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Abstract In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the following general
mixed additive and quadratic functional equation
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where A € N and A # 1 in quasi Banach spaces. Moreover, we use contractive subadditive and expansively
superadditive function to prove stability of the general mixed additive and quadratic functional equation

in quasi Banach spaces.
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1. INTRODUCTION

The stability problem of functional equations was initiated by Ulam [1] in 1940 arising
from concerning the stability of group homomorphisms. These question form is the object
of the stability theory. In 1941, Hyers [2] provided a first affirmative partial answer to
Ulam’s problem for the case of approximately additive mapping in Banach spaces. In 1978,
Rassias [3] gave a generalization of Hyers’s theorem for linear mapping by considering an
unbounded Cauchy difference. A generalization of Rassias’s result was developed by
Gavruta [4] in 1994 by replacing the unbounded Cauchy difference by a general control
function. For more information on that subject and further references we refer to a survey
paper [5] and to a recent monograph on Ulam stability [6]. One way to develop the
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stability of functional equations is to replace the class of Banach spaces by quasi-Banach
spaces.

Definition 1.1. ([7]) Let X be a vector space over the field K, x > 1 and || - || : X — Ry
be a function such that for all x,y € X and all a € K,
(1) ||| = 0 if and only if = 0.

(2) [|az]| = |a| [l]-
@) lz + yll < w(llz] + llyl)-
Then, ||-|| is called a quasi-normed on X. The smallest possible & is called the modulus
of concavity and (X, |||, &)) is called a quasi-normed space. For a quasi-normed space
(X, ||l , &), without loss of generality we can assume x is the modulus of concavity.
(X, |Ill , &) is called a p-normed space if
lz +ylI” < ll=ll” + llyl” (1.1)

for some 0 < p <1 and for all z,y € X.

Definition 1.2. ([8]) Let (X, || - ||, ) be a quasi-normed space.
(1) The sequence {z,} is called convergent sequence if there exists € X such
that lim, o ||zn — z|| = 0, denoted by lim, o T, = .

(2) The sequence {z,} is called Cauchy sequence if lim,, ;oo ||Zn, — || = 0.

(3) (X, || - I, %) is called quasi-Banach space if each Cauchy sequence is a
convergent sequence.

(4) (X, || - ||, ) is p-Banach space if it is p-normed space and quasi-Banach space.

The first difference between a quasi-norm and a norm is that the modulus of concavity
of a quasi-norm is greater than or equal to 1, while that of a norm is equal to 1. The
quasi-norm is not continuous in general, while a norm is always continuous. For example
a noncontinuous quasi-norm, see [[9], example 3]. However, every p-norm is continuous
quasi-norm. Moreover,by Aoki-Rolewicz Theorem [[7], Theorem 5], each quasi-norm is
equivalent to some-p-norm.

The stability results of functional equation in quasi-Banach spaces was first studied
by Najati and Eskandani [10] and Najati and Mogahimi [11]. They establish the general
solution of the functional equation

fRr+y)+ f2r—y) = flz+y) + flx —y) +2f(22) + 2f(z)

and investigate the Hyers-Ulam-Rassias stability of this equation in quasi-Banach spaces.
Then many authors have been interested in this topic; see more [12],[13] and the references
therein.

By the Aoki-Rolewicz Theorem, each quasi-norm is equivalent to some p-norm. Since
it is much easier to work with p-norms than quasi-norms, henceforth we restrict our
attention mainly to p-norms.

However, quantities relevant to the stability of functional equations are not preserve
even by equivalent norms in general. Moreover, the inequality (1.1), which may be seen
to have the modulus of concavity equal to 1, and the continuity of p-norms were used
in many proofs such as in proving the inequalities (3.17) and (3.20) in the proof of [[11],
Theorem 3.2], in proving the inequalities (3.32) and (3.35) in the proof of [[14], Theorem
3.2].

Inspired by the above facts, Dung and Hang [13] were interested in studying the stabil-
ity of functional equations in quasi-Banach spaces where the quasi-norm is not assumed to
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be a p-norm, and thus, the modulus of concavity is greater than 1 and the quasi-norm is
not continuous in general. To overcome the modulus of concavity greater than 1 and the
discontinuity of quasi-norms, They used the squeeze inequality presented in an explicit

revision of Aoki-Rolewicz, Theorem [[9], Theorem 1]. As illustrations, They proved an
extension of the main result of [1 1] in p-Banach spaces to quasi-Banach spaces with better
approximation; see more [15] and [16]. The technique may be used to prove extensions of

other results on the stability of functional equations in p-Banach spaces to quasi-Banach
spaces.

