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1. Introduction

The stability problem of functional equations was initiated by Ulam [1] in 1940 arising
from concerning the stability of group homomorphisms. These question form is the object
of the stability theory. In 1941, Hyers [2] provided a first affirmative partial answer to
Ulam’s problem for the case of approximately additive mapping in Banach spaces. In 1978,
Rassias [3] gave a generalization of Hyers’s theorem for linear mapping by considering an
unbounded Cauchy difference. A generalization of Rassias’s result was developed by
Găvruţa [4] in 1994 by replacing the unbounded Cauchy difference by a general control
function. For more information on that subject and further references we refer to a survey
paper [5] and to a recent monograph on Ulam stability [6]. One way to develop the
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stability of functional equations is to replace the class of Banach spaces by quasi-Banach
spaces.

Definition 1.1. ([7]) Let X be a vector space over the field K, κ > 1 and ‖ · ‖ : X → R+

be a function such that for all x, y ∈ X and all a ∈ K,
(1) ‖x‖ = 0 if and only if x = 0.
(2) ‖ax‖ = |a| ‖x‖.
(3) ‖x+ y‖ ≤ κ(‖x‖+ ‖y‖).

Then, ‖·‖ is called a quasi-normed on X. The smallest possible κ is called the modulus
of concavity and (X, ‖·‖ , κ)) is called a quasi-normed space. For a quasi-normed space
(X, ‖·‖ , κ), without loss of generality we can assume κ is the modulus of concavity.
(X, ‖·‖ , κ) is called a p-normed space if

‖x+ y‖p ≤ ‖x‖p + ‖y‖p (1.1)

for some 0 < p ≤ 1 and for all x, y ∈ X.

Definition 1.2. ([8]) Let (X, ‖ · ‖, κ) be a quasi-normed space.
(1) The sequence {xn} is called convergent sequence if there exists x ∈ X such

that limn→∞ ‖xn − x‖ = 0, denoted by limn→∞ xn = x.
(2) The sequence {xn} is called Cauchy sequence if limn,m→∞ ‖xn − xm‖ = 0.
(3) (X, ‖ · ‖, κ) is called quasi-Banach space if each Cauchy sequence is a

convergent sequence.
(4) (X, ‖ · ‖, κ) is p-Banach space if it is p-normed space and quasi-Banach space.

The first difference between a quasi-norm and a norm is that the modulus of concavity
of a quasi-norm is greater than or equal to 1, while that of a norm is equal to 1. The
quasi-norm is not continuous in general, while a norm is always continuous. For example
a noncontinuous quasi-norm, see [[9], example 3]. However, every p-norm is continuous
quasi-norm. Moreover,by Aoki-Rolewicz Theorem [[7], Theorem 5], each quasi-norm is
equivalent to some-p-norm.

The stability results of functional equation in quasi-Banach spaces was first studied
by Najati and Eskandani [10] and Najati and Mogahimi [11]. They establish the general
solution of the functional equation

f(2x+ y) + f(2x− y) = f(x+ y) + f(x− y) + 2f(2x) + 2f(x)

and investigate the Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces.
Then many authors have been interested in this topic; see more [12],[13] and the references
therein.

By the Aoki-Rolewicz Theorem, each quasi-norm is equivalent to some p-norm. Since
it is much easier to work with p-norms than quasi-norms, henceforth we restrict our
attention mainly to p-norms.

However, quantities relevant to the stability of functional equations are not preserve
even by equivalent norms in general. Moreover, the inequality (1.1), which may be seen
to have the modulus of concavity equal to 1, and the continuity of p-norms were used
in many proofs such as in proving the inequalities (3.17) and (3.20) in the proof of [[11],
Theorem 3.2], in proving the inequalities (3.32) and (3.35) in the proof of [[14], Theorem
3.2].

Inspired by the above facts, Dung and Hang [13] were interested in studying the stabil-
ity of functional equations in quasi-Banach spaces where the quasi-norm is not assumed to
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be a p-norm, and thus, the modulus of concavity is greater than 1 and the quasi-norm is
not continuous in general. To overcome the modulus of concavity greater than 1 and the
discontinuity of quasi-norms, They used the squeeze inequality presented in an explicit
revision of Aoki-Rolewicz, Theorem [[9], Theorem 1]. As illustrations, They proved an
extension of the main result of [11] in p-Banach spaces to quasi-Banach spaces with better
approximation; see more [15] and [16]. The technique may be used to prove extensions of
other results on the stability of functional equations in p-Banach spaces to quasi-Banach
spaces.

Theorem 1.3. ([9]) Let (Y, ‖ · ‖, κy) be a quasi-normed space, p = log2κY
2, and

|‖x‖|Y = inf


(

n∑
i=1

‖xi‖pY

) 1
p

: x =

n∑
i=1

xi, xi ∈ X,n > 1


for all x ∈ Y . Then, |‖·‖|Y is a quasi-norm on Y satisfying

|‖x+ y‖|pY ≤ |‖x‖|
p
Y + |‖y‖|pY (1.2)

and
1

2κY
‖x‖Y ≤ |‖x‖|Y ≤ ‖x‖Y (1.3)

for all x, y ∈ Y . In particular, the quasi-norm |‖·‖|Y is p-norm, and if ‖·‖Y is a norm
then p = 1 and |‖·‖|Y = ‖·‖Y .

In 2011, Eskandani et al. [17] established the general solution and investigate the
generalized Hyers-Ulam stability of the following mixed additive and quadratic functional
equation

f(λx+ y) + f(λx− y)

= f(x+ y) + f(x− y) + (λ− 1)[(λ+ 2)f(x) + λf(−x)]

where λ ∈ N, λ 6= 1 in quasi-β-normed spaces, where the quasi-norm is assumed to be
p-norm.

In this paper, we use the technique proof of results of [13] to prove the generalized
Hyers-Ulam-Rassais stability of the general mixed additive and quadratic functional equa-
tion

f(λx+ y) + f(λx− y) = f(x+ y) + f(x− y) + (λ−1)[(λ+ 2)f(x) +λf(−x)] (1.4)

where λ ∈ N and λ 6= 1 in quasi Banach spaces such that the quasi-norm is not assumed
to be p-norm.

2. The Stability of the Functional Equation (1.4) in Quasi
Banach Spaces

In this section, we prove the Hyer-Ulam-Rassias stability of the general mixed additive
and quadratic functional equation in quasi-Banach spaces. Thoughout of this section, let
X be a real vector space and (Y, ‖ · ‖Y , kY ) be a real quasi-Banach spaces. Let f be a
mapping of X into Y . Conveniently, we define

Dλf(x, y) =f(λx+ y) + f(λx− y)− f(x+ y)− f(x− y)

− (λ− 1)[(λ+ 2)f(x) + λf(−x)]
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for all x, y ∈ X, λ ∈ N and λ 6= 1.

Theorem 2.1. Suppose that

(1) ϕ : X ×X → [0,∞) is a function satisfying

lim
n→∞

λ2nϕ
( x
λn
,
y

λn

)
= 0 (2.1)

and

∞∑
i=1

λ2ipϕp
( x
λi
, 0
)
<∞ (2.2)

for all x, y ∈ X with p = log2κY
2.

