Thai Journal of **Math**ematics Volume 18 Number 3 (2020) Pages 1261–1268

http://thaijmath.in.cmu.ac.th

Dedicated to Prof. Suthep Suantai on the occasion of his 60^{th} anniversary

Regularity of the Semigroups of Transformations with a Fixed Point Set

Ronnason Chinram and Winita Yonthanthum*

Algebra and Applications Research Unit, Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand e-mail : winita.m@psu.ac.th (W. Yonthanthum); ronnason.c@psu.ac.th (R. Chinram)

Abstract For a nonempty set X, let T(X) and P(X) denote respectively the full transformation semigroup on X and the partial transformation semigroup on X. For a nonempty subset S of X, let

 $T_{\mathcal{F}(S)}(X) = \{ \alpha \in T(X) \mid x\alpha = x \text{ for all } x \in S \},\$ $P_{\mathcal{F}(S)}(X) = \{ \alpha \in P(X) \mid x\alpha = x \text{ for all } x \in \text{dom } \alpha \cap S \}.$

Then $T_{\mathcal{F}(S)}(X)$ is a regular subsemigroup of T(X) and $P_{\mathcal{F}(S)}(X)$ is a subsemigroup of P(X) which need not be regular. In this paper, a necessary and sufficient condition for an element of $P_{\mathcal{F}(S)}(X)$ to be regular is given. Furthermore, we characterize the left regular and right regular elements of the semigroups $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$ and made use of these results to deduce the left regularity and right regularity of them.

MSC: 20M17; 20M20 Keywords: regular elements; left [right] regular elements; transformation semigroups; fixed points

Submission date: 24.05.2020 / Acceptance date: 20.08.2020

1. INTRODUCTION AND PRELIMINARIES

An element x of a semigroup S is said to be regular if x = xyx for some $y \in S$, left regular if $x = yx^2$ for some $y \in S$ and right regular if $x = x^2y$ for some $y \in S$. In fact, if an element x of S is both left and right regular, then x is regular. An element x of a semigroup S is called an *idempotent* of S if $x^2 = x$. Then an idempotent of S is regular, left regular and right regular. We call S a regular semigroup if every element of S is regular. Left [Right] regular semigroups are defined similarly. For regularity, left regularity and right regularity of semigroups, one does not imply the others. However, if a semigroup S is both left and right regular, then S is regular. As we know, regularity is an important notion and it is every extensively studied in semigroup theory.

^{*}Corresponding author.

For a nonempty set X, let T(X) and P(X) denote the set of all mappings from X into itself and the set of all mappings from a subset of X into X, respectively. Then, under the composition of mappings, P(X) is a semigroup having T(X) as its subsemigroup. The semigroups T(X) and P(X) are called the *full transformation semigroup* on X and the *partial transformation semigroup* on X, respectively. The domain and the range (image) of $\alpha \in P(X)$ are denoted by dom α and ran α , respectively. For an element x in the domain of $\alpha \in P(X)$, the image of x under α shall be written as $x\alpha$. Notice that dom $\alpha = \bigcup_{x \in \operatorname{ran} \alpha} x\alpha^{-1}$. For $A \subseteq \operatorname{dom} \alpha$, denote by $\alpha_{|_A}$ the restriction of α to A. The

identity mapping on X is denoted by 1_X . Recall that for $\alpha, \beta \in P(X)$,

 $dom(\alpha\beta) = (\operatorname{ran} \alpha \cap \operatorname{dom} \beta)\alpha^{-1} \subseteq \operatorname{dom} \alpha,$ $\operatorname{ran}(\alpha\beta) = (\operatorname{ran} \alpha \cap \operatorname{dom} \beta)\beta \subseteq \operatorname{ran} \beta \text{ and}$ for $x \in X, \ x \in \operatorname{dom}(\alpha\beta) \iff x \in \operatorname{dom} \alpha \text{ and } x\alpha \in \operatorname{dom} \beta.$

It is well-known that T(X) and P(X) are regular semigroups. A characterization of regularity, left regularity and right regularity on subsemigroups of T(X) have been widely studied. See [1–8], for example.