Theorem 1.3. ([J]) Let (Y, | - ||, 5y) be a quasi-normed space, p = log,,... 2, and
1
P

n

n
[lz|lly = inf (Z |asz||§',) fx = in,xi eX,n>1
i=1

i=1
for all z € Y. Then, [|-|||y is a quasi-norm on Y satisfying

e+l < M=l + [yl (1.2)
and

1

2y 1l < lillly < llzlly (1.3)
for all z,y € Y. In particular, the quasi-norm |||-|||y- is p-norm, and if ||-||y- is a norm
then p =1 and [||-[lly = [I-lly-

In 2011, Eskandani et al. [17] established the general solution and investigate the

generalized Hyers-Ulam stability of the following mixed additive and quadratic functional
equation

fQz+y) + f(Az —y)

=f@+y)+fz—y)+A=-DIA+2)f(z) + Af(-2)]
where A € N, A # 1 in quasi-S-normed spaces, where the quasi-norm is assumed to be
p-norm.

In this paper, we use the technique proof of results of [13] to prove the generalized
Hyers-Ulam-Rassais stability of the general mixed additive and quadratic functional equa-
tion

fQz+y)+ f(Ar—y) = fla+y)+ fl@—y)+ (A= DA+2)f (@) + Af(-2)] (1.4)

where A € N and A # 1 in quasi Banach spaces such that the quasi-norm is not assumed
to be p-norm.

2. THE STABILITY OF THE FUNCTIONAL EQUATION (1.4) IN QUASI
BANACH SPACES
In this section, we prove the Hyer-Ulam-Rassias stability of the general mixed additive
and quadratic functional equation in quasi-Banach spaces. Thoughout of this section, let

X be a real vector space and (Y, | - ||y, ky) be a real quasi-Banach spaces. Let f be a
mapping of X into Y. Conveniently, we define

Diaf(z,y) =fx+y)+ fAr —y) = flx +y) — f(z —y)
—(A=DIA+2)f(z) + Af(—2)]
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forall z,y € X, e Nand \ # 1.

Theorem 2.1. Suppose that
(1) p: X x X — [0,00) is a function satisfying

e () o o
and
i AZiP P (%0) < 0 (2.2)
=1

for all x,y € X with p = log,,,, 2.
(2) f: X =Y is an even function such that f(0) =0 and satisfying

IDxf (2, 9)|| < o(,y) (2.3)

forallz,y € X.

Then there exists a unique general mized additive and quadratic functional equation Q :
X =Y satisfying

=

1@ = Q@)lly < 5 (¥(=)) (2.4)

where

o0

bla) =Y NP (5.0)

i=1
forallz € X.

Proof. Let € X. Since f is an even function, we get f(z) = f(—x). Replacing y by 0
in (2.3), we have

o(x,0) > If(Az) + f(Az) = f(z) = f(z) = (A= DIA+2)f (=) + Af (—2)]lly
= H2f (A\z) — 2)\2f(:v)||y
=2||f (Az) = X f(z)|, (2.5)
for all z € X. Replacing x by y75r and multiplying A2" on the both sides in (2.5) with
non-negetive integers n, we get

2n

Jpens () =20 (el = e (o)
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for all z € X and all non-negative integers n. By using Theorem 1.3, for any m,n € N
with m < n, we have

3 s () =1 (5)

p

Y

<l () e (I

s (-l emn(z)

< [l () s () e () s (2,

<[l () s (e s (525) -0 ()
e

Y

e () -wenr (I

L leer (=) =22 (5=l
oe|prens () s ()]
SHﬁ”f(i)—W‘”J‘(An D)+ e (=) v (=)l
+ ‘Az(mmf(xmﬂ) >\2mf</\M)H
S%@ (50)+ 5 (0.0) +o+ 2 (0)
- 3 S (50)
< 2% i°°m ww(;jl,o) (2.6)

for all z € X. Letting n,m — oo in (2.6) and using (2.2), we get

s (55) =2 ()l =

for all z € X. This show that the sequence {A\?"f (%)} is Cauchy in (Y, - |ly,sy) for
all z € X. Since (Y] - |ly,ry) is a real quasi-Banach space, the sequence {A*"f (5%)}
is convergent for all x € X. So, we can define the function @ : X — Y by

