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Abstract This study investigated the exponential function projective synchronization between two
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control. Based on the construction of improving piecewise Lyapunov-Krasovskii functionals merged with
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synchronization of these networks were developed in terms of LMIs. Finally, a numerical example was

produced to demonstrate the effectiveness of this proposed theoretical research.
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1. INTRODUCTION

A neural network is a model of computation motivated by the biological neural net-
works in the brain with combination of neurons and synapses. The knowledge in term of
a neural network has been applied in various fields such as computer science, psychology,
physics, biology, artificial intelligence, electrical engineering and mathematics. Moreover,
a neural network is derived from the connecting of neurons with synchronization which
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is important and interesting in natural science, biological and engineering networks. Ap-
plications of neural networks have been used in processing units and learning algorithms.
Mathematical definitions of a neural network are proposed in [1], from the point of graph
theory which defines a neural network as a directed graph. [2—14], neural networks draw
extensive attention from many researchers due to their important applications in various
branches including image processing, associative memory, nonlinear programming, pat-
tern recognition, robotics and optimization problems.

It is widely realized that time delays are always necessary in neural networks because
the finite exchange speed of neurons and amplifiers, may lead to network instability or
inconstancy. Thus, neural networks with time delay have attracted a lot of research
attentions, as reported in [2-6, 8-10, 12-14]. Moreover, time-varying delays of net-
works have been considered a valuable subject converting interval time-varying delays
[4, 8], distributed time-varying delay [2, 3, 5, 9, 10, 12—-15], discrete time-varying delays
[2, 3, 5, 9, 10, 12-14], mixed time-varying delays [2, 3, 5, 6, 8-10, 12—14], and coupling
delays [16—19]. This paper studies mixed time-varying delays, including both discrete and
distributed time-varying delay. [3] investigated the issue of lag exponential synchroniza-
tion between two delayed neural networks via adaptive intermittent control. [9] studied
the topic of discrete-time stochastic recurrent neural networks with multiple time-varying
delays in the leakage term and impulsive effects. [13] investigated the lag synchronization
of chaotic neural networks with discrete and distributed delays, via periodically intermit-
tent control.

Up to now, synchronization has been considered an active issue with regard to neural
networks, which can be used to explain process in nature, society, technology, physical and
biological systems. There are many potential applications in various engineering fields
including harmonic oscillation generation, secure communication, image processing, me-
chanical engineering. Synchronization can be used to define processes relating to weaving
the threads of execution of several tasks, without destroying the shared data but prevent-
ing deadlocks and race conditions; in addition synchronization occurs between the network
nodes to make sure the send and receive streams operate correctly and to prevent the
collision of information. Several types of synchronization have been defined: projective

synchronization [4, 6, 7, 10, 11, 16, 18, 20-26], cluster synchronization [17, 27-29], quasi-
synchronization [19], complete synchronization [30], lag synchronization [3, 13, 19, 31],
finite-time synchronization [15, 32] and outer synchronization [25, 33]. Among them,

projective synchronization characterized by a scaling factor «, has been widely proposed
to acquire a general type of proportional relationships between the drive and response
systems. [20] studied the problem of exponential synchronization of a couple of chaotic
systems with delays via intermittent control. In [7], Xing and et.al. provided periodically
exponential synchronization for delayed recurrent neural networks via intermittent con-
trol by applying Lyapunov functional theory, mathematical induction and an inequality
technique. To the best of our knowledge, there have been no publications of the proposed
exponential projective synchronization of a neural network.