For a nonempty subset S of X, let

$$T_S(X) = \{ \alpha \in T(X) \mid S\alpha \subseteq S \},\$$

$$P_S(X) = \{ \alpha \in P(X) \mid (\operatorname{dom} \alpha \cap S)\alpha \subseteq S \}.$$

Then $T_S(X)$ and $P_S(X)$ are clearly subsemigroups of T(X) and P(X), respectively. The semigroup $T_S(X)$ was introduced and studied by Magill [9] in 1966. In [4], Nenthein et al. provided some characterizations of regular elements in $T_S(X)$. The characterizations of left regular and right regular elements on $T_S(X)$ are given in [10].

For a nonempty subset S of X, let

$$T_{\mathcal{F}(S)}(X) = \{ \alpha \in T(X) \mid x\alpha = x \text{ for all } x \in S \},\$$
$$P_{\mathcal{F}(S)}(X) = \{ \alpha \in P(X) \mid x\alpha = x \text{ for all } x \in \operatorname{dom} \alpha \cap S \}.$$

Then $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$ are subsemigroups of $T_S(X)$ and $P_S(X)$, respectively. Also, $T_{\mathcal{F}(S)}(X)$ is a subsemigroup of $P_{\mathcal{F}(S)}(X)$. We call $T_{\mathcal{F}(S)}(X)$ the full transformation semigroup with a fixed point set S and $P_{\mathcal{F}(S)}(X)$ the partial transformation semigroup with a fixed point set S. In 2013, Honyam and Sanwong [11] showed that $T_{\mathcal{F}(S)}(X)$ is a regular semigroup.

In this paper, we give an example to show that the semigroup $P_{\mathcal{F}(S)}(X)$ need not be regular and provide a necessary and sufficient condition for an element of $P_{\mathcal{F}(S)}(X)$ to be regular. We also investigate a condition for which of the semigroup $P_{\mathcal{F}(S)}(X)$ to be regular. In addition, we give a necessary and sufficient conditions for the elements of the semigroups $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$ to be left regular and right regular. These conditions are then applied to determine the left regularity and right regularity of $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$.

2. Regularity of $P_{\mathcal{F}(S)}(X)$

It is obvious that if |X| = 1, then $P_{\mathcal{F}(S)}(X)$ is a regular semigroup. The following example show that the semigroup $P_{\mathcal{F}(S)}(X)$ need not be regular when |X| > 1.

Example 2.1. Let $X = \mathbb{N}$ and $S = 2\mathbb{N}$. Define $\alpha \in P_{\mathcal{F}(S)}(X)$ by

$$x\alpha = \begin{cases} x & \text{if } x \in \{2, 4, 6\}, \\ x+1 & \text{if } x \in 2\mathbb{N} + 1 \text{ and } x \ge 7. \end{cases}$$

Suppose that $\alpha = \alpha \beta \alpha$ for some $\beta \in P_{\mathcal{F}(S)}(X)$. Then $7\alpha = 7\alpha\beta\alpha = 8\beta\alpha$. Since α is injective, we get $8\beta = 7$ which contradicts to the fact that $\beta \in P_{\mathcal{F}(S)}(X)$. Hence α is not a regular element of $P_{\mathcal{F}(S)}(X)$.

The following theorem gives a necessary and sufficient condition for an element of $P_{\mathcal{F}(S)}(X)$ to be regular.

Theorem 2.2. For $\alpha \in P_{\mathcal{F}(S)}(X)$, α is regular if and only if dom $\alpha \cap S = \operatorname{ran} \alpha \cap S$.