Q(z) = lim )\2"]“( ) (2.7)

n—oo

for all x € X. Let m =0 in (2.6), we get

n—1
P 1 ; T
S 27 )‘2 pgop ()\i+1 ’ 0) (28)
Y 1=0

e () - oo
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for all x € X. By using the continuity of ||| - |||y and the inequality (2.8), we have
Q@) = @) = [ tim a2y (55) = @[

s (1 ()10
- [l G5 - o

Y

n—oo

p
Y

il )\2ipspp (

T — i1’ O)

oo

:ﬁ Z X (Az 0)

1=1
1 -
= 553579 (@) (2.9)

for all x € X. Tt follows from (2.9) that we get

Sl
|
X
>.<
=
—
8
S~—"
S

1Q(2) = f(@)lly <28y [[|Q(x) = f(@)]lly < 2‘%( o)y =5

Thus, (2.4) holds for all x € X. Next, we will prove that @ is mixed general additive
quadratic. By using the continuity of ||| - |||, we have

Q0+ 1) + Q0 ~ ) ~ Qe + 1) ~ @l — 1) ~ (A~ DA+ 2)QL) + Q-

= s () e (P5) = s (555

= () 0o s (55 +mons (<)]),
(522 (52) o2

e (M) e faeaer () o ()l

n—oo

= lim H

for all x,y € X. This implies that

QA +y)+QA\r—y) =Q(z+y) + Qz —y) + (A= 1)[(A+2)Q(z) + AQ((—ff))]
2.10

for all z,y € X. Since f is an even function and f(0) = 0, from (2.7), we get that Q is
also even and Q(0) = 0. Since @ satisfy (2.10), Q is quadratic.

Finally, we prove the uniqueness of ). Let T : X — Y be another general mixed
additive quadratic function satisfy

3 =

1f@) = T@)ly < 55 (¥a)
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for all x € X. Since T is mixed general additive quadratic, we have
TOz+y)+TOx—y)=T(x+y)+T(x—y)+ (A= 1D[N+2)T(x) + \T(—z)]

(2.11)
for all x € X. Setting y = 0 in (2.11), we obtain that
T(\x) = \*T(x) (2.12)
for all 2 € X. Replacing = by ¥ in (2.12), we get
—r(*
T(z) = A>T (A) (2.13)

for all 2 € X. Replacing x by ¥ in (2.13), we get

r (X) =NT ()\2) (2.14)

for all x € X. From (2.13) and (2.14) for all n € N, we have
x x
T(x) = \2T(z) = A2 (/\2 (v)) — (A\2)2T (ﬁ)

for all x € X. By induction process, we have
2n
T(z) = \"T ( An)

for all x € X and all n € N. By using the continuity of ||| - |||y and Theorem 1.3, we have
y g Yy s
P __ 2n 2n z p
) =@ = tim 27 (57) =7 ()|,
: 2n 2n < P
Jim [[eer (55) =1 ()l
: 2np
Jm vl (55) =7 Gl
: 2np i _ el H
Jim 21 (55) -7 (50)
. omp Y (7, T
am AT (w(/\”))
v -~ T
lim )\Q”I’w(ﬁ)

)\217 n—oo

_ /‘Gy 2(n+i) ( x )
= e i 2 AT
P oo

_5y 2ip p( )
s D A (550

IN

IN

for all x € X. This implies that

1Q(z) — T()||[y = 0.

Then Q(z) = T(z) for all z € X. So @ is unique. L]
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Theorem 2.2. Suppose that

(1) X is a real quasi-normed space and (Y, |||y, ky) is a real quasi-Banach space.
(2) p: X x X — [0,00) is a function satisfying

1
nh_}rr;o 2 ? (Atz, A\"y) =0 (2.15)
and
Z )\%pcpp (N'z,0) < oo (2.16)
i=1

for all x € X with p = log,,., 2.
(3) f: X =Y is an even function such that f(0) =0 and satisfying

DA f (@, )|l < e(@,y) (2.17)

forallz,y € X.

Then there exists a unique general mized additive and quadratic functional equation G :
X — Y satisfying

S=

1£@) = G@)lly < 5 (4)) (2.18)
where

- 1 .

#o) =3 5" (Vo.0)
forallx € X.
Proof. By the same argument of Theorem 2.1, we also have

27 (Ax) = Xf(@)|], < lz,0) (2.19)

for all z € X. Replacing = by A"z and Multiply ﬁ on the both sides in (2.19), we
have

1
-~ 3=

1
< (N, 0) (2.20)
Y

n+1
(A" ) oN2(n+1)

f(\"z)

1
H A\2(n+1) f



Stability of the General Mixed Additive and Quadratic ... 1307

for all x € X and all non-negative integers n. By using Theorem 1.3 and the equality
(2.20), for any m,n € N with m < n, we have

1 P

5 |00 = g roma)|

<||5es ) — s rma)||

1 n 1 m+1 1 m+1 PN :
= Wf@\ f)*mf(/\ x)*mf()\ T) — o ( ) .