(2) f : X → Y is an even function such that f(0) = 0 and satisfying

‖Dλf(x, y)‖ ≤ ϕ(x, y) (2.3)

for all x, y ∈ X.

Then there exists a unique general mixed additive and quadratic functional equation Q :
X → Y satisfying

‖f(x)−Q(x)‖Y ≤
κY
λ2

(
ψ̃(x)

) 1
p

(2.4)

where

ψ̃(x) =

∞∑
i=1

λ2ipϕp
( x
λi
, 0
)

for all x ∈ X.

Proof. Let x ∈ X. Since f is an even function, we get f(x) = f(−x). Replacing y by 0
in (2.3), we have

ϕ(x, 0) ≥ ‖f(λx) + f(λx)− f(x)− f(x)− (λ− 1)[(λ+ 2)f(x) + λf(−x)]‖Y
=
∥∥2f (λx)− 2λ2f(x)

∥∥
Y

= 2
∥∥f (λx)− λ2f(x)

∥∥
Y

(2.5)

for all x ∈ X. Replacing x by x
λn+1 and multiplying λ2n on the both sides in (2.5) with

non-negetive integers n, we get

∥∥∥λ2nf ( x
λn

)
− λ2(n+1)f

( x

λn+1

)∥∥∥
Y
≤ λ2n

2
ϕ
( x

λn+1
, 0
)
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for all x ∈ X and all non-negative integers n. By using Theorem 1.3, for any m,n ∈ N
with m < n, we have

1

2

∥∥∥λ2nf ( x
λn

)
− λ2mf

( x

λm

)∥∥∥p
Y

≤
∣∣∣∥∥∥λ2nf ( x

λn

)
− λ2mf

( x

λm

)∥∥∥∣∣∣p
Y

=
∣∣∣∥∥∥λ2nf ( x

λn

)
− λ2(m+1)f

( x

λm+1

)
+ λ2(m+1)f

( x

λm+1

)
− λ2mf

( x

λm

)∥∥∥∣∣∣p
Y

≤
∣∣∣∥∥∥λ2nf ( x

λn

)
− λ2(m+1)f

( x

λm+1

)∥∥∥∣∣∣p
Y

+
∣∣∣∥∥∥λ2(m+1)f

( x

λm+1

)
− λ2mf

( x

λm

)∥∥∥∣∣∣p
Y

≤
∣∣∣∥∥∥λ2nf ( x

λn

)
− λ2(m+2)f

( x

λm+2

)∥∥∥∣∣∣p
Y

+
∣∣∣∥∥∥λ2(m+2)f

( x

λm+2

)
− λ2(m+1)f

( x

λm+1

)∥∥∥∣∣∣p
Y

+
∣∣∣∥∥∥λ2(m+1)f

( x

λm+1

)
− λ2mf

( x

λm

)∥∥∥∣∣∣p
Y

...

≤
∣∣∣∥∥∥λ2nf ( x

λn

)
− λ2(n−1)f

( x

λn−1

)∥∥∥∣∣∣p
Y

+
∣∣∣∥∥∥λ2(n−1)f ( x

λn−1

)
− λ2(n−2)f

( x

λn−2

)∥∥∥∣∣∣p
Y

+ · · ·+
∣∣∣∥∥∥λ2(m+1)f

( x

λm+1

)
− λ2mf

( x

λm

)∥∥∥∣∣∣p
Y

≤
∥∥∥λ2nf ( x

λn

)
− λ2(n−1)f

( x

λn−1

)∥∥∥p
Y

+
∥∥∥λ2(n−1)f ( x

λn−1

)
− λ2(n−2)f

( x

λn−2

)∥∥∥p
Y

+ · · ·+
∥∥∥λ2(m+1)f

( x

λm+1

)
− λ2mf

( x

λm

)∥∥∥p
Y

≤ λ2(n−1)p

2p
ϕp
( x
λn
, 0
)

+
λ2(n−2)p

2p
ϕp
( x

λn−1
, 0
)

+ . . .+
λ2mp

2p
ϕp
( x

λm+1
, 0
)

=
1

2p

n−1∑
i=m

λ2ipϕp
( x

λi+1
, 0
)

≤ 1

2p

∞∑
i=m

λ2ipϕp
( x

λi+1
, 0
)

(2.6)

for all x ∈ X. Letting n,m→∞ in (2.6) and using (2.2), we get

lim
n→∞

∥∥∥λ2nf ( x
λn

)
− λ2mf

( x

λm

)∥∥∥
Y

= 0

for all x ∈ X. This show that the sequence
{
λ2nf

(
x
λn

)}
is Cauchy in (Y, ‖ · ‖Y , κY ) for

all x ∈ X. Since (Y, ‖ · ‖Y , κY ) is a real quasi-Banach space, the sequence
{
λ2nf

(
x
λn

)}
is convergent for all x ∈ X. So, we can define the function Q : X → Y by

Q(x) = lim
n→∞

λ2nf
( x
λn

)
(2.7)

for all x ∈ X. Let m = 0 in (2.6), we get

∣∣∣∥∥∥λ2nf ( x
λn

)
− f(x)

∥∥∥∣∣∣p
Y
≤ 1

2p

n−1∑
i=0

λ2ipϕp
( x

λi+1
, 0
)

(2.8)
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for all x ∈ X. By using the continuity of |‖ · ‖|Y and the inequality (2.8), we have

|‖Q(x)− f(x)‖|pY =
∣∣∣∥∥∥ lim
n→∞

λ2nf
( x
λn

)
− f(x)

∣∣∣∥∥∥p
Y

=
∣∣∣∥∥∥ lim
n→∞

(
λ2nf

( x
λn

)
− f(x)

)∣∣∣∥∥∥p
Y

= lim
n→∞

∣∣∣∥∥∥λ2nf ( x
λn

)
− f(x)

∣∣∣∥∥∥p
Y

≤ 1

2p

∞∑
i=0

λ2ipϕp
( x

λi+1
, 0
)

=
1

2pλ2p

∞∑
i=1

λ2ipϕp
( x
λi
, 0
)

=
1

2pλ2p
ψ̃(x) (2.9)

for all x ∈ X. It follows from (2.9) that we get

‖Q(x)− f(x)‖Y ≤ 2κY |‖Q(x)− f(x)‖|Y ≤
2κy
2λ2

ψ̃(x)
1
p =

κY
λ2
ψ̃(x)

1
p

Thus, (2.4) holds for all x ∈ X. Next, we will prove that Q is mixed general additive
quadratic. By using the continuity of |‖ · ‖|, we have

|‖Q(λx+ y) +Q(λx− y)−Q(x+ y)−Q(x− y)− (λ− 1)[(λ+ 2)Q(x) + λQ(−x)]‖|Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

λ2nf

(
λx+ y

λn

)
+ lim
n→∞

λ2nf

(
λx− y
λn

)
− lim
n→∞

λ2nf

(
x+ y

λn

)
− lim
n→∞

λ2nf

(
x− y
λn

)
−(λ− 1)

[
(λ+ 2) lim

n→∞
λ2nf

( x
λn

)
+ λ lim

n→∞
λ2nf

(
− x

λn

)]∥∥∥∣∣∣
Y

= lim
n→∞

∣∣∣∣∥∥∥∥λ2nf (λx+ y

λn

)
+ λ2nf

(
λx− y
λn

)
− λ2nf

(
x+ y

λn

)
− λ2nf

(
x− y
λn

)
−(λ− 1)

[
(λ+ 2)λ2nf

( x
λn

)
+ λ · λ2nf

(
− x

λn

)]∥∥∥∣∣∣
Y

≤ lim
n→∞

λ2nϕ
( x
λn
,
y

λn

)
= 0

for all x, y ∈ X. This implies that

Q(λx+ y) +Q(λx− y) = Q(x+ y) +Q(x− y) + (λ− 1)[(λ+ 2)Q(x) + λQ(−x)]
(2.10)

for all x, y ∈ X. Since f is an even function and f(0) = 0, from (2.7), we get that Q is
also even and Q(0) = 0. Since Q satisfy (2.10), Q is quadratic.

