − µ5 q). Note that the solution set of
SFP (C, T ) is F (T ).

We now present an iterative process that can be used to find solutions of SFP (C, T ).

Theorem 5.3. Assume that SFP (C, T ) is consistent. Suppose {αn}, {βn} and {γn} are
sequences in [δ, 1− δ] for all n ∈ N and for some δ in (0, 1). Let {xn} be a sequence in C
generated by

xn+1 = (1− αn)PC(I − µ5 q)xn + αnPC(I − µ5 q)yn,

yn = (1− βn)PC(I − µ5 q)xn + βnPC(I − µ5 q)zn,

zn = (1− γn)xn + γnPC(I − µ5 q)xn, n ∈ N,

where 0 < µ < 2/‖T‖2. Then {xn} converges weakly to a solution of SFP (C, T ).

Proof. Since T := PC(I − µ5 q) is nonexpansive, the result follows from Theorem 4.3.
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