In the past few years, the drive and response systems of the networks have received more
attention to derive some criteria conditions of networks, for example: complex networks

[15, 22, 33], neural networks [3, 6, 13], dynamic networks [33] and chaotic networks [23, 31].
Moreover, several kinds of control have been broadly considered in various networks, in-
cluding: feedback control [6, 16, 20, 23, 28, 29], intermittent control [3, 7, 11, 13, 15,

, 22-26, 28, 31-34], adaptive control [6, 7, 10, 15-18, 20-22, 24, 25, 28, 33, 34], pinning
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FIGURE 1. The sketch map of the intermittent controls for periodically.

control [6, 10, 17, 18, 21, 22, 24, 29, 34], impulsive control [32] and open-loop control [6].
Intermittent control has become a strategy of an increasing attention because of its wide
use in engineering applications. A sketch map of the intermittent control as shown in
Figure 1. Periodically intermittent control, as a discontinuous feedback control with both
fixed constant and width of the control [7, 13, 19, 32]. On the other hand, nonperiodically
(aperiodically) intermittent control, allows as both the constant and width of the control
to be variable [3, 26, 34]. Clearly, aperiodically intermittent control is more possible than
intermittent controls for periodically.

The topic of pinning adaptive complex synchronization between two delayed dynami-
cal networks was studied in [22], based on the Lyapunov stability theory and periodically
intermittent control. [28] proposed adaptive pinning cluster synchronization of directed
heterogeneous dynamic networks via intermittent control by applying the Lyapunov func-
tion and the analysis technique where the adaptive update law for each controlled node
was based on the information of the synchronous state of the controlled node. In [24],
the issue of adaptive synchronization control for direct networks with node balance was
investigated via intermittent control by constructing a piecewise auxiliary function and
utilizing the piecewise analysis method and series theory. Based on the construction of
a piecewise continuous Lyapunov function, the problem of exponential adaptive pinning
cluster synchronization for directed community networks was investigated via aperiod-
ically intermittent control as in [27]. [10] presented the problem of function projective
synchronization of neural networks with asymmetric coupling involving discrete inter-
vals and distributed time-varying delays and uncertainties via adaptive pinning controls
and adaptive control. In [3], the topic of synchronization of drive and response com-
plex networks with time-delay was studied by utilizing the Lyapunov stability theory, the
periodically adaptive intermittent pinning control technique, the differential inequality
method and mathematical induction to derive the theoretical results. Later, the adaptive
finite-time hybrid projective synchronization of complex networks with distributed delay
was studied via intermittent control in [15].

Based on the discussion above, the current study investigated the adaptive exponential
function projective synchronization of drive-response neural networks between two delays
via hybrid intermittent feedback control. The main works of this research are:

(i) The mixed time-varying delays, including both discrete interval and distributed
time-varying delays are considered as continuous functions that belong to the speci-
fied intervals, which mean that the upper and lower boundaries for these delays exist
while the support necessary to find the function derivative is similar to the time-delay in
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(ii) For the control technique, exponential function projective synchronization is stud-
ied using hybrid feedback control and adaptive periodically intermittent control [20].
Based on the construction of improving piecewise Lyapunov-Krasovskii functionals

merged with Leibniz-Newton’s formula [2, 4, 5, 8 9, 12, 14, 15, 29, 32] and applying
the piecewise analysis method [3], adaptive periodically pinning intermittent control
[15, 19, 24, 34] and mathematical induction [7, 17, 22, 23], some sufficient conditions

for exponential function projective synchronization of these systems are first produced in
terms of LMIs. Numerical simulation is given to describe the usefulness of this proposed
result.

The arrangement of this study is organized as follows. Section 2 gives some model
description and mathematical preliminaries. The problem of exponential function pro-
jective synchronization between two neural networks delays are derived in Section 3. In
Section 4, numerical simulation is given to demonstrate the effectiveness of this proposed
theoretical result. The conclusion is provided in Section 5 and references are cited.