Finally, we prove the uniqueness of Q. Let T : X → Y be another general mixed
additive quadratic function satisfy

‖f(x)− T (x)‖Y ≤
κY
λ2

(
ψ̃(x)

) 1
p
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for all x ∈ X. Since T is mixed general additive quadratic, we have

T (λx+ y) + T (λx− y) = T (x+ y) + T (x− y) + (λ− 1)[(λ+ 2)T (x) + λT (−x)]
(2.11)

for all x ∈ X. Setting y = 0 in (2.11), we obtain that

T (λx) = λ2T (x) (2.12)

for all x ∈ X. Replacing x by x
λ in (2.12), we get

T (x) = λ2T
(x
λ

)
(2.13)

for all x ∈ X. Replacing x by x
λ in (2.13), we get

T
(x
λ

)
= λ2T

( x
λ2

)
(2.14)

for all x ∈ X. From (2.13) and (2.14) for all n ∈ N, we have

T (x) = λ2T (x) = λ2
(
λ2T

( x
λ2

))
= (λ2)2T

( x
λ2

)
for all x ∈ X. By induction process, we have

T (x) = λ2nT
( x
λn

)
for all x ∈ X and all n ∈ N. By using the continuity of |‖ · ‖|Y and Theorem 1.3, we have

|‖Q(x)− T (x)‖|pY =
∣∣∣∥∥∥ lim
n→∞

λ2nf
( x
λn

)
− λ2nT

( x
λn

)∥∥∥∣∣∣p
Y

= lim
n→∞

∣∣∣∥∥∥λ2nf ( x
λn

)
− λ2nT

( x
λn

)∥∥∥∣∣∣p
Y

= lim
n→∞

λ2np
∣∣∣∥∥∥f ( x

λn

)
− T

( x
λn

)∥∥∥∣∣∣p
Y

≤ lim
n→∞

λ2np
∥∥∥f ( x

λn

)
− T

( x
λn

)∥∥∥p
Y

≤ lim
n→∞

λ2np
κY
λ2

(
ψ̃(

x

λn
)
)

=
κpY
λ2p

lim
n→∞

λ2npψ̃(
x

λn
)

=
κpY
λ2p

lim
n→∞

∞∑
i=1

λ2(n+i)pϕp
( x

λn+i
, 0
)

=
κpY
λ2p

lim
n→∞

∞∑
i=n+1

λ2ipϕp
( x
λi
, 0
)

=0

for all x ∈ X. This implies that

|‖Q(x)− T (x)‖|pY = 0.

Then Q(x) = T (x) for all x ∈ X. So Q is unique.
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Theorem 2.2. Suppose that

(1) X is a real quasi-normed space and (Y, ‖ ·‖Y , kY ) is a real quasi-Banach space.
(2) ϕ : X ×X → [0,∞) is a function satisfying

lim
n→∞

1

λ2n
ϕ (λnx, λny) = 0 (2.15)

and

∞∑
i=1

1

λ2ip
ϕp
(
λix, 0

)
<∞ (2.16)

for all x ∈ X with p = log2κY
2.

(3) f : X → Y is an even function such that f(0) = 0 and satisfying

‖Dλf(x, y)‖ ≤ ϕ(x, y) (2.17)

for all x, y ∈ X.

Then there exists a unique general mixed additive and quadratic functional equation G :
X → Y satisfying

‖f(x)−G(x)‖Y ≤
κY
λ2

(
ψ̃(x)

) 1
p

(2.18)

where

ψ̃(x) =

∞∑
i=1

1

λ2ip
ϕp
(
λix, 0

)
for all x ∈ X.

Proof. By the same argument of Theorem 2.1, we also have

2
∥∥f (λx)− λ2f(x)

∥∥
Y
≤ ϕ(x, 0) (2.19)

for all x ∈ X. Replacing x by λnx and Multiply 1
λ2(n+1) on the both sides in (2.19), we

have ∥∥∥∥ 1

λ2(n+1)
f(λn+1x)− 1

λ2n
f(λnx)

∥∥∥∥
Y

≤ 1

2λ2(n+1)
ϕ(λnx, 0) (2.20)
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for all x ∈ X and all non-negative integers n. By using Theorem 1.3 and the equality
(2.20), for any m,n ∈ N with m < n, we have

1

2

∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2m
f(λmx)

∥∥∥∥p
Y

≤
∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2m
f(λmx)

∥∥∥∥∣∣∣∣p
Y

=

∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2(m+1)
f(λm+1x) +

1

λ2(m+1)
f(λm+1x)− 1

λ2m
f(λmx)

∥∥∥∥∣∣∣∣p
Y

≤
∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2(m+1)
f(λm+1x)

∥∥∥∥∣∣∣∣p
Y

+

∣∣∣∣∥∥∥∥ 1

λ2(m+1)
f(λm+1x)− 1

λ2m
f(λmx)

∥∥∥∥∣∣∣∣p
Y

≤
∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2(m+2)
f(λm+2x)

∥∥∥∥∣∣∣∣p
Y

+

∣∣∣∣∥∥∥∥ 1

λ2(m+2)
f(λn+2x)− 1

λ2(m+1)
f(λm+1x)

∥∥∥∥∣∣∣∣p
Y

+

∣∣∣∣∥∥∥∥ 1

λ2(m+1)
f(λm+1x)− 1

λ2m
f(λmx)

∥∥∥∥∣∣∣∣p
Y

...