4 P 1 ‘1 1 p
n m m m

< Non (N'z) — Wﬂ)\ ) Y+ ‘H)\z(mﬂ)f()\ T) — o (A"z) .

1 n 1 m—+2 b 1 )\n+2 1 m—+1 b
< \en (N'z) — mf(/\ €z + mf( T) — mf()\ ) ;

p
m+1 m
| s 7070 = s |
< L pora|] L1 L por|
< )\m mf( ) Y+ mf( n— )x)—mf( ) .
+1 ?
+~'+H‘/\2<m+1)f( oGl |
< |+ L porta L -1 L pona)||
< )\an( ) — mf( x)y‘*‘ mf( n—1)z)— )\Q(an( )Y
1 m+1 1 m P

< 1 (A" 1z,0) + L (A" 22,0) + ... + L (A"l 0)
= 21),\2np<'0 ’ 2p/\2(n—1)p¢ ’ 2pA2(m+1)P"D ’

L= L 2.21
= 27 _Z )\2(i+1)ps0 ()\ m70> ( . )
for all x € X. Letting n,m — oo in (2.21) and using (2.16), we get

: 1 2n 1 2m
s H)\Q"xf()\ )= ey /X)) =0

for all 2 € X. This show that the sequence { s34= f(A*"z)} is Cauchy in (Y, || - ||y, £y for

all z € X. Since (Y, || - ||y, ky) is a real quasi-Banach space, the sequence {ﬁf()@"z)}
is convergent for all z € X. So we can define the function H : X — Y by
. 1 n
G(z) = nll_}IIolo o f(\"z) (2.22)
for all x € X. Let m =0 in (2.21) we get
1 n
H 2/ (A7) - <% Z AQ(ZH)p Xz, 0) (2.23)
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for all x € X. By using the continuity of ||| - |||y and the inequality (2.23), we have
P
1G (@) = f@)ly =] lim 52 f(N"z) = f(2)
%
P
= i (s - ) )
p
— n
=i || o - s
I 1 ;
<% £ N2+ Dp " (N'z,0)
- 2.24
W¢($) (2.24)

for all z € X. From Theorem 1.3 and the inequality (2.24), we have
1
IG(x) = F@)lly < 26y |G () — F()| < 5 2 5 ()

for all x € X. Thus, (2.18) holds for all z € X. Next, we will prove that G is mixed
general additive and quadratic function. By using the continuity of ||| - |||, we have

GOz +y) + Gz —y) - Gz +y) - G(fE —y) - (A =D+ 2)G( ) +AG(=2)]ly

lim g OV O )+ lim s O (=)~ Tim <o OV (1 49)

Clim — O (3—y)) — (A1) [(Hz)nlgr;o Sz fO) + A lim. )\inf(—)\”x)}

n—oo \2n .
= Jim || S O ) O 0 =) O )
Y
< Jm e (3 )
Y (2.25)

for all x,y € X. This implies that

GAx+y)+Ghx—y)=Gx+y)+Glxz—y)+ (A—=D[A+2)G(x) + \G(—=x)]
(2.26)
for all ,y € X. Since f is an even function and f(0) = 0, from (2.22) we get that G is
also even and G(0) = 0. Since G satisfy (2.26), G is quadratic.
Finally, we prove the uniqueness of G. Let H : X — Y be another general mixed
additive and quadratic function satisfy

|f@) = H@)ly < 55 (b))
for all x € X. Since T is mixed general additive quadratic, we have
HM\x+y)+H(Ax —y)
=H(xz+y)+Hx—y)+ A= D[N+ 2)H(z) + \H(—z)] (2.27)
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for all x,y € X. Setting y = 0 in (2.27), we obtain that H(\x) = A\2H(z), that is,

H(z) = %H(/\x) (2.28)

for all z € X. Replacing z by Az in (2.28), we get H(A\zx) = 35 H(Az), that is,
1[(1 ., 1 )
H(x)= )\QH()\ x) = 2 ( H(\ )) = ()\Q)QH()\ x)
for all x € X. Continuing this process, we have