Notations. This paper will be uses the following notation: R™ denotes the n-
dimensional space and || . || denotes the Euclidean vector norm; A7 denotes the transpose
of matrix A; A is symmetric if A = AT,

Consider the drive-response neural networks as follows:

t

2(t) = —Az(t)+ Bf(2(t)) + Cg(z(t — h(t))) + D ) h(z(s))ds,

z2(t) = @(t),t€[-7,0],7 = max{hy,dp}, (1.1)
y(t) = —Ay(t) +Bf(y(t)) + Cg(y(t —h(t))) + D e h(y(s))ds + % (1),

y(t) = ¢(t),t € [77—’ 0]; T= max{hla dM}v (12)

where z(t) = [z1(t), 22(t), ..., zn(t)] € R™ and y(t) = [y1(¢t),y2(¢), ..., yn(t)] € R™ are the
drive system’s state vector and the response system’s state vector of the neural networks,
f(-),g(-) and h(-) are the neuron activation functions, A = diag(a1, ag,...an) > 0 is the
state feedback coefficient matrix, B, C and D are connection weight matrices, % (t) € R"
is the control input, w is a period width, and n is the number of these neural networks.

The initial conditions ¢(t) and ¢(t) denote continuous vector-valued initial functions
of t € [-1,0].

To prove the main theorem, we need the following Assumptions and Definition.

Assumption 1. The time-varying delay functions h(t) and d(t) satisfy the condition
0<h(t)<hy,0<d(t) <dy and 0 < h(t) <8< 1.

Assumption 2. ([10]) Let us denote

Fx(t)) = fly®) = fla(t)z(1),
Ga(t=n(t)) = gyt =h@))) — g(at)=(t = h(1))),
H(xz(t)) = hyt)) —hla(t)z(t)).
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The activation functions f(-), g(-) and h(-) satisfy the Lipschitz constants f > 0,g > 0
and h > 0 such that

[Fz@)] < fly(t) —alt)z(8)],
Gzt =h(t)] < glyt—n(t)) —at)z(t = ()],
[H(z(t)| < hly(t) —a(t)=z(1)],

where F, G and H are positive constant matrices and

= dlag{f?al = 1527"'7”’}7
= diag{gi,i =1,2,...,n},
= diag{h;,i=1,2,...,n}.

T

Definition 1.1. ([6]) Network (1.3) with mixed time-varying delays, which including
both discrete interval and distributed time-varying delay is said to achieve exponential
function projective synchronization (EFPS) if there exist .# > 1,6 > 0, a continuously
differentiable scaling function «(¢) such that

Jim [l2(0)]| = Jim [ly(t) — a(t)=(t)] < A6 - awlle™, ¥t >0, i=1,2,..N,

where || - || stands for the Euclidean vector norm.

To verify the stability of the synchronized states, we establish the synchronized error
x(t) in the form z(t) = y(t) — «(t)z(t), where the continuous function a(t) # 0 is bounded
and a differentiable function. Then, the neural networks with mixed time-varying delays
of synchronized error between the drive-response neural networks given in (1.1) and (1.2)
can be written by

#(t) = yt) —a@)(1) - a(t)=(1),
= —Aly(t) —a@)zt)] + B[f(y(t)) — at)f(2(1))]
+C [g(y(t = h(t))) — a(t)g(=(t = h(t)))] — a(t)=(t)

h(y(s))ds — a(t h(z(s))ds
[ w0 —a@ [ (o)

The state hybrid feedback controller % (t) defines the following equation:

+D + U () (1.3)

U (t) =%(t) + %(1), (1.4)
where
%(t) = a(t)zx(t) + Ba(t) f(2(t) — Bf(a(t)z(t) + Ca(t)g( t)))
—Cgla(t)=(t — h(#)) + Dal(t) /t o HCDs =D / +(s))ds,
Up(t) = —Ki(t)e PEt)g(t) — Ky(t)e M=) a(t — h(t))

¢
—K5(t)e #t=tn) x(s)ds.
t—d(t)
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Then, substituting (1.4) into (1.3), we have the following:
t
z(t) = —Ax(t)+ BF(x(t)) + CG(z(t — h(t))) + D h(z(s))ds
t—d(t)
—Ky(t)e Pt g () — Ky(t)e "tz (t — h(t))
t

