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Abstract In this work, we propose two new iterative schemes by modifying the shrinking projection
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1. Introduction

Let C be a nonempty subset of a real Hilbert space H. Let 4 denote the diagonal
of the cartesian product C × C, i.e., 4 = {(x, x) : x ∈ 4}. Consider a directed graph
G such that the set V (G) of its vertices coincides with C, and the set E(G) of its edges
contains all loops, i.e., E(G) ⊇ 4. We assume G has no parallel edge. So we can identify
the graph G with the pair (V (G), E(G)).

A mapping S : C → C is said to be
• G-contraction if S satisfies the conditions:
(G1) S is edge-preserving, i.e.,

(x, y) ∈ E(G)⇒ (Sx, Sy) ∈ E(G),
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(G2) S decreases weights of edges of G, i.e., there exists δ ∈ (0, 1) such that

(x, y) ∈ E(G)⇒ ‖Sx− Sy‖ ≤ δ‖x− y‖.

• G-nonexpansive if S satisfies the condition (G1) and
(G3) S non-increases weights of edges of G, i.e.,

(x, y) ∈ E(G)⇒ ‖Sx− Sy‖ ≤ ‖x− y‖.

The fixed point set of S is denoted by F (S) that is F (S) = {x ∈ C : x = Sx}. It is
well known that a G-nonexpansive is nonexpansive (S : C → C is nonexpansive if and
only if ‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C). In 2008, Jachymski [1] introduced the notion
of G-contraction and studied combining two concepts of fixed point theory and graph
theory in a metric space with a directed graph. Moreover, he obtained existence theorem
under some conditions. By using Jachymski idea, Aleomraninejad et al. [2] introduced
the concept of G-nonexpansive mappings in Banach spaces with directed graphs and
presented some iterative scheme results for G-contractive and G-nonexpansive mappings.
Later on, a class of G-nonexpansive mappings in both Hilbert spaces and Banach spaces
is more general than that of G-contractions. Several authors have investigated fixed
point theorems for nonexpansive mappings and the structure of their fixed point sets
on both Hilbert spaces and Banach spaces, see [3–18]. In 2016, Tripak [19] proved the
weak and strong convergence of a sequence {xn} generated by the Ishikawa iteration to
some common fixed points of two G-nonexpansive mappings defined on a Banach space
endowed with a directed graph. Common fixed points of some nonlinear mappings have
been studied by many authors.
In 2018, Suparatulatorn et al. [20] used the concept of the work of [19, 24], modified the
following iteration scheme: x0 ∈ C,

yn = (1− αn)xn + αnS1xn,
xn+1 = (1− βn)S1xn + (1− βn)S2yn, n ≥ 0,

where {αn} and {βn} are sequences in (0, 1) and S1, S2 : C → C are G-nonexpansive
mappings. Also, they proved weak and strong convergence for approximating common
fixed points of two G-nonexpansive mappings in a uniformly convex Banach space X
endowed with a graph under this iteration.

Recently, Sridarat et al. [25] proved weak and strong convergence theorems of SP
iteration[26] for common fixed point of three G-nonexpansive mappings in uniformly con-
vex Banach spaces endowed with a directed graph under some suitable control conditions.
Moreover, they gave some numerical examples for confirming the main theorem and com-
pared convergence rate between SP iteration and Noor iteration [27]. The following
iterative process is known as SP iteration:

x1 ∈ H be an arbitrarily,
xn+1 = αnzn + (1− αn)S1zn,
zn = βnyn + (1− βn)S2yn,
yn = γnxn + (1− γn)S3xn,
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and the Noor iteration is defined inductively by
x1 ∈ H be an arbitrarily,
xn+1 = αnxn + (1− αn)S1zn,
zn = βnxn + (1− βn)S2yn,
yn = γnxn + (1− γn)S3xn, n ≥ 1,

where {αn}, {βn} and {γn} are sequences in [0,1] and C is a convex subset of a normed
space X and S1, S2, S3 : C → C are three G-nonexpansive mappings. They compared
the convergence speed of Noor, and SP iteration, and obtained the SP iteration converges
faster than the Noor iteration.

In 2008, Takahashi et al. [28] introduced the following modification of Mann’s iteration
method [29] which is called shrinking projection method for finding a common fixed point
of a countable family of nonexpansive mappings {Sn}.

u0 ∈ H be an arbitrarily,

C1 = C, u1 = PC1
x0,

yn = αnun + (1− αn)Snun,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖un − z‖},
un+1 = PCn+1

x0.