≤
∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2(n−1)
f(λn−1x)

∥∥∥∥∣∣∣∣p
Y

+

∣∣∣∣∥∥∥∥ 1

λ2(n−1)
f(λ(n− 1)x)− 1

λ2(n−2)
f(λn−2x)

∥∥∥∥∣∣∣∣p
Y

+ . . .+

∣∣∣∣∥∥∥∥ 1

λ2(m+1)
f(λm+1x)− 1

λ2m
f(λmx)

∥∥∥∥∣∣∣∣p
Y

≤
∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2(n−1)
f(λn−1x)

∥∥∥∥p
Y

+

∥∥∥∥ 1

λ2(n−1)
f(λ(n− 1)x)− 1

λ2(n−2)
f(λn−2x)

∥∥∥∥p
Y

+ . . .+

∥∥∥∥ 1

λ2(m+1)
f(λm+1x)− 1

λ2m
f(λmx)

∥∥∥∥p
Y

≤ 1

2pλ2np
ϕ(λn−1x, 0) +

1

2pλ2(n−1)p
ϕ(λn−2x, 0) + . . .+

1

2pλ2(m+1)p
ϕ(λm+1x, 0)

=
1

2p

n−1∑
i=m

1

λ2(i+1)p
ϕp(λix, 0) (2.21)

for all x ∈ X. Letting n,m→∞ in (2.21) and using (2.16), we get

lim
n→∞

∥∥∥∥ 1

λ2nx
f(λ2nx)− 1

λ2mx
f(λ2mx)

∥∥∥∥
Y

= 0

for all x ∈ X. This show that the sequence
{

1
λ2nxf(λ2nx)

}
is Cauchy in (Y, ‖ · ‖Y , κY ) for

all x ∈ X. Since (Y, ‖ · ‖Y , κY ) is a real quasi-Banach space, the sequence
{

1
λ2nxf(λ2nx)

}
is convergent for all x ∈ X. So we can define the function H : X → Y by

G(x) = lim
n→∞

1

λ2n
f(λnx) (2.22)

for all x ∈ X. Let m = 0 in (2.21), we get∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

≤ 1

2p

n−1∑
i=0

1

λ2(i+1)p
ϕp
(
λix, 0

)
(2.23)
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for all x ∈ X. By using the continuity of |‖ · ‖|Y and the inequality (2.23), we have

|‖G(x)− f(x)‖|pY =

∣∣∣∣∥∥∥∥ lim
n→∞

1

λ2n
f(λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

(
1

λ2n
f(λnx)− f(x)

)∥∥∥∥∣∣∣∣p
Y

= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

≤ 1

2p

∞∑
i=0

1

λ2(i+1)p
ϕp(λix, 0)

=
1

2pλ2p
ψ̃(x) (2.24)

for all x ∈ X. From Theorem 1.3 and the inequality (2.24), we have

‖G(x)− f(x)‖Y ≤ 2κY |‖G(x)− f(x)‖| ≤ κY
λ2
ψ̃(x)

1
p

for all x ∈ X. Thus, (2.18) holds for all x ∈ X. Next, we will prove that G is mixed
general additive and quadratic function. By using the continuity of |‖ · ‖|, we have

|‖G(λx+ y) +G(λx− y)−G(x+ y)−G(x− y)− (λ− 1)[(λ+ 2)G(x) + λG(−x)]‖|Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

1

λ2n
f(λn (λx+ y)) + lim

n→∞

1

λ2n
f(λn (λx− y))− lim

n→∞

1

λ2n
f(λn (x+ y))

− lim
n→∞

1

λ2n
f(λn (x−y))− (λ−1)

[
(λ+ 2) lim

n→∞

1

λ2n
f(λnx) + λ lim

n→∞

1

λ2n
f(−λnx)

]∥∥∥∥∣∣∣∣
Y

= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λ2n
f(λn (λx+ y)) +

1

λ2n
f(λn (λx− y))− 1

λ2n
f(λn (x+ y))

− 1

λ2n
f(λn (x− y))− (λ− 1)

[
(λ+ 2)

1

λ2n
f(λnx) + λ · 1

λ2n
f(−λnx)

]∥∥∥∥∣∣∣∣
Y

≤ lim
n→∞

λ2nϕ
( x
λn
,
y

λn

)
= 0 (2.25)

for all x, y ∈ X. This implies that

G(λx+ y) +G(λx− y) = G(x+ y) +G(x− y) + (λ− 1)[(λ+ 2)G(x) + λG(−x)]
(2.26)

for all x, y ∈ X. Since f is an even function and f(0) = 0, from (2.22) we get that G is
also even and G(0) = 0. Since G satisfy (2.26), G is quadratic.

Finally, we prove the uniqueness of G. Let H : X → Y be another general mixed
additive and quadratic function satisfy

‖f(x)−H(x)‖Y ≤
κY
λ2

(
ψ̃(x)

) 1
p

for all x ∈ X. Since T is mixed general additive quadratic, we have

H(λx+ y) +H(λx− y)

=H(x+ y) +H(x− y) + (λ− 1)[(λ+ 2)H(x) + λH(−x)] (2.27)
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for all x, y ∈ X. Setting y = 0 in (2.27), we obtain that H(λx) = λ2H(x), that is,

H(x) =
1

λ2
H(λx) (2.28)

for all x ∈ X. Replacing x by λx in (2.28), we get H(λx) = 1
λ2H(λ2x), that is,

H(x) =
1

λ2
H(λx) =

1

λ2

(
1

λ2
H(λ2x)

)
=

1

(λ2)2
H(λ2x)

for all x ∈ X. Continuing this process, we have

H(x) =
1

λ2n
H(λnx) (2.29)

for all x ∈ X and all n ∈ N. By using the continuity of ‖|·‖|Y , Theorem 1.3 and the
inequality (2.29), we have

|‖H(x)−G(x)‖|pY =

∣∣∣∣∥∥∥∥ lim
n→∞

1

λ2n
f(λnx)− 1

λ2n
H(λnx)

∥∥∥∥∣∣∣∣p
Y

= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2n
H(λnx)

∥∥∥∥∣∣∣∣p
Y

= lim
n→∞

1

λ2np

∣∣∣∣∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2n
H(λnx)

∥∥∥∥∣∣∣∣p
Y

≤ lim
n→∞

1

λ2np

∥∥∥∥ 1

λ2n
f(λnx)− 1

λ2n
H(λnx)

∥∥∥∥p
Y

≤
κpY

λ2npλ2p
ψ̃(λnx)

=
κpY
λ2p

lim
n→∞

1

λ2np
ψ̃(λnx)

=
κpY
λ2p

lim
n→∞

1

λ2np

∞∑
i=1

1

λ2ip
ϕp(λn+ix, 0)

=
κpY
λ2p

lim
n→∞

∞∑
i=1

1

λ2(n+i)p
ϕp(λn+ix, 0)

=
κpY
λ2p

lim
n→∞

∞∑
i=n+1

1

λ2ip
ϕp(λix, 0)

≤
κpY
λ2p

lim
n→∞

∞∑
i=1

1

λ2ip
ϕp(λix, 0)

=
κpY
λ2p
· 0

=0

for all x ∈ X. This implies that

|‖H(x)−G(x)‖|pY = 0.

Then G(x) = H(x) for all x ∈ X. This show that G = H. Thus, G is unique.
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Theorem 2.3. Suppose that

(1) X is a real vector space and (Y, ‖ · ‖Y , kY ) is a real quasi-Banach space.
(2) ϕ : X ×X → [0,∞) is a function such that for all x, y,∈ X,

lim
n→∞

λnϕ
( x
λn
,
y

λn

)
= 0 (2.30)

and

∞∑
i=1

λipϕp
( x
λi
, 0
)
<∞ (2.31)

for all x ∈ X with p = log2κY
2.

(3) f : X → Y is an odd function such that f(0) = 0 and satisfying

‖Dλf(x, y)‖ ≤ ϕ(x, y) (2.32)

for all x, y ∈ X.