—Ky(t)e#t=tn) / x(s)ds. (1.5)
t—d(t)
The adaptive intermittent control gain is given by K;(t), ¢ = 1,2 and 3 where
K;(0), t=0,
K;(t) = K;(nw +9), t € [nw,nw + 4], (1.6)
0, t e (nw+96, (n+ w),
with the updating law
Ki(t) = qzl(t)z(t), t € [nw, nw + 4],
Ky(t) = gzl (t)x(t — h(t)), t € [nw,nw + 0], (1.7)
t
Ka(t) = quT(t)/ 2(s)ds, t € [nw, nw + 4],
t—d(t)

where ¢;,7 = 1,2, 3 are constants.
Next, we need the following Lemmas to complete the proof of our result.

Lemma 1.2 ([35]). For any constant symmetric positive definite matrizc M > 0, scalar
v > 0, and vector function w : [0,v] — R™ such that the integrations concerned are well
defined, the following inequality holds:

(/ 7w<s>ds)TM ([ wtas) <o ([ wrenmaas).

Lemma 1.3. ([306, Cauchy inequality]) For any symmetric positive definite matriz N €
M™*" and z,y € R™, we have

+22Ty < 2T Nx +yT N~ 1y,

Lemma 1.4. ([37], Schur complement) Consider constant symmetric matrices X,Y,Z
where X = XT and 0 <Y =Y7, then X + ZTY1Z < 0 if and only if

XZT<0 -y z] _,
Z -Y O g x :

2. MAIN RESULTS

Let us denote
1 P | 1
6 = Amax{e’[A—2al — 5elBBT - 5e;lFTF — §SQOCT - 553DDT
g @1 — i(e*““lhll -, 'GTG) - ﬁ(e*mdw — e 'HTH))}
2(1 - ) 2 2 2 2 3 ’
85 = Amac|efeg(e”20My — 5 1GT @A),
85 = Amazlees(e72M T — T HTH)],

tmm, = mMw.
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Theorem 2.1. For some given synchronization scaling function a(t), 0 < a < %u,
0<ac< %’y, the drive-response neural networks (1.5) satisfying Assumptions 1 and 2
and the purpose system can realize exponential function projective synchronization (EFPS)
by the adaptive intermittent control law as shown in (1.6)-(1.7) if there exist positive

constants €;, © = 1,2,...,5 and by taking appropriate K7, K5 and K3 such that

K{ > 47,
K; < &,
K; < 63,
—A+20l + e BB + 5e,CCTYes DD + gt 1+ S FT|
* —61[ ’
1, 2ah AT
{ ! I G ]<07
* 762]
1 _2ad [
{_262 voHT ] <0,
* —83]

a(pr — p2) = 2(y — a)(1 = p1) > 0.

(2.6)
(2.7)

Then, the neural network (1.5) is an exponential function projective synchronization.

Proof. Let us consider the Lyapunov-Krasovskii functional as follow:

V(t,z(t)) = Vi(t)+ Va(t) + Va(t) + W(t),
where
L 7
Vilt) = gaT()a(t)
- 1 t 2262 T (8)z(s)ds
w0 = s ), (s)a(s)ds,

0 t
Va(t) = %M / d / 2000 1T (9)2(9)dBds,
—dn Jit+s

sl e M) (K (8) — K§)? 4 ghe ) (Ko (1) — K5)?

a1 2q2
Wy = 0 et MK - K9 nw <t < nw+ 3,

q1
+oe e 1A Ky, +6) — K3)?, nw 46 <t < (n+ 1w
Using the derivatives of V7 (t) along the trajectories of system (1.5) yields
Vi) = —aT(t)Ax(t) + 2T ()BF(2(t)) + 27 (t)CG(x(t — h(t)))
t

+27(t)D o H(x(s))ds — a7 () K1 (t)e =) g (t)

¢ OED (K (1 +6) = Ki)? + g 10 (K, +0) — K)?