They proved that if αn ≤ a for all n ≥ 1 and for some 0 < a < 1, then the sequence {un}
converges strongly to PF (S)x0.

Inspired by Sridarat et al. [25] and Takahashi et al. [28], we modify the shrinking
projection method combining SP and Noor iterations. We present two difference conver-
gence theorems in Hilbert spaces with a directed graph. Numerical examples are given to
show its efficiency in Euclidian spaces R3. Some comparison to various methods are also
provided in this paper.

2. Preliminaries and Lemmas

This section contains some definitions and lemmas that play an essential role in our
analysis. The strong (weak) convergence of a sequence {xk}k∈N to x is denoted by xk →
x (xk ⇀ x), respectively.

Definition 2.1. The symbol G−1 is called the conversion of a graph G and it is a graph
obtained from G by reversing the direction of edges as:

E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.

Definition 2.2. The sequence {xj}Nj=0 of N+1 vertices is called a path in G from x to y of
length N(N ∈ N∪ 0), where x0 = x, xN = y and (xj , xj+1) ∈ E(G) for j = 0, 1, ..., N − 1.

Definition 2.3. If there is a path between any two vertices of the graph G, then a graph
G is said to be connected.

Definition 2.4. If (x, y) and (y, z) ∈ E(G), then (x, z) ∈ E(G), This property is called
the transitivity of a directed graph G = (V (G), E(G)).

Definition 2.5. Let G = (V (G), E(G)) be a directed graph. The set of edges E(G) is
said to be convex if for any (x, y), (z, w) ∈ E(G) and for each t ∈ (0, 1), then (tx + (1 −
t)z, ty + (1− t)w) ∈ E(G).
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Definition 2.6. Let x0 ∈ V (G) and A subset of V (G). We say that
(i) A is dominated by x0 if (x0, x) ∈ E(G) for all x ∈ A;
(ii) A dominates x0 if for each x ∈ A, (x, x0) ∈ E(G).

Lemma 2.7. If the sequence {xn} in a Banach space X converges weakly to x ∈ X, such
that

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ X, y 6= x. Then X is said to satisfy the Opial’s condition.

Lemma 2.8. [21] Let C be a nonempty, closed and convex subset of a Hilbert space H
and G = (V (G), E(G)) a directed graph such that V (G) = C. Let T : C → C be a G-
nonexpansive mapping and {xn} be a sequence in C such that xn ⇀ x for some x ∈ C.
If, there exists a subsequence{xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all k ∈ N and

{xn − Txn} → y for some y ∈ H. Then (I − T )x = y.

Lemma 2.9. Let H be a real Hilbert space. Then

‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,

for all t ∈ [0, 1] and x, y ∈ H.

Let C be a nonempty, closed and convex subset of a Hilbert space H. The nearest point
projection of H onto C is denoted by PC , that is, ‖x−PCx‖ ≤ ‖x− y‖ for all x ∈ H and
y ∈ C. Such PC is called the metric projection of H onto C. We know that the metric
projection PC is firmly nonexpansive, i.e.,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉

for all x, y ∈ H. Furthermore, 〈x− PCx, y − PCy〉 ≤ 0 holds for all x ∈ H and y ∈ C.

Lemma 2.10. [22] Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Given x, y, z ∈ H and also given a ∈ R, the set

{v ∈ C : ‖y − v‖2 ≤ ‖x− v‖2 + 〈z, v〉+ a}

is convex and closed.

Lemma 2.11. [23] Let C be a nonempty, closed and convex subset of a real Hilbert space
H and PC : H → C be the metric projection from H onto C. Then the following inequality
holds:

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H,∀y ∈ C.

3. Main Results

In this section, by using the shrinking projection method, we obtain two different strong
convergence theorems for finding the same common fixed point of three G-nonexpasive
mappings in real Hilbert spaces with graphs under some suitable conditions.