Then there exists a unique general mixed addtive and quadratic function Q : X → Y
satisfying

‖f(x)−Q(x)‖Y ≤
κY
λ

(ψ̃(x))
1
p (2.33)

where

ψ̃(x) =

∞∑
i=1

λipϕp
( x
λi
, 0
)

for all x ∈ X.

Proof. (The proof is similar to the proof of Theorem 2.1.)
Since f is odd function, we have f(−x) = −f(x) for all x ∈ X. Letting y = 0 in (2.32),

we get that

‖f(λx)− λf(x)‖Y ≤
1

2
ϕ(x, 0) (2.34)

for all x ∈ X. For any n ∈ N, replacing x by x
λn+1 and multiplying λn both sides of (2.34),

we obtain that

∥∥∥λnf ( x
λn

)
− λn+1f

( x

λn+1

)∥∥∥
Y
≤ λn

2
ϕ
( x

λn+1
, 0
)

(2.35)
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for all x ∈ X and all non-negative integer n. By the same argument of Theorem 2.1, for
any m,n ∈ N with m < n, we have

1

2

∥∥∥λnf ( x
λn

)
− λmf

( x

λm

)∥∥∥p
Y

≤
∣∣∣∥∥∥λnf ( x

λn

)
− λmf

( x

λm

)∥∥∥∣∣∣p
Y

≤
∣∣∣∥∥∥λnf ( x

λn

)
− λn−1f

( x

λn−1

)∥∥∥∣∣∣p
Y

+
∣∣∣∥∥∥λn−1f ( x

λn−1

)
− λn−2f

( x

λn−2

)∥∥∥∣∣∣p
Y

+

· · ·+
∣∣∣∥∥∥λm+1f

( x

λm+1

)
− λmf

( x

λm

)∥∥∥∣∣∣p
Y

≤
∥∥∥λnf ( x

λn

)
− λn−1f

( x

λn−1

)∥∥∥p
Y

+
∥∥∥λn−1f ( x

λn−1

)
− λn−2f

( x

λn−2

)∥∥∥p
Y

+

· · ·+
∥∥∥λm+1f

( x

λm+1

)
− λmf

( x

λm

)∥∥∥p
Y

≤λ
(n−1)p

2p
ϕp
( x
λn
, 0
)

+
λ(n−2)p

2p
ϕp
( x

λn−1
, 0
)

+ . . .+
λmp

2p
ϕp
( x

λm+1
, 0
)

=
1

2p

n−1∑
i=m

λipϕp
( x

λi+1
, 0
)

≤ 1

2p

∞∑
i=m

λipϕp
( x

λi+1
, 0
)

(2.36)

for all x ∈ X. Letting n,m→∞ in (2.36) and using (2.31), we get

lim
n→∞

∥∥∥λnf ( x
λn

)
− λmf

( x

λm

)∥∥∥
Y

= 0 (2.37)

for all x ∈ X. This show that the sequence
{
λnf

(
x
λn

)}
is Cauchy in (Y, ‖ · ‖Y , κY ) for

all x ∈ X. Since (Y, ‖ · ‖Y , κY ) is a real quasi-Banach space, the sequence
{
λnf

(
x
λn

)}
is

convergent for all x ∈ X. So, we can define the function Q : X → Y by

Q(x) = lim
n→∞

λnf
( x
λn

)
(2.38)

for all x ∈ X. Let m = 0 in (2.36), we get

∣∣∣∥∥∥λnf ( x
λn

)
− f(x)

∥∥∥∣∣∣p
Y
≤ 1

2p

n−1∑
i=0

λipϕp
( x

λi+1
, 0
)

(2.39)

for all x ∈ X. By using the continuity |‖ · ‖|Y , Theorem 1.3 and the inequality (2.39), we
have
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|‖Q(x)− f(x)‖|pY =
∣∣∣∥∥∥ lim
n→∞

λnf
( x
λn

)
− f(x)

∥∥∥∣∣∣p
Y

=
∣∣∣∥∥∥ lim
n→∞

(
λnf

( x
λn

)
− f(x)

)∥∥∥∣∣∣p
Y

= lim
n→∞

∣∣∣∥∥∥λnf ( x
λn

)
− f(x)

∥∥∥∣∣∣p
Y

≤ 1

2p

∞∑
i=0

λipϕp
( x

λi+1
, 0
)

=
1

2pλp

∞∑
i=1

λipϕp
( x
λi
, 0
)

=
1

(2λ)p
ψ̃(x) (2.40)

for all x ∈ X. It follows Thereom 1.3 and (2.40) that

‖Q(x)− f(x)‖Y ≤ 2κY |‖Q(x)− f(x)‖|Y ≤
2κy
2λ

(ψ̃(x))
1
p =

κY
λ

(ψ̃(x))
1
p

for all x ∈ X. Thus, (2.33) holds for all x ∈ X. Next, we will prove that Q is a general
mixed additive and quadratic. By using the continuity of |‖ · ‖|, we have

|‖Q(λx+ y) +Q(λx− y)−Q(x+ y)−Q(x− y)− (λ− 1)[(λ+ 2)Q(x) + λQ(−x)]‖|Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

λnf

(
λx+ y

λn

)
+ lim
n→∞

λnf

(
λx− y
λn

)
− lim
n→∞

λnf

(
x+ y

λn

)
− lim
n→∞

λnf

(
x− y
λn

)
−(λ− 1)

[
(λ+ 2) lim

n→∞
λnf

( x
λn

)
+ λ lim

n→∞
λnf

(
− x

λn

)]∥∥∥∣∣∣
Y

= lim
n→∞

∣∣∣∣∥∥∥∥λnf (λx+ y

λn

)
+ λnf

(
λx− y
λn

)
− λnf

(
x+ y

λn

)
− λnf

(
x− y
λn

)
−(λ− 1)

[
(λ+ 2)λnf

( x
λn

)
+ λ · λnf

(
− x

λn

)]∥∥∥∣∣∣
Y

≤ lim
n→∞

λnϕ
( x
λn
,
y

λn

)
= 0 (2.41)

for all x ∈ X. This implies that

Q(λx+ y) +Q(λx− y) = Q(x+ y) +Q(x− y) + (λ− 1)[(λ+ 2)Q(x) + λQ(−x)]

for all x ∈ X. Since f is an odd function and f(0) = 0, from (2.22) we get that G is also
odd and G(0) = 0. Since G satisfy (2.26), G is quadratic.

Finally, we prove the uniqueness of G. Let H : X → Y be another general mixed
additive and quadratic function satisfy

‖f(x)−H(x)‖Y ≤
κY
λ

(
ψ̃(x)

) 1
p

for all x ∈ X. Since T is a general mixed additive and quadratic function, we can show
that T (x) = λnT

(
x
λn

)
. The rest of the proof is similar to the proof of Theorem 2.1.
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Theorem 2.4. Suppose that

(1) X is a real quasi-normed space and (Y, ‖ ·‖Y , kY ) is a real quasi-Banach space.
(2) ϕ : X ×X → [0,∞) is a function satisfying

lim
n→∞

1

λn
ϕ (λnx, λny) = 0 (2.42)

and
∞∑
i=0

1

λip
ϕp
(
λix, 0

)
<∞ (2.43)

for all x ∈ X with p = log2κY
2.