—zT () Ky (t)e ") p(t — h(t)) — 2T (t) K (t)e H(E—tn) / t x(s)ds.

t—d(t)
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Applying Lemma 1.3, it follows that

2T (t)BF (2(t)) < 1 [e12” () BB 2(t) + e7 2" () FT Fa(1)]

2
2T (H)CG(x(t — h(t))) < % [e22T ())CCT x(t) + &5 "2 (t — h(t))GTGa(t — h(t))]
T (t)D e H(xz(s))ds) < %[€3$T(t)DDT(E(t)

+e3t </t_d(t) x(s)ds) H'H (/t_d(t) x(s)ds)].

By taking the derivatives of V5(t) and V3(¢) along the trajectories of system (1.5), it
follows that:

Va(t) < —2aVi+ ﬁxT(t)z(t) - %e”a’“xT(t — h(t))z(t — h(t)),
Va(t) < —2aVs+ %xT(t)x(t) - %G_QQdM /t_d(t) z7(s)x(s)ds.

Applying Lemma 1.2,

M 2T (s)x(s)ds t z(s)ds t x(s)ds |,
i [ omtie = ([ o) ([, w100

Y

then,

dM 720&d]\4 ! T 1 72adM ¢ ! !
- ' (s)x(s)ds < —z¢ x(s)ds z(s)ds | .
t—d(t) t—d(t) t—d(t)

By using the derivatives of W (t) along the trajectories of system (1.5), when nw < t <
nw+ 90, n=20,1,2, ..., we have the following:

W) < —pW(t)+e Pt (02T (H)x(t) — e MK aT () (t)
+e Pt Ko (02T ()t — h(t)) — e M K3z (t)x(t — h(t))

¢ ¢
+e_"(t_t“)K3(t)xT(t)/ x(s)ds — e_“‘SK;:ET(t)/ x(s)ds.
t—d(t) t—d(t)

Applying Lemma 1.3 yields

—Kje Mg T(t)a(t — h(t)) < %67”5 [eaz™ (H)2(t) + e "2 (t — h(t)z(t — h(1))]
—Kie "0zt (t) /ttd(t) z(s)ds < %67M6 [esaT (t)x(t)

+e5 (/ttd(t)x(s)d5>T (/ttd(t) w(s)dS)].
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Now, we have

. 1 1 _ -1 1
V() +2aV(t) < zf(t)[-A+2al + 5ngBT + §al‘1FTF + 5sQCCT + 553DDT
1 d%\l * — 1o K; —pud K; —ud
+m[ + 7] — K1€ I + 7546 I + 7556 I}I(t)

1 s 1 K3
2T (t — h(t))[gaz_lGTG - 56*2“11 + faglefﬂ‘sl}x(t — h(t))

T
K 1 yors 1
+/ x(s)ds | [seg'HTH — —e 20|
t—d(t) 2 2

+%8516_“5]] (/t x(s)ds) + (2a — p)W ().

—d(t)
According to (2.1)-(2.6), we get
V(t) + 2aV(t) <0. (2.8)
Integrating both sides of (2.8) from 0 to ¢, we have
V(x(t)) <e 2 vt >0.
Moreover,
V(x(t)) < e 20Ut ¢ [nw, nw + 3] (2.9)
By using the derivatives of W (t) along the trajectories of system (1.5), when nw + 6 <
t<(m+1lw, n=0,1,2,.., we have the following:
Vi) —20v— )V (1) < 2T(t)[-A+2al+ %slBBT + %el—lFTF + %egCC’T
+%53DDT + ﬁ[ + %I}x(t)
a1 — h(t))%gglc‘:Té - %e‘mhll]x(t —h(t)

T
K 1 -7z 1

+ / x(s)ds | [se3'HTH — Ze 2] x
t—d(t) 2 2

—d
(/ z(s)ds) + (2a—y)W(t),
t—d(t)
V(t) —2(y - a)V(t) <O0. (2.10)