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) is convex.
Let S1, S2, S3 : C → C be G-nonexpansive mappings such that F := F (S1) ∩ F (S2) ∩
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F (S3) 6= ∅, F is closed and F (Si) × F (Si) ⊆ E(G) for all i = 1, 2, 3.. Let {xn} be
sequence generated by x1 ∈ C, C1 = C

yn = (1− µn)xn + µnS1xn,

zn = (1− βn)yn + βnS2yn,

wn = (1− αn)zn + αnS3zn,

Cn+1 = {z ∈ Cn : ‖wn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x1;∀n ≥ 1.

where {αn}, {βn}, {µn} ⊂ (0, 1). Assume that the following conditions hold :
(i) {xn} dominates p for all p ∈ F and if there exists a subsequence {xnk

} of {xn} such
that xnk

⇀ w ∈ C, then (xnk
, w) ∈ E(G);

(ii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) 0 < lim inf
n→∞

µn ≤ lim sup
n→∞

µn < 1.

Then the sequence {xn} converges strongly to PFx1.

Proof. We split the proof into five steps.

Step 1. Show that PCn+1
x1 well-defined for each x1 ∈ C. As shown in Theorem 3.2

of Tiammee et al. [5], F (Si) is convex for all i = 1, 2, 3. It follows from the assumption
that F is closed and convex. Hence, PFx1 is well-defined. We see that C1 = C is closed
and convex. Assume that Cn is closed and convex. From the definition of Cn+1 and
Lemma 2.10, we get Cn+1 is closed and convex. Let p ∈ F . Since {xn} dominates
p and S1 is edge-preserving, we have (S1xn, p) ∈ E(G). This implies that (yn, p) =
((1−µn)xn+µnS1xn, p) ∈ E(G) and S2 is edge-preserving (S2yn, p) ∈ E(G). This implies
that (zn, p) = ((1 − βn)yn + βnS2yn, p) ∈ E(G) by E(G) is convex. Since S1, S2, S3 is
edge-preserving,we have

‖wn − p‖ ≤ (1− α)‖zn − p‖+ αn‖S3zn − p‖
≤ (1− αn‖zn − p‖+ αn‖zn − p‖
= ‖zn − p‖
≤ (1− βn)‖yn − p‖+ βn‖S2yn − p‖
≤ (1− βn)‖yn − p‖+ βn‖yn − p‖
= ‖yn − p‖
≤ (1− µn)‖xn − p‖+ µn‖S1xn − p‖
≤ (1− µn)‖xn − p‖+ µn‖xn − p‖
= ‖xn − p‖.

We can conclude that p ∈ Cn+1, so F ⊂ Cn+1. This implies that PCn+1x1 is well-
defined.

Step 2. Show that lim
n→∞

‖xn − x1‖ exists. Since F is a nonempty, closed and convex

subset of H, there exists a unique v ∈ F such that v = PFx1. From xn = PCnx1 and
xn+1 ∈ Cn,∀n ∈ N, we get

‖xn − x1‖ ≤ ‖xn+1 − x1‖,∀n ∈ N. (3.1)
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On the other hand, as F ⊂ Cn, we obtain

‖xn − x1‖ ≤ ‖v − x1‖,∀n ∈ N. (3.2)

It follows from (3.1) and (3.2) that the sequence {xn} is bounded and nondecreasing.
Therefore limn→∞ ‖xn − x1‖ exists.

Step 3. Show that xn → w ∈ C as n → ∞. For m > n, by the definition of Cn, we
see that xm = PCm

x1 ∈ Cm ⊂ Cn. From Lemma 2.11, we have

‖xn − xm‖2 ≤ ‖xn − x1‖2 − ‖x1 − xm‖2.

We obtain that {xn} is a Cauchy sequence. Hence, there exists w ∈ C such that xn → w
as n→∞. In particular, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)

Step 4. Show that w ∈ F. Since xn+1 ∈ Cn, it follows from (3.3) that

‖wn − xn‖ ≤ ‖wn − xn+1‖+ ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ → 0,