(3) f : X → Y is an odd function such that f(0) = 0 and satisfying

‖Dλf(x, y)‖ ≤ ϕ(x, y)

(2.44)

for all x, y ∈ X.

Then there exists a unique general mixed additive and quadratic functional equation G :
X → Y satisfying

‖f(x)−G(x)‖Y ≤
κY
λ2

(
ψ̃(x)

) 1
p

(2.45)

where

ψ̃(x) =

∞∑
i=1

1

λ2ip
ϕp
(
λix, 0

)
for all x ∈ X.

Proof. By the same argument of Theorem 2.3, we have∥∥∥∥ 1

λ
f(λx)− f(x)

∥∥∥∥
Y

≤ 1

2λ
ϕ(x, 0) (2.46)

for all x ∈ X. For any n ∈ N, replacing x by λnx and multiplying x
λn both side of (2.46),

we get that∥∥∥∥ 1

λn+1
f(λn+1x)− 1

λn
f(λnx)

∥∥∥∥
Y

≤ 1

2λn+1
ϕ(λn, 0) (2.47)

for all x ∈ X and all non-negative integer n. By the same argument of Theorem 2.1, for
any m,n ∈ N with m < n, we have

1

2

∥∥∥∥ 1

λn
f(λnx)− 1

λm
f(λmx)

∥∥∥∥p
Y

≤
∣∣∣∣∥∥∥∥ 1

λn
f(λnx)− 1

λm
f(λmx)

∥∥∥∥∣∣∣∣p
Y

≤ 1

2p

n−1∑
i=m

1

λ(i+1)p
ϕp
(
λix, 0

)
≤ 1

2p

∞∑
i=m

1

λ(i+1)p
ϕp
(
λix, 0

)
(2.48)
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for all x ∈ X. Letting n,m→∞ in (2.48) and using (2.43), we get

lim
n→∞

∥∥∥∥ 1

λn
f(λnx)− 1

λm
f(λmx)

∥∥∥∥
Y

= 0

for all x ∈ X. This show that the sequence
{

1
λn f(λnx)

}
is Cauchy in (Y, ‖ · ‖Y , κY ) for

all x ∈ X. Since (Y, ‖ · ‖Y , κY ) is a real quasi-Banach space, the sequence
{

1
λn f(λnx)

}
is

convergent for all x ∈ X. So, we can define the function Q : X → Y by

Q(x) = lim
n→∞

1

λn
f(λnx) (2.49)

for all x ∈ X. Let m = 0 in (2.48), we have∣∣∣∣∥∥∥∥ 1

λn
f(λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

≤ 1

2p

n−1∑
i=0

1

λ(i+1)p
ϕp
(
λix, 0

)
(2.50)

for all x ∈ X. By using the continuity of |‖ · ‖|Y and the inequality (2.23), we have

|‖Q(x)− f(x)‖|pY =

∣∣∣∣∥∥∥∥ lim
n→∞

1

λn
f(λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

(
1

λn
f(λnx)− f(x)

)∥∥∥∥∣∣∣∣p
Y

= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λn
f(λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

≤ 1

2p

∞∑
i=0

1

λ(i+1)p
ϕp(λix, 0)

=
1

2pλp
ψ̃(x) (2.51)

for all x ∈ X. It follows Thereom 1.3 and (2.51) that

‖Q(x)− f(x)‖Y ≤ 2κY |‖Q(x)− f(x)‖|Y ≤
2κy
2λ

(ψ̃(x))
1
p =

κY
λ

(ψ̃(x))
1
p

for all x ∈ X. Thus, (2.45) holds for all x ∈ X. The rest of the proof is similar to the
proof of Theorem 2.2.

3. Stability of the Functional Equation (1.4) in Quasi-Banach

Spaces

Now, we investigate the stability of the functional equation (1.4) in (β, p)-Banach
spaces by using contractive subbadditive and expansively superadditive.

We recall that a subadditive function is a function ϕ : A→ B, having a domain A and
a codomain (B,≤) that are both closed under addition, with the following property:

φ(x+ y) ≤ φ(x) + φ(y)

for all x, y ∈ A. Now we say that a function φ : A → B is contractively subadditive if
there exists a constant L with 0 < L < 1 such that

φ(x+ y) ≤ L (φ(x) + φ(y))
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for all x, y ∈ A. Then φ satisfies the following properties φ(2x) ≤ 2Lφ(x) and so φ(2nx) ≤
(2L)nφ(x). It follows by the contractively subadditive condition of φ that φ(λx) ≤ λLφ(x)
and so φ

(
λix
)
≤ (λL)iφ(x) for all i ∈ N, all x ∈ A and all positive integer λ ≥ 2.

Similarly, we say that a function φ : A→ B is expansively superadditive if there exists
a constant L with 0 < L < 1 such that

φ(x+ y) ≥ 1

L
(φ(x) + φ(y))

for all x, y ∈ A. Then φ satisfies the following properties φ(x) ≤ L
2 φ(2x) and φ

(
x
2n

)
≤(

L
2

)n
φ(x). We observe that an expansively superadditive mapping φ satisfies the following

properties φ(λx) ≥ λ
Lφ(x) and so φ

(
x
λi

)
≤
(
L
λ

)i
φ(x), i ∈ N for all x ∈ A and all positive

integer λ ≥ 2.

Theorem 3.1. Suppose that

(1) X is a real quasi normed space and (Y, ‖ · ‖, kY ) is a real quasi-Banach spaces.
(2) ϕ : X × X → [0,∞) is expansively superadditive with constant L satisfying
λL < 1.

(3) f : X → Y is an even function such that f(0) = 0 and satisfying

‖Dλf(x, y)‖ ≤ ϕ(x, y) (3.1)

for all x, y ∈ X.

Then there exists a unique general mixed additive and quadratic functional equation Q :
X → Y satisfying

‖Q(x)− f(x)‖Y ≤
kyLϕ(x, 0)

λ(1− (λL)p)
1
p

(3.2)

for all x ∈ X where p = log2kY 2.

Proof. It follows from Theorem 2.1 that for any m,n ∈ N with n > m we obtain that

1

2

∥∥∥λ2nf ( x
λn

)
− λ2mf

( x

λm

)∥∥∥p ≤ ∣∣∣∥∥∥λ2nf ( x
λn

)
− λ2mf

( x

λm

)∥∥∥∣∣∣p
Y

≤ 1

2p

n−1∑
i=m

λ2ipϕp
( x

λi+1
, 0
)

≤ 1

2p

n−1∑
i=m

λ2ip
(
L

λ

)(i+1)p

ϕp (x, 0)

≤ ϕp(x, 0)

(
L

2λ

)p n−1∑
i=m

(λL)ip

≤ ϕp(x, 0)

(
L

2λ

)p ∞∑
i=m

(λL)ip (3.3)

for all x ∈ X. Letting m→∞ in (3.3), we get

lim
m→∞

∥∥∥λ2nf ( x
λn

)
− λ2mf

( x

λm

)∥∥∥p = 0
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for all x ∈ X. This implies that the sequence
{
λ2nf

(
x
λn

)}
is Cauchy in (Y, ‖·‖, kY ) for all

x ∈ X. Since (Y, ‖ · ‖, kY ) is a real quasi-Banach spaces. Then the sequence
{
λ2nf