1 n
)\QHH()\ x) (2.29)
for all x € X and all n € N. By using the continuity of |||-|||y-, Theorem 1.3 and the

inequality (2.29), we have

H(z) =

1 1 P
_ p — : _ n = n
18) = Gy = || tim, 5 f ) = )|
1 p
nlgr;OH 2 (N'z) — )\%H()\"x) y
— lim —— ||| = f" —H)\")p
= n1_>n;0 )\an )\2n f( ) - AQ ( v
lim L L A" H(\'x ’
nlaoo \2np )\Z”f( IE) B )\T ( ) v
HY T\
S )\an)\2p Q’Z)(A IL’)
K“Y 1 n
=13, Jim A%pw(A z)
P
. ~ n+z
)\21) nﬁoo )\27117 Z )\2117 )\ 0)

o0

HY 1 P\t
)\217 n1—>oo Z WQ ()‘ x, 0)

i=1

KY
T2 nh—>oo Z )\QZP Nz 0)

1=n—+1
”Y
- >\2p nh—>oo )\211” )
“Y
A2 0
=0

for all z € X. This implies that

1H (@) — G} =o.

Then G(z) = H(z) for all 2 € X. This show that G = H. Thus, G is unique. L]
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Theorem 2.3. Suppose that

(1) X is a real vector space and (Y, || - ||y, ky) is a real quasi-Banach space.
(2) p: X x X = [0,00) is a function such that for all x,y,€ X,

e ) o -
and
;/\ PP (ﬁ,o) < (2.31)

for all x € X with p = log,,,, 2.
(3) f: X =Y is an odd function such that f(0) =0 and satisfying

DA f (2, 9)ll < ez, y) (2.32)

forallz,y € X.

Then there exists a unique general mized addtive and quadratic function Q : X — Y
satisfying

1£@) = Q@)ly < S (i) (2:33)
where

hla) = iwp (559)
forallz e X.

Proof. (The proof is similar to the proof of Theorem 2.1.)
Since f is odd function, we have f(—z) = —f(z) for all x € X. Letting y = 0 in (2.32),
we get that

170) = Af (@)l < 5e(,0) (2.34)

for all z € X. For any n € N, replacing « by 5+ and multiplying A" both sides of (2.34),
we obtain that

|

1 () = ()l = 3o () 25
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for all x € X and all non-negative integer n. By the same argument of Theorem 2.1, for
any m,n € N with m < n, we have

3 [ (o) = ()

s () =1 (=)

P"f ) - G+ s (=
s () - R

1 () = Gl e

s o) =0 Gl

A ) )
n—1

1 . T
— wp, P
2P - AT (A%H’O)

=m

ZL i (MH 7 0) (2.36)

p

Y

IN

IN

)= (=)l
)= (=)l

IN

+

for all z € X. Letting n,m — oo in (2.36) and using (2.31), we get

lim
n—oo

vr(z) ()], -0 =

for all z € X. This show that the sequence {A"f (%)} is Cauchy in (Y, - |y, sy) for

all z € X. Since (Y, | - ||y, ky) is a real quasi-Banach space, the sequence {\"f (%)} is
convergent for all x € X. So, we can define the function @ : X — Y by

Q(z) = lim )\”f( ) (2.38)

n—oo

for all x € X. Let m = 0 in (2.36), we get

|

for all z € X. By using the continuity || - |||-, Theorem 1.3 and the inequality (2.39), we
have

Xf (55) = f@)

p 1% x
w
g 2p > )\ ()\z'+1 , 0) (2.39)
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p

Q) = £y = || 1

hm A" f ( )—f(x)

Y
Jm, (1 (55) = @)l

Jin [[lxns (55) - [

for all x € X. Tt follows Thereom 1.3 and (2.40) that

2Ky

|Q(@) - F@ly < 26y 1Q() - F@)llly < TE@(@)F = Z-((x))?

for all z € X. Thus, (2.33) holds for all x € X. Next, we will prove that @ is a general

mixed additive and quadratic. By using the continuity of ||| - |||, we have

QA +y) + Q(Az —y) = Q(z +y) — Az —y) — (A= DA+ 2)Q(z) + AQ(—2)][lly
lim A”f()\x+y) A”f( >—1im A”f<x+y)
n—00 A AT n—00 AT

~ lim A" (”C;y) = [0 fim ey () i s (<50
T ()\x)\:y) g <)\x)\n y) _anf (x;;y>

e(252) o nfeme (2) s (EL
< lim A"y (i i)

T n—oo

= lim H

—0 (2.41)
for all z € X. This implies that

QA +y)+ QA —y) = Qz +y) + Qz —y) + A = DA +2)Q(z) + AQ(—=)]
for all z € X. Since f is an odd function and f(0) = 0, from (2.22) we get that G is also
odd and G(0) = 0. Since G satisfy (2.26), G is quadratic.