as n→∞. From {xn} dominates p for all p ∈ F and Lemma 2.9, we get

‖wn − P‖2 ≤ ‖(1− αn)(zn − p) + αn(S3zn − p)‖2

= αn‖S3zn − p‖2 + (1− αn)‖zn − p‖2 − αn(1− αn)‖S3zn − zn‖2

≤ ‖zn − p‖2 − αn(1− αn)‖S3zn − zn‖2

= ‖(1− βn)(yn − p) + βn(S2yn − p)‖2 − αn(1− αn)‖S3zn − zn‖2

= βn‖S2yn − p‖2 + (1− βn)‖yn − p‖2 − βn(1− βn)‖S2yn − yn‖2

−αn(1− αn)‖S3zn − zn‖2

≤ ‖yn − p‖2 − βn(1− βn)‖S2yn − yn‖2 − αn(1− αn)‖S3zn − zn‖2

= ‖(1− µn)(xn − p) + µn(S1xn − p)‖2 − βn(1− βn)‖S2yn − yn‖2

−αn(1− αn)‖S3zn − zn‖2

= µn‖S1xn − p‖2 + (1− µn)‖xn − p‖2 − µn(1− µn)‖S1xn − xn‖2

−αn(1− αn)‖S2yn − yn‖2 − αn(1− αn)‖S3zn − zn‖2

≤ ‖xn − p‖2 − µn(1− µn)‖S1xn − xn‖2 − βn(1− βn)‖S2yn − yn‖2

−αn(1− αn)‖S3zn − zn‖2.

This implies that

‖xn − p‖2 − ‖wn − p‖2 ≥ µn(1− µn)‖S1xn − xn‖2 + βn(1− βn)‖S2yn − yn‖2

+αn(1− αn)‖S3zn − zn‖2. (3.4)

From our assumptions (i)-(iii) and (3.4) , we have

lim
n→∞

‖S1xn − xn‖ = lim
n→∞

‖S2yn − yn‖ = lim
n→∞

‖S3zn − zn‖ = 0 (3.5)

From (3.5), we have

‖yn − xn‖ = ‖(1− µn)(xn − xn) + µn(S1xn − xn)‖
= µn‖S1xn − xn‖ → 0, as n→∞. (3.6)
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It follows from (3.5) that

‖wn − zn‖ = ‖(1− αn)(zn − zn) + αn(S3zn − zn)‖
= αn‖S3zn − zn‖ → 0, as n→∞. (3.7)

It follows from (3.5) and (3.7) that

‖zn − xn‖ = ‖zn − wn‖+ ‖wn − xn‖ → 0, as n→∞. (3.8)

By Lemma 2.8, it follows from our assumption (i), and (3.5)-(3.8) that w ∈ F .

Step 5. Show that w = PFx1. From xn = PCn
x1, we have

〈x1 − xn, xn − p〉 ≥ 0,∀p ∈ Cn.

By taking the limit xn → w, we have

〈x1 − w,w − p〉 ≥ 0,∀p ∈ Cn.

Since F ⊂ Cn, so w = PFx1.

Theorem 3.2. Let C be a nonempty closed and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) is convex.
Let S1, S2, S3 : C → C be G-nonexpansive mappings such that F := F (S1) ∩ F (S2) ∩
F (S3) 6= ∅, F is closed and F (Si)×F (Si) ⊆ E(G) for all i = 1, 2, 3. Let {xn} be sequence
generated by x1 ∈ C, C1 = C

yn = (1− µn)xn + µnS1xn,

zn = (1− βn)xn + βnS2yn,

wn = (1− αn)xn + αnS3zn,

Cn+1 = {z ∈ Cn : ‖wn − z‖ ≤ ‖xn − z‖},
xn+1 = PCn+1

x1;∀n ≥ 1.

where {αn}, {βn}, {µn} ⊂ (0, 1). Assume that the following conditions hold :
(i) {xn} dominates p for all p ∈ F and if there exists a subsequence {xnk

} of {xn} such
that xnk

⇀ w ∈ C, then (xnk
, w) ∈ E(G);

(ii) 0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) 0 < lim inf
n→∞

µn ≤ lim sup
n→∞

µn < 1.

Then the sequence {xn} converges strongly to PFx1.

Proof. We split the proof into four steps.

Step 1. By the same proof in Step 1 of Theorem 3.1, we get PFx1 is well-define and
Cn+1 is closed and convex. Let p ∈ F . Since {xn} dominates p and S1 is edge-preserving,
we have (S1xn, p) ∈ E(G). This implies that (yn, p) = ((1− µn)xn + µnS1xn, p) ∈ E(G)
and S2 is edge-preserving (S2yn, p) ∈ E(G). This implies that (zn, p) = ((1 − βn)xn +
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βnS2yn, p) ∈ E(G) by E(G) is convex. Since S3 is edge-preserving,we have

‖wn − p‖ ≤ (1− αn)‖xn − p‖+ αn‖S3zn − p‖
≤ (1− α)‖xn − p‖+ αn‖zn − p‖
≤ (1− αn)‖xn − p‖+ αn((1− βn)‖xn − p‖+ βn‖S2yn − p‖)
≤ (1− αn)‖xn − p‖+ αn((1− βn)‖xn − p‖+ βn‖yn − p‖)
≤ (1− αn)‖xn − p‖+ αn((1− βn)‖xn − p‖+ βn((1− µn)‖xn − p‖

+µn‖S1xn − p‖)
≤ ‖xn − p‖.