(
x
λn

)}
is convergent. So we can define the function Q : X → Y by

Q(x) = lim
n→∞

λ2nf
( x
λn

)
for all x ∈ X. It follows from (3.3) that for m = 0, we get that

∣∣∣∥∥∥λ2nf ( x
λn

)
− f (x)

∥∥∥∣∣∣p ≤ϕp(x, 0)

(
L

2λ

)p n−1∑
i=0

(λL)ip (3.4)

for all x ∈ X. By using the continuity |‖ · ‖|Y and (3.4), we have

|‖Q(x)− f(x)‖|pY =
∣∣∣∥∥∥ lim
n→∞

λ2nf
( x
λn

)
− f(x)

∥∥∥∣∣∣p
Y

=
∣∣∣∥∥∥ lim
n→∞

(
λ2nf

( x
λn

)
− f(x)

)∥∥∥∣∣∣p
Y

= lim
n→∞

∣∣∣∥∥∥λ2nf ( x
λn

)
− f(x)

∥∥∥∣∣∣p
Y

≤ lim
n→∞

(
ϕp(x, 0)

(
L

2λ

)p n−1∑
i=0

(λL)ip

)

=ϕp(x, 0)

(
L

2λ

)p
lim
n→∞

n−1∑
i=0

(λL)ip

=ϕp(x, 0)

(
L

2λ

)p ∞∑
i=0

(λL)ip

=

(
L

2λ

)p
ϕp(x, 0)

1− (λL)p
(3.5)

for all x ∈ X. This implies that

|‖Q(x)− f(x)‖|Y ≤
Lϕ(x, 0)

2λ(1− (λL)p)
1
p

(3.6)

It follows from Theorem 1.3 and (3.6) that

1

2kY
‖Q(x)− f(x)‖Y ≤ |‖Q(x)− f(x)‖|Y ≤

Lϕ(x, 0)

2λ(1− (λL)p)
1
p

for all x ∈ X, that is,

‖Q(x)− f(x)‖Y ≤
kyLϕ(x, 0)

λ(1− (λL)p)
1
p
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Thus, (3.2) holds for all x ∈ X. Next, we will show that Q is a general mixed additive
and quadratic. By continuty of |‖·‖|, we have

|‖Q(λx+ y) +Q(λx− y)−Q(x+ y)−Q(x− y)− (λ− 1)[(λ+ 2)Q(x) + λQ(−x)]‖|Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

λ2nf

(
λx+ y

λn

)
+ lim
n→∞

λ2nf

(
λx− y
λn

)
− lim
n→∞

λ2nf

(
x+ y

λn

)
− lim
n→∞

λ2nf

(
x− y
λn

)
−(λ− 1)

[
(λ+ 2) lim

n→∞
λ2nf

( x
λn

)
+ λ lim

n→∞
λ2nf

(
− x

λn

)]∥∥∥∣∣∣
Y

= lim
n→∞

∣∣∣∣∥∥∥∥λ2nf (λx+ y

λn

)
+ λ2nf

(
λx− y
λn

)
− λ2nf

(
x+ y

λn

)
− λ2nf

(
x− y
λn

)
−(λ− 1)

[
(λ+ 2)λ2nf

( x
λn

)
+ λ · λ2nf

(
− x

λn

)]∥∥∥∣∣∣
Y

≤ lim
n→∞

λ2nϕ
( x
λn
,
y

λn

)
≤ lim
n→∞

λ2n
(
L

λ

)n
ϕ(x, y)

= ϕ(x, y) lim
n→∞

(λL)n

= 0

for all x, y ∈ X. This implies that Q is a general mixed addtive and quadratic. Finally,
we will show that Q is unique. Let T be another general mixed addtive and quadratic
functional equation and satisfies (3.2), that is,

‖T (x)− f(x)‖Y ≤
kyLϕ(x, 0)

λ(1− (λL)p)
1
p

for all x ∈ X. By the same argument of Theorem 2.1, we get that

|‖Q(x)− T (x)‖|pY =
∣∣∣∥∥∥ lim
n→∞

λ2nf
( x
λn

)
− λ2nT

( x
λn

)∥∥∥∣∣∣p
Y

= lim
n→∞

∣∣∣∥∥∥λ2nf ( x
λn

)
− λ2nT

( x
λn

)∥∥∥∣∣∣p
Y

= lim
n→∞

λ2n
∣∣∣∥∥∥f ( x

λn

)
− T

( x
λn

)∥∥∥∣∣∣p
Y

≤ lim
n→∞

λ2n
kyLϕ

(
x
λn , 0

)
λ(1− (λL)p)

1
p

=
kyL

λ(1− (λL)p)
1
p

lim
n→∞

λ2nϕ
( x
λn
, 0
)

=
kyLϕ (x, 0)

λ(1− (λL)p)
1
p

lim
n→∞

(λL)n

=0 (3.7)

This implies that

|‖Q(x)− T (x)‖|pY = 0. (3.8)

Then Q(x) = T (x) for all x ∈ X. So, Q is unique. This completes the proof.
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Theorem 3.2. Suppose that

(1) X is a real quasi-normed space and (Y, ‖ · ‖, kY ) is a real quasi-Banach spaces.
(2) ϕ : X × X → [0,∞) is contractive superadditive with constant L satisfying
L
λ < 1.

(3) f : X → Y is an even function such that f(0) = 0 and satisfying

‖Dλf(x, y)‖ ≤ ϕ(x, y) (3.9)

for all x, y ∈ X.

Then there exists a unique general mixed additive and quadratic functional equation Q :
X → Y satisfying

‖Q(x)− f(x)‖Y ≤
kY Lϕ(x, 0)

λ (1− (λL)p)
1
p

(3.10)

for all x ∈ X where p = log2kY 2.

Proof. It follows from 2.5 in Theorem 2.1 that

∥∥f (λx)− λ2f(x)
∥∥
Y
≤ 1

2
ϕ(x, 0) (3.11)

for all x ∈ X. Replacing x in (3.11) by λnx and dividing both side the above inequality
by 1

λ2(n+1) , we obtain that∥∥∥∥ 1

λ2(n+1)
f
(
λn+1x

)
− 1

λ2n
f (λnx)

∥∥∥∥
Y

≤ 1

2λ2(n+1)
ϕ (λnx, 0) (3.12)

for all x ∈ X. It follows from (3.12) that for any m,n ∈ N with m < n, we have

1

2

∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2m
f (λmx)

∥∥∥∥p
Y

≤
∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2m
f (λmx)

∥∥∥∥∣∣∣∣p
Y

≤
∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2(n−1)
f
(
λn−1x

)∥∥∥∥∣∣∣∣p
Y

+

∣∣∣∣∥∥∥∥ 1

λ2(n−1)
f
(
λn−1x

)
− 1

λ2(n−2)
f
(
λn−2x

)∥∥∥∥∣∣∣∣p
Y

· · ·+
∣∣∣∣∥∥∥∥ 1

λ2(m+1)
f
(
λm+1x

)
− 1

λ2m
f (λmx)