Finally, we prove the uniqueness of G. Let H : X — Y be another general mixed
additive and quadratic function satisfy

1

1) = H@)lly < 5= (9())”

for all x € X. Since T is a general mixed additive and quadratic function, we can show
that T'(z) = A"T (5% ). The rest of the proof is similar to the proof of Theorem 2.1. =
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Theorem 2.4. Suppose that

(1) X is a real quasi-normed space and (Y, |- ||y, ky) is a real quasi-Banach space.
(2) ¢: X x X = [0,00) is a function satisfying

n]l_}HQlo I\ Az, \"y) =0 (2.42)
and

i P 0) < oo (2.43)
=0

for all x € X with p = log,,, 2.
(3) f: X =Y is an odd function such that f(0) =0 and satisfying

DA f (2, )|l < e(2,y)
(2.44)

forallz,y € X.

Then there exists a unique general mized additive and quadratic functional equation G :
X — 'Y satisfying

1@ = G@)lly < 55 (4))” (2.45)

where
Z )\sz )
forallx € X.
Proof. By the same argument of Theorem 2.3, we have
1 1
- _ < — .
5700 - 1) < et (2.4

for all z € X. For any n € N, replacing x by A"z and multiplying 7 both side of (2.46),
we get that

l

for all x € X and all non-negative integer n. By the same argument of Theorem 2.1, for
any m,n € N with m < n, we have

(A™,0) (2.47)

1
nl n
o 1) = 0| < g

1 p p
o) < || frore - grom
3w =0 e
ST@ Z >\(z‘+1)p90 (A, 0)
IR
S?PZ e (Ve 0) (2.48)
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for all x € X. Letting n,m — oo in (2.48) and using (2.43), we get

1 1
n11_>1r010 H)\nf()\"x) - /\mf()\mx) y =0
for all z € X. This show that the sequence { % f(A\"z)} is Cauchy in (Y, | - |ly, sy ) for
all z € X. Since (Y, || - |y, 5y) is a real quasi-Banach space, the sequence {5 f(A"xz)} is
convergent for all x € X. So, we can define the function @ : X — Y by
Q) = lim <= f(\'a) (2.49)
for all x € X. Let m = 0 in (2.48), we have
1, L
1 Ae) = f(@) §fjg; Z+Dp Xz, 0) (2.50)
for all x € X. By using the continuity of ||| - |||y and the inequality (2.23), we have
P
Q) ~ F@)I =| | tim <L) — (@)
Y
P
| i, (Fr0r0) - @) )
P
-t [,
I 1 ;
§27P — )\(i+1)p90 ()\ m70)
L 2.51
() (251)
for all x € X. Tt follows Thereom 1.3 and (2.51) that
2Ky

1Q() = @y < 26y 1Q(@) — F@)lly < SL@@)> = ()

for all x € X. Thus, (2.45) holds for all z € X. The rest of the proof is similar to the
proof of Theorem 2.2. [

3. STABILITY OF THE FUNCTIONAL EQUATION (1.4) IN QUASI-BANACH
SPACES
Now, we investigate the stability of the functional equation (1.4) in (3, p)-Banach
spaces by using contractive subbadditive and expansively superadditive.

We recall that a subadditive function is a function ¢ : A — B, having a domain A and
a codomain (B, <) that are both closed under addition, with the following property:

Pz +y) < o(x) + o(y)

for all xz,y € A. Now we say that a function ¢ : A — B is contractively subadditive if
there exists a constant L with 0 < L < 1 such that

¢z +y) < L(o(x) +o(y))
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for all z,y € A. Then ¢ satisfies the following properties ¢(22) < 2L¢(z) and so ¢(2"x) <
(2L)"¢(x). Tt follows by the contractively subadditive condition of ¢ that ¢(Ax) < ALH(x)
and so ¢ (A'z) < (AL)'¢(x) for all i € N, all z € A and all positive integer A > 2.

Similarly, we say that a function ¢ : A — B is expansively superadditive if there exists
a constant L with 0 < L < 1 such that

Bz +9) > 7 (6(z) +6(9))

for all x,y € A. Then ¢ satisfies the following properties ¢(x) < %¢(2x) and ¢ (%) <
(%)n ¢(x). We observe that an expansively superadditive mapping ¢ satisfies the following

properties ¢(Az) > 2¢(x) and so ¢ (&) < (%)Z ¢(x), i € Nfor all z € A and all positive
integer A > 2.
Theorem 3.1. Suppose that

(1) X is a real quasi normed space and (Y, |- ||, ky) is a real quasi-Banach spaces.