Proof. To prove the forward implication, we assume that α is a regular element of $P_{\mathcal{F}(S)}(X)$. Then there exists $\beta \in P_{\mathcal{F}(S)}(X)$ such that $\alpha = \alpha\beta\alpha$. It is clear that dom $\alpha \cap S \subseteq \operatorname{ran} \alpha \cap S$. Let $y \in \operatorname{ran} \alpha \cap S$. Then $y = x\alpha$ for some $x \in \operatorname{dom} \alpha$. Since $x \in \operatorname{dom} \alpha = \operatorname{dom}(\alpha\beta\alpha)$, it follows that $x\alpha \in \operatorname{dom} \beta$ and $x\alpha\beta \in \operatorname{dom} \alpha$. Then $y = x\alpha \in \operatorname{dom} \beta \cap S$, so $y\beta = y$ which implies that $y = y\beta = x\alpha\beta \in \operatorname{dom} \alpha$. This shows that $\operatorname{ran} \alpha \cap S \subseteq \operatorname{dom} \alpha \cap S$. Hence $\operatorname{dom} \alpha \cap S = \operatorname{ran} \alpha \cap S$.

For the other implication, suppose that dom $\alpha \cap S = \operatorname{ran} \alpha \cap S$. For each $x \in \operatorname{ran} \alpha \setminus S$, choose $y_x \in \operatorname{dom} \alpha$ such that $y_x \alpha = x$. Define $\beta : \operatorname{ran} \alpha \to X$ by

$$x\beta = \begin{cases} x & \text{if } x \in \operatorname{ran} \alpha \cap S = \operatorname{dom} \alpha \cap S, \\ y_x & \text{if } x \in \operatorname{ran} \alpha \setminus S. \end{cases}$$

Clearly, $\beta \in P_{\mathcal{F}(S)}(X)$ and $\operatorname{ran} \beta \subseteq \operatorname{dom} \alpha$. Since $(\operatorname{dom} \alpha)\alpha = \operatorname{ran} \alpha = \operatorname{dom} \beta$ and $\operatorname{ran} \beta \subseteq \operatorname{dom} \alpha$, it follows that $\operatorname{dom} \alpha = \operatorname{dom}(\alpha\beta\alpha)$. Let $x \in \operatorname{dom} \alpha$.

Case 1: $x\alpha \in S$. Then $x\alpha \in \operatorname{ran} \alpha \cap S = \operatorname{dom} \alpha \cap S$, so $(x\alpha)\beta = x\alpha = (x\alpha)\alpha$. Hence $x\alpha\beta\alpha = (x\alpha)\alpha = x\alpha$.

Case 2: $x\alpha \notin S$. Then $x\alpha \in \operatorname{ran} \alpha \setminus S$, so $(x\alpha)\beta = y_{x\alpha}$. Hence $x\alpha\beta\alpha = y_{x\alpha}\alpha = x\alpha$.

This shows that $\alpha = \alpha \beta \alpha$. Consequently, α is regular in $P_{\mathcal{F}(S)}(X)$.

Next, we characterize when $P_{\mathcal{F}(S)}(X)$ is a regular semigroup where |X| > 1.

Theorem 2.3. Let |X| > 1. Then $P_{\mathcal{F}(S)}(X)$ is a regular semigroup if and only if S = X. Proof. Suppose that $S \neq X$. Let $x \in X \setminus S$ and let $s \in S$. Define $\alpha : \{x\} \to X$ by $x\alpha = s$. Then $\alpha \in P_{\mathcal{F}(S)}(X)$, dom $\alpha \cap S = \emptyset$ and ran $\alpha \cap S = \{s\}$. It follows from Theorem 2.2 that α is not a regular element of $P_{\mathcal{F}(S)}(X)$. Hence $P_{\mathcal{F}(S)}(X)$ is not a regular semigroup.

Conversely, if S = X, then every element of $P_{\mathcal{F}(S)}(X)$ is idempotent and hence $P_{\mathcal{F}(S)}(X)$ is a regular semigroup.

3. Left Regularity of $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$

Before we determine the left regular elements of $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$, it is convenient to have the following lemma.

Lemma 3.1. If α is a left regular element of P(X), then ran $\alpha = ran(\alpha^2)$.