We can conclude p ∈ Cn+1 and F ⊂ Cn+1. This implies that PCn+1x1 is well-defined.

Step 2. Show that lim
n→∞

‖xn − x1‖ exists. Since F is a nonempty, closed and convex

subset of H, there exists a unique v ∈ F such that v = PFx1. From xn = PCnx1 and
xn+1 ∈ Cn,∀n ∈ N, we get

‖xn − x1‖ ≤ ‖xn+1 − x1‖,∀n ∈ N. (3.9)

On the other hand, as F ⊂ Cn, we obtain

‖xn − x1‖ ≤ ‖v − x1‖,∀n ∈ N. (3.10)

It follows from (3.9) and (3.10) that the sequence {xn} is bounded and nondecreasing.
Therefore lim

n→∞
‖xn − x1‖ exists.

Step 3. Show that xn → w ∈ C as n→∞. For m > n by the definition of Cn, we see
that xm = PCm

x1 ∈ Cm ⊂ Cn. From Lemma 2.11, we have

‖xn − xm‖2 ≤ ‖xn − x1‖2 − ‖x1 − xm‖2.

From Step 3. we obtain that {xn} is a Cauchy sequence. Hence, there exists w ∈ C such
that xn → w as n→∞ particular, we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.11)

Step 4. Show that w ∈ F. Since xn+1 ∈ Cn, it follows from (3.11) that

‖wn − xn‖ ≤ ‖wn − xn+1‖+ ‖xn+1 − xn‖ ≤ 2‖xn+1 − xn‖ → 0, (3.12)
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as n→∞. From {xn} dominates p for all p ∈ F and Lemma 2.9, we get

‖wn − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖S3zn − zn‖2

= αn‖S3zn − p‖2 + (1− αn)‖xn − p‖2 − αn(1− αn)‖S3zn − xn‖2

≤ αn‖zn − p‖2 + (1− αn)‖xn − p‖2 − αn(1− αn)‖S3zn − xn‖2

= αn‖(1− βn)(xn − p) + βn(S2yn − p)‖2 + (1− αn)‖xn − p‖2

−αn(1− αn)‖S3zn − xn‖2

= αn(βn‖S2yn − p‖2 + (1− βn)‖xn − p‖2 − βn(1− βn)‖S2yn − xn‖2)

+(1− αn)‖xn − p‖2 − αn(1− αn)‖S2z3 − xn‖2

≤ αn(βn‖yn − p‖2 + (1− βn)‖xn − p‖2 − βn(1− βn)‖S2yn − xn‖2)

+(1− αn)‖xn − p‖2 − αn(1− αn)‖S2z3 − xn‖2

≤ αnβn‖yn − p‖2 + αn(1− βn)‖xn − p‖2 − αnβn(1− βn)‖S2yn − xn‖2

+(1− αn)‖xn − p‖2 − αn(1− αn)‖S2z3 − xn‖2

= αnβn(µn‖S1xn − p‖2 + (1− µn)‖xn − p‖2 − µn(1− µn)‖S1xn − xn‖2)

+αn(1− βn)‖xn − p‖2 − αnβn(1− βn)‖S2yn − xn‖2

+(1− αn)‖xn − p‖2 − αn(1− αn)‖S3zn − xn‖2

= ‖xn − p‖2 − αnβnµn(1− µn)‖S1xn − xn‖2

−αnβn(1− βn)‖S2yn − xn‖2 − αn(1− αn)‖S3zn − xn‖2.