(2) p : X x X — [0,00) is expansively superadditive with constant L satisfying
AL < 1.

(3) f: X =Y is an even function such that f(0) =0 and satisfying

IDAf(z,y)ll < o(x,y) (3.1)
forallz,y € X.

Then there exists a unique general mized additive and quadratic functional equation @ :
X — Y satisfying

106~ f@)ly < =R

(3.2)

for all x € X where p = logyy,, 2.

Proof. Tt follows from Theorem 2.1 that for any m,n € N with n > m we obtain that
1 x T \||P T T P
31 () =2 ()l < [es () = (55
2 H / AP / Am - ! AR ! A/ y
n—1
1 %p p x
S?}ZA 4 (MH’O)

n—1 (i+1)p
1 (L
. AHP </\> ¢ (z,0)

i=m

pn—1

<p@0)(57) Lo

L p;o :
< P — AL)™ .
<0 (55) L0 (33
for all x € X. Letting m — oo in (3.3), we get
: 2n i _\2m i
N}EHOOHA f(m) A f()\m)

p

=0
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for all z € X. This implies that the sequence {\*"f (%)} is Cauchy in (Y, |||, ky) for all
x € X. Since (Y, |- ||, ky) is a real quasi-Banach spaces. Then the sequence {A?" f (5% )}
is convergent. So we can define the function @ : X — Y by

for all x € X. Tt follows from (3.3) that for m = 0, we get that

T L\P 4
b (o) - s @l <o (55) Sowr 34
i=0
for all z € X. By using the continuity ||| - ||y and (3.4), we have
1) ~ @I = || 1im x>f (=) = f@)||]

Y
Jm (1 (55) = 1),
=t s (55) =@l

gg(@m@ffw@

=0

LN\? ¢P(x,0
_ (X ¢F(x,0) (3.5)
22 ) 1—(AL)P
for all x € X. This implies that

Ly(z,0)

Q) — f(z)|lly < m

It follows from Theorem 1.3 and (3.6) that

Ly(x,0)

1
gy 1900 = J@)le <11QG) = F@lly < 2y

for all z € X, that is,

I2@) = @)y < =00
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Thus, (3.2) holds for all 2 € X. Next, we will show that @) is a general mixed additive
and quadratic. By continuty of |||-|||, we have

1Az + ) + QAz — ) — Q(z +y) — Q(x — y) — (A — DA+ 2)Q(x) + AQ(—)][|y
Jm g () mons (Pt ) = i ()
—nh_{réox\%f( y) —(A - ){()“"2) lim /\an( )+/\ fim Aan( )\”)”HY
AMf(A:c+y>+A%f<x/\> Aznf(x+y>
—A?”f< A,f’) —O = 1) [+ 2N () + AT (‘%)”HY
< Jim ¥ (55 57)

< lim A% (i) o (21)

= lim H

n—oo
= ¢(z,y) lim (AL)
=0
for all z,y € X. This implies that @ is a general mixed addtive and quadratic. Finally,

we will show that @ is unique. Let T be another general mixed addtive and quadratic
functional equation and satisfies (3.2), that is,

kyLo(x,0)
IT(2) = f@)lly < —— "=
ENVIDE
for all x € X. By the same argument of Theorem 2.1, we get that

1) Ty = fim x2er () —xer ()]
Jin (e (55) =2 ()1

Jim 2|7 (55) -7 (),
lim 27 kyL‘/’(,\nvO)
nmee N1 = (AL)F
kyL on

BRI *(30)
:M lim (AL)"

(1= (AL)7)F m
0 3.7)

IN

This implies that

Q) = T()|lly = 0. (3.8)

Then Q(z) = T(x) for all x € X. So, @ is unique. This completes the proof. L]
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Theorem 3.2. Suppose that

(1) X is a real quasi-normed space and (Y, || - ||, ky) is a real quasi-Banach spaces.
(2) ¢ : X x X — [0,00) is contractive superadditive with constant L satisfying
L
¥ <1
X

(3) f: X =Y is an even function such that f(0) =0 and satisfying

IDAf (2, y)ll < o(x,y) (3.9)

forallz,y € X.