Integrating both sides of (2.10) with respect to t from 0 to t, we have
V(z(t)) <207t v >0,
consequently,

Vi((t)) < 20mt=ne=0) "y 4§ <t < (n+ 1)w. (2.11)
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It follows from (2.9) and (2.11) that
V(z(t)) < max  V(f)e 2=

nw—1<0<nw

= max V(0)e ', nw <t <nw+d,
_7<6<0

and

Vie(t) <

max
nw+d—7<0<nw+d

V(9)e2—)tnw=0) 4§ <t < (n+ 1w

To estimate the value of V(x(t)) from above discussion, we set n = 0, from (2.9) and

when 0 <t <6,
< 72&@70)
Viz(®) < 0}32(3(30‘/(0)6
=  max V(f)e 2,
—7<60<0
when § <t < w,
max V(9)e2—)(t=0-9)
0+5—7<0<0+5

max V(e)eZ('y—a)(w—é)—Qa(é—hl)
—7<6<0 ’

IN

when w <t <w+9,

V(z(t)) < max V(e 2t

w—T<O<w

< max V(0)672a(t7w)+2('yfa)(w75)72a(67h1)
- _7<6<0 ’
when w+ § <t < 2w,
Viz(t < V(6)e2(r—a)(t—w—9)
(x() = w+5—r£§a§(§w+5 (O)e
< max V(Q)62(fy—a)(t—w—6)+2('y—a)(w—6)—4a(5—h1)’

—7<6<0
when 2w <t < 2w + 4,
< —2a(t—2w)
Vie®t) < , max V(e
< max V(0)672a(t72w)+4(77a)(w75)74oz(67h1)
- _7<6<0 ’
when 2w + 6§ < t < 3w,
< 2(y—a)(t—2w—93)
VED) < s sV )
< max V(9)€2(’y—a)(t—2w—6)+4('y—a)(w—5)—6a(6—h1).
—  —7<6<0
By induction, we approximate the value of V(x(t)) for the integer n.
When nw <t <nw+ 9,
< —2a(t—nw)
V(l’(t)) - nw—I?gg(gnw V(G)e

< max V(0)672a(t7nw)+2n(’yfo¢)(w75)72na(57h1)'
— —7<6<0

(2.12)
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From (2.11) and when nw +§ < t < (n + 1)w, we get

< 2(y—a)(t—nw—14)
V(x(t)) - nw+5713'12§(§nw+6 V(9)€

max V(0)62(7700(tfnw75)+2n(’yfa)(w75)72(n+1)o¢(67h1) ) (213)

—r<6<0

IN

Substituting 0 = pyw and h; = pow into (2.12) and (2.13), we obtain the following:
when nw <t < nw + 4,

< —2a(t—nw)+2n(y—a)(w—¥8)—2na(d—h1)
VGH) < max V) ,

_ max V(9)€72a(t7m‘))+2n(770¢)(wfplw)f?na(plwfpgw),

—7<0<0
- max V(e)e_2a(t_nw)+2(7_0‘)(1—p1)nw—Qa(ﬂl—p2)nw
—7<6<0 ,
< max V(Q)G—Za(t—nw)+2(7—a)(1—p1)w+2a(p1_pz)(_t+6)
T —7<6<0 ,
< max V(0)62(’Y_0‘)(1—P1)t+2a(p1—pz)(_t+5)
T —7<6<0 ,
< max V(f)e2p—rd+2(y—a)(i=pr)t=2alp—p2)t
T —7<6<0 ,
= max V(G)ef[20&(p17P2)*Q(V*Q)(lfpl)}tJrQa(pl7p2)6
—7<6<0 ,

when nw + 90 <t < (n+ 1w,
V(.’E(t)) < max V(0>62(fy—a)(t—nw—&)—&-Qn('y—a)(w—&)—2(n+1)a(6—h1)
—  _7<6<0 ’