This impiles that

‖xn − p‖2 − ‖wn − p‖2 ≥ αnβnµn(1− µn)‖S1xn − xn‖2 − αnβn(1− βn)‖S2yn − xn‖2

−αn(1− αn)‖S3zn − xn‖2. (3.13)

From our assumptions (i)-(iii) and (3.13) , we have

lim
n→∞

‖S1xn − xn‖ = lim
n→∞

‖S1yn − xn‖ = lim
n→∞

‖S1zn − xn‖ = 0. (3.14)

This impiles that

lim
n→∞

‖yn − xn‖ = lim
n→∞

‖S1xn − xn‖ = 0. (3.15)

It follow from (3.14) and (3.15) that

‖S2yn − yn‖ ≤ ‖S2yn − xn‖+ ‖xn − yn‖ → 0, as n→∞. (3.16)

It follows from (3.14) that

lim
n→∞

‖zn − xn‖ = lim
n→∞

‖S2yn − xn‖ = 0. (3.17)

From (3.14) and (3.17), we have

‖S3zn − zn‖ ≤ ‖S3zn − xn‖+ ‖xn − zn‖ → 0 as n→∞. (3.18)

By Lemma 2.8 and assumption (i), we obtain w ∈ F from (3.14), (3.16) and (3.18).
By the same proof in Step 5 of Theorem 3.1, we get w = PFx1.
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4. Numerical Experiments

We give example and numerical results for supporting our theorem. Moreover, we
compere convergence rate of all iterations in Theorem 3.1 and Theorem 3.2.

Example 4.1. Let H = R3 and C = [0,∞)×[0,∞)×[0,∞). Assume that (x, y) ∈ E(G) if
and only if x1, y1 ≤ 0.3, 0.3 ≤ x2, y2 ≤ 1.7 and 0.5 ≤ x3, y3 or x = y for all x = (x1, x2, x3),
y = (y1, y2, y3) ∈ C. Define mappings S1, S2, S3 : C → C by

S1x = (
sin2 x

7
, 1, 1);

S2x = (0, log(
x

1.54
) + 1, 1);

S3x = (0, 1, tan
(x− 1)√

7.45
+ 1)

for all x = (x1, x2, x3) ∈ C. It’s easy to check that S1, S2 and S3 are G-nonexpensive and
F (S1) ∩ F (S2) ∩ F (S3) = {(0, 1, 1)}. On the other hand, S1 is not nonexpansive since
for x = (0.31, 1, 2) and y = (0.22, 1, 2), this implies that ‖S1x − S1y‖ > 0.40 > ‖x − y‖.
S2 is not nonexpansive since for x = (5,−0.5, 2.11) and y = (5,−0.5, 2.28), we have
‖S2x−S2y‖ > 0.08 > ‖x−y‖. Moreover, S3 is not nonexpansive since for x = (1, 1.19, 0.2)
and y = (1, 1.02, 0.2), we have ‖S3x− S3y‖ > 0.30 > ‖x− y‖.

We provide a numerical example of Theorem 3.1 and Theorem 3.2, and choose αn =
βn = µn. The stopping criterion is defined by ‖xn+1 − xn‖ < 10−9. The results of the
proposed algorithm are shown in Table 1 and Figures 1–2.

Table 1. Comparison of the methods in Theorem 3.1 and Theorem 3.2
of Example 4.1 by Choice 1 and Choice 2.

x1 = (0.16, 1, 1.48) x1 = (0.16, 1, 1.48)
{αn} SP-S Noor-S SP-S Noor-S
4n2 + 12

20n2 + 10
No. of Iter 77 248 71 219

Cpu (Time) 0.0464 0.0191 0.0400 0.0201
8n2 + 14

20n2 + 10
No. of Iter 43 119 40 99

Cpu (Time) 0.0361 0.0161 0.0349 0.0174
12n2 + 16

20n2 + 10
No. of Iter 35 65 32 57

Cpu (Time) 0.0354 0.0156 0.0375 0.0158
16n2 + 18

20n2 + 10
No. of Iter 32 42 28 36

Cpu (Time) 0.0352 0.0149 0.0353 0.0257
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Figure 1. Error plotting for an initial point (0.49, 1.61, 7.48) in Table 1.

Figure 2. Error plotting for an initial point (0.36, 0.75, 1.39) in Table 1.



1296 Thai J. Math. Vol. 18 (2020) /K. Kankam et al.

Remark 4.2. From Figure 1 and Figure 2, it is shown that the modified SP iteration has
requires a small number of iteration than the modified Noor iteration, while the modified
Noor iteration getting CPU time smaller than modified SP iteration.
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