Then there exists a unique general mized additive and quadratic functional equation @ :
X — Y satisfying

ky Lp(x,0
1Q(a) - Fla)ly < L0 (3.10)
AL = (AL)P)?
for all x € X where p = logyy,,, 2.
Proof. Tt follows from 2.5 in Theorem 2.1 that
9 1
| (Az) = N f(2)], < seo(x,0) (3.11)

2

for all x € X. Replacing x in (3.11) by A"z and dividing both side the above inequality
by ﬁ, we obtain that

1

1
LS e

H)\z i+1)f( i ) )\znf()‘n x) (A"z,0) (3.12)

for all x € X. It follows from (3.12) that for any m,n € N with m < n, we have

3wt 0 s
m o/ (A7)
A2 A2 v
n 1 N
= H sond X'0) = g f YT
1 n 1 n-— g 1 n— 1 n— i
< || oo - st )|+ st 01 = s )|
1 m - p
"*H‘Xgmﬂ)f@ a) = g f () .,
7]0 (A\"z) #f (/\n_lx) P 4 ;f ()\"_155) _ #f ()\"_237) P
A2n )\2(”*1) v )\Q(nfl) )\2(7172) .

1 p

1 m m
*mem ) = g ()

Y
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1
(2)\2n p

1
(222 1))p

" (A", 0) + i ()\”*Qx, 0) +...+ P (A"z,0)

1
)\2(n—2)p

1
(2221
)\n 1 )

n— 1 m
2)\2 ()\ T ¢ (A 2x,0)+...+A2mP¢p()\ x,O))

n—1 1
= (2)\2);) Z )\sz@ (A'z,0)

IN

IN

(3.13)

IA
I
P
X'
S~—
=2
gk
7 N
>
N———
<

for all x € X. Taking limit m — oo in (3.13), we have

p
=0
Y

. 1 1
lim 2 (\'zx) — Ame()\ x)

m—r oo ‘

for all z € X. This implies that the sequence {3 f (A"z)} is Cauchy in (Y, - |, ky)
for all z € X. Since (Y,| - ||,ky) is a real quasi-Banach spaces. Then the sequence
{5#f (A\"x)} is convergent. So we can define the function @ : X — Y by

Q(z) = lim )\%f(/\"z) (3.14)

n—oo

for all € X. From the inequality (3.13), we know that

| @ e

for all x € X. Let m =0 in (3.15), we get that
p P n—1 ip
¢"(z,0) L
< - 3.16
| <o 2 (3 (210
i=0

By using the continuity ||| - |||y and (3.16), we have

n

1

p X
O = || <210

<
y (2P

K2

I
3

1
2 f W) = £(@)

p

Q) = 7 = | fin, 157 ") - 70

Y
p

n—oo

i (53 (070) - 1(0))

Y
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p

Y

Q) - f@)ly < —2&0 (3.17)

2 (1 (4))’

1 o(z,0
o Q) = fF(@)lly < Q) = f(@)llly < I
. ) L oae(i- ()

for all x € X, that is,

1) - @)y < —re@0

v (1= (3)7)

for all x € X. Thus, (3.10) holds for all € X. Next, we will show that @ is general
mixed additive and quadratic. By continuty of |||-|||, we have

RMAz +y) + Q(Az —y) — Qz + y) —Qz—y) - (A -DIA+ 2)@( ) +2Q(=)]llly

lim g f VO 49) 4 Tim o f (VO — ) — Tim S (V' + )

- Jim e (=) =) [0042) tim S (7)) B f (o) ||
= i || 5 OO 5 90) 4 3 OOt = ) 535/ 00 +)

O ) O D [0 2) 5 () 3 e O]

Y
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— tim o [FOO) +A"9) +  (AV"@) = A7) — f (N + A"y)
= f (/\”CU —A") —A =D A +2)f (A"x) + Af (A" (=2))]llly
hm )\; o (A"z, A"y)

) L\"
< lim. (/\> o(x,y)

. L\"
=p(z,y) lim (A)

=0

for all z,y € X. This implies that @ is a general mixed addtive and quadratic functional
equation. Finally, we will show that @ is unique. Let T be another general mixed addtive
and quadratic functional equation and satisfies (3.10), that is,

17() — F@)lly < —x2@0

v (1= ))

for all x € X. By the same argument of Theorem 2.1, we get that

1 1 P
1Q() — T@)If =|| lim ~5f (A" )—ATT(A" 2|,
-t o rora] |

= i o I ) = T ()|

1 kyp(N'z,0)

)\( ()\L) p)p n—roe \ A
0 (3.18)
for all z € X. This implies that
lQ(z) = T(@)[ly =0 (3.19)
for all x € X. Then Q(z) = T(x) for all x € X. So, @ is unique. This completes the
proof. [
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