< max V(g)e2(7—a)(t—nw—mw)+2n(7—a)(w—p1w)—2(n+1)a(mw—92w)
—7<0<0 ’

=  max V(g)e2(7*a)t*2(n+1)(V*a)mwﬂ(nﬂ)a(m*Pz)w’
—7<6<0

< max V(3)62(W*a)t*2(770¢)p1t*2a(p17p2)t
-  _7<6<0 ’

=  max V(f)e Balpimr2)=2(y=a)A=pi)]t,
—7<60<0

< max V(f)eBalprmr2)=2(r—e)(d-py)lt+2a(pr—p2)3
—7<60<0

Therefore, for any ¢ > 0, we have

V(z(t)) < max V(9)e Rolrrimr)=20—a)(=pi)li+2a(pr=p2)d
—  —7<6<0

From (2.7), it means that

N=

lz@®)]2 < (2 max V(g)) e lalpr—p2)=(y=a)(1—p1)]t+a(p1—p2)s
- —7<0<0

The proof is completed. n

3. NUMERICAL SIMULATION

Example 3.1. Consider the drive-respond neural networks (1.5) with the parameters

0.2 0 0.2 —0.1 ~0.4 0.1 0.3 —0.2
A= [o 0.2}’ b= {0.1 0.1]’ ¢= [0.3 0.4}’ b= [0.3 0.2}’
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10
F=G=H=1I= {0 J,

where hy = 0.3,dys = 0.2, =041,8=0.1,u = 1.7 and v = 1.79.
For the period width w = 2 and é = 1.65, p; = 0.8250 and py = 0.1500,
consider the condition in (2.7) yields

alpr — p2) — (v — a)(1 — p1) = 0.0352 > 0.

Therefore, using the Matlab LMI Control Toolbox to solve the LMI in (2.4)-(2.6), we
have the solution as follows:

€1 = 8.7961,e9 = 2.5600, 3 = 2.3586.
By letting €4 = €5 = 1, we have
1 = —11.5488, 5 = 6.4670, 65 = 7.0202.

A numerical simulation is achieved by utilizing the explicit Runge-Kutta-like method
(dde45) and interpolation and extrapolation by spline of the third order. Figure 2 shows
the chaotic behavior of the drive system (1.1) and response system (1.2) with the time-
varying scaling function a(t) = 0.8 + 0.2sin 227, Figure 3 show the trajectories of 1 (t)
and xo(t) of the drive-response neural networks. Figure 4 shows the function projective
synchronization error trajectories of 1 (t) and x5 (¢) of the drive-response neural networks.
The function projective synchronization error trajectories of x1(t), and x2(t) of the drive-

response neural networks with intermittent control are shown in Figure 5.

25

y(® i

- = = al)z()

alhz,0, v,0
o

,25 L L L L L L L
-2 -15 -1 -0.5 0
az, . y,0

FIGURE 2. Chaotic behavior of drive system (1.1) and response system

. . . . . o . O.57Tt
(1.2) with the time-varying scaling function a(t) = 0.8 + 0.2sin =32~.
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FIGURE 4. The function projective synchronization error trajectories of

x1(t), and xo(t) of the drive-response neural networks.
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FIGURE 5. The function projective synchronization error trajectories of
x1(t), and x5(t) of the drive-response neural networks with intermittent
control.

4. CONCLUSIONS

The adaptive periodically intermittent control of exponential function projective syn-
chronization of drive-response neural networks was investigated between discrete inter-
val and distributed time-varying delays. Based on the improving piecewise Lyapunov-
Krasovskii functionals combined with Leibniz-Newton’s formula and applying the piece-
wise analysis method, adaptive periodically intermittent control and mathematical in-
duction, some sufficient conditions for exponential function projective synchronization of
drive-response neural systems were derived in terms of LMIs. Finally, a numerical simu-
lation was provided to demonstrate the effectiveness of this proposed theoretical results.
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