∥∥∥∥∣∣∣∣p
Y

≤
∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2(n−1)
f
(
λn−1x

)∥∥∥∥p
Y

+

∥∥∥∥ 1

λ2(n−1)
f
(
λn−1x

)
− 1

λ2(n−2)
f
(
λn−2x

)∥∥∥∥p
Y

· · ·+
∥∥∥∥ 1

λ2(m+1)
f
(
λm+1x

)
− 1

λ2m
f (λmx)

∥∥∥∥p
Y
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≤ 1

(2λ2n)p
ϕp
(
λn−1x, 0

)
+

1

(2λ2(n−1))p
ϕp
(
λn−2x, 0

)
+ . . .+

1

(2λ2(m+1))p
ϕp (λmx, 0)

≤ 1

(2λ2)p

(
1

λ2(n−1)p
ϕp
(
λn−1x, 0

)
+

1

λ2(n−2)p
ϕp
(
λn−2x, 0

)
+ . . .+

1

λ2mp
ϕp (λmx, 0)

)
≤ 1

(2λ2)p

n−1∑
i=m

1

λ2ip
ϕp
(
λix, 0

)
≤ 1

(2λ2)p

n−1∑
i=m

1

λ2ip
(λL)ipϕp(x, 0)

≤ ϕp(x, 0)

(2λ2)p

n−1∑
i=m

(
L

λ

)ip
≤ ϕp(x, 0)

(2λ2)p

∞∑
i=m

(
L

λ

)ip
(3.13)

for all x ∈ X. Taking limit m→∞ in (3.13), we have

lim
m→∞

∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2m
f (λmx)

∥∥∥∥p
Y

= 0

for all x ∈ X. This implies that the sequence
{

1
λ2n f (λnx)

}
is Cauchy in (Y, ‖ · ‖, kY )

for all x ∈ X. Since (Y, ‖ · ‖, kY ) is a real quasi-Banach spaces. Then the sequence{
1
λ2n f (λnx)

}
is convergent. So we can define the function Q : X → Y by

Q(x) = lim
n→∞

1

λ2n
f (λnx) (3.14)

for all x ∈ X. From the inequality (3.13), we know that

∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2m
f (λmx)

∥∥∥∥∣∣∣∣p
Y

≤ϕ
p(x, 0)

(2λ2)p

n−1∑
i=m

(
L

λ

)ip
(3.15)

for all x ∈ X. Let m = 0 in (3.15), we get that

∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

≤ϕ
p(x, 0)

(2λ2)p

n−1∑
i=0

(
L

λ

)ip
(3.16)

By using the continuity |‖ · ‖|Y and (3.16), we have

|‖Q(x)− f(x)‖|pY =

∣∣∣∣∥∥∥∥ lim
n→∞

1

λ2n
f (λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

(
1

λ2n
f (λnx)− f(x)

)∥∥∥∥∣∣∣∣p
Y
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= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− f(x)

∥∥∥∥∣∣∣∣p
Y

≤ lim
n→∞

ϕp(x, 0)

(2λ2)p

n−1∑
i=0

(
L

λ

)ip
≤ϕ

p(x, 0)

(2λ2)p

∞∑
i=0

(
L

λ

)ip
≤ ϕp(x, 0)

(2λ2)p
(

1−
(
L
λ

)p)
for all x ∈ X. This implies that

|‖Q(x)− f(x)‖|Y ≤
ϕ(x, 0)

2λ2
(

1−
(
L
λ

)p) 1
p

(3.17)

for all x ∈ X. It follows from Theorem 1.3 and (3.17) that

1

2kY
‖Q(x)− f(x)‖Y ≤ |‖Q(x)− f(x)‖|Y ≤

ϕ(x, 0)

2λ2
(

1−
(
L
λ

)p) 1
p

for all x ∈ X, that is,

‖Q(x)− f(x)‖Y ≤
kY ϕ(x, 0)

λ2
(

1−
(
L
λ

)p) 1
p

for all x ∈ X. Thus, (3.10) holds for all x ∈ X. Next, we will show that Q is general
mixed additive and quadratic. By continuty of |‖·‖|, we have

|‖Q(λx+ y) +Q(λx− y)−Q(x+ y)−Q(x− y)− (λ− 1)[(λ+ 2)Q(x) + λQ(−x)]‖|Y

=

∣∣∣∣∥∥∥∥ lim
n→∞

1

λ2n
f (λn(λx+ y)) + lim

n→∞

1

λ2n
f (λn(λx− y))− lim

n→∞

1

λ2n
f (λn(x+ y))

− lim
n→∞

1

λ2n
f (λn(x−y)) −(λ−1)

[
(λ+2) lim

n→∞

1

λ2n
f (λnx) + λ lim

n→∞

1

λ2n
f (λn(−x))

]∥∥∥∥∣∣∣∣
Y

= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λ2n
f (λn(λx+ y)) +

1

λ2n
f (λn(λx− y))− 1

λ2n
f (λn(x+ y))

− 1

λ2n
f (λn(x− y)) −(λ− 1)

[
(λ+ 2)

1

λ2n
f (λnx) + λ · 1

λ2n
f (λn(−x))

]∥∥∥∥∣∣∣∣
Y
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= lim
n→∞

1

λ2n
|‖f(λ(λnx) + λny) + f (λ(λnx)− λny)− f (λnx+ λny))

− f (λnx− λny)) −(λ− 1) [(λ+ 2)f (λnx) + λf (λn(−x))]‖|Y

≤ lim
n→∞

1

λ2n
ϕ (λnx, λny)

≤ lim
n→∞

(
L

λ

)n
ϕ(x, y)

=ϕ(x, y) lim
n→∞

(
L

λ

)n
=0

for all x, y ∈ X. This implies that Q is a general mixed addtive and quadratic functional
equation. Finally, we will show that Q is unique. Let T be another general mixed addtive
and quadratic functional equation and satisfies (3.10), that is,

‖T (x)− f(x)‖Y ≤
kY ϕ(x, 0)

λ2
(

1−
(
L
λ

)p) 1
p

for all x ∈ X. By the same argument of Theorem 2.1, we get that

|‖Q(x)− T (x)‖|pY =

∣∣∣∣∥∥∥∥ lim
n→∞

1

λ2n
f (λnx)− 1

λ2n
T (λnx)

∥∥∥∥∣∣∣∣p
Y

= lim
n→∞

∣∣∣∣∥∥∥∥ 1

λ2n
f (λnx)− 1

λ2n
T (λnx)

∥∥∥∥∣∣∣∣p
Y

= lim
n→∞

1

λ2n
|‖f (λnx)− T (λnx)‖|pY

≤ lim
n→∞

1

λ2n
kY ϕ(λnx, 0)

λ2
(

1−
(
L
λ

)p) 1
p

=
kY

λ2
(

1−
(
L
λ

)p) 1
p

lim
n→∞

1

λ2n
ϕ (λnx, 0)

=
kyLϕ (x, 0)

λ(1− (λL)p)
1
p

lim
n→∞

(
L

λ

)n
=0 (3.18)

for all x ∈ X. This implies that

|‖Q(x)− T (x)‖|pY = 0 (3.19)

for all x ∈ X. Then Q(x) = T (x) for all x ∈ X. So, Q is unique. This completes the
proof.
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