Proof. Assume that α is left regular in P(X). Then $\alpha = \beta \alpha^2$ for some $\beta \in P(X)$. Clearly, $\operatorname{ran}(\alpha^2) \subseteq \operatorname{ran} \alpha$. Let $y \in \operatorname{ran} \alpha$. Then $y = x\alpha$ for some $x \in \operatorname{dom} \alpha$. Since $x \in \operatorname{dom} \alpha = \operatorname{dom}(\beta \alpha^2)$, we obtain $x\beta \in \operatorname{dom}(\alpha^2)$. Hence $y = x\alpha = x\beta\alpha^2 \in \operatorname{ran}(\alpha^2)$. Now, we investigate the condition under which an element of $T_{\mathcal{F}(S)}(X)$ is left regular.

Theorem 3.2. For $\alpha \in T_{\mathcal{F}(S)}(X)$, α is left regular if and only if $\operatorname{ran} \alpha = \operatorname{ran}(\alpha^2)$.

Proof. Assume that α is a left regular element of $T_{\mathcal{F}(S)}(X)$. Since $T_{\mathcal{F}(S)}(X) \subseteq T(X) \subseteq P(X)$, we have α is left regular in P(X). By Lemma 3.1, ran $\alpha = \operatorname{ran}(\alpha^2)$.

Conversely, suppose that ran $\alpha = \operatorname{ran}(\alpha^2)$. For each $x \in X = \bigcup_{y \in \operatorname{ran} \alpha} y \alpha^{-1}$, choose

 $y_x \in \operatorname{ran} \alpha$ such that $x \in y_x \alpha^{-1}$, that is, $x\alpha = y_x$. Since $\operatorname{ran} \alpha = \operatorname{ran}(\alpha^2)$, we can choose $d_{y_x} \in X$ such that $d_{y_x} \alpha^2 = y_x$. Then we have $d_{y_x} \alpha^2 = x\alpha$. Define $\beta : X \to X$ by

$$x\beta = \begin{cases} x & \text{if } x \in S, \\ d_{y_x} & \text{if } x \in X \setminus S \end{cases}$$

Then $\beta \in T_{\mathcal{F}(S)}(X)$. Let $x \in X$. If $x \in S$, then $x\alpha = x = x\beta$, so $x\beta\alpha^2 = x\alpha^2 = (x\alpha)\alpha = x\alpha$. If $x \notin S$, then $x\beta = d_{y_x}$ which implies that $x\beta\alpha^2 = d_{y_x}\alpha^2 = x\alpha$. This shows that $\alpha = \beta\alpha^2$. Hence α is a left regular element of $T_{\mathcal{F}(S)}(X)$, completing the proof.

Theorem 3.3. If $|X| \leq 2$, then $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup.

Proof. Assume that $|X| \leq 2$. If |X| = 1, then $T_{\mathcal{F}(S)}(X)$ contains exactly one element. It is clear that $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup. Suppose that |X| = 2. Let $X = \{a, b\}$. If S = X, then $T_{\mathcal{F}(S)}(X) = \{1_X\}$ and hence $T_{\mathcal{F}(S)}(X)$ is left regular. Assume that $S \neq X$.

Case 1: $S = \{a\}$. Then we have

$$T_{\mathcal{F}(S)}(X) = \left\{ \begin{pmatrix} a & b \\ a & a \end{pmatrix}, \begin{pmatrix} a & b \\ a & b \end{pmatrix} \right\}.$$

We see that ran $\alpha = \operatorname{ran}(\alpha^2)$ for all $\alpha \in T_{\mathcal{F}(S)}(X)$. By Theorem 3.2, $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup.

Case 2: $S = \{b\}$. Then

$$T_{\mathcal{F}(S)}(X) = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix}, \begin{pmatrix} a & b \\ b & b \end{pmatrix} \right\}.$$

It is easy to see that $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup by Theorem 3.2.

Next, we use Theorem 3.2 to investigate the condition under which the semigroup $T_{\mathcal{F}(S)}(X)$ is left regular where |X| > 2.

Theorem 3.4. Let |X| > 2. Then $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup if and only if S = X or $|X \setminus S| = 1$.

Proof. Suppose that $S \neq X$ and $|X \setminus S| > 1$. Let $a, b \in X \setminus S$ be such that $a \neq b$ and let $c \in S$. Define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} x & \text{if } x \in S, \\ b & \text{if } x = a, \\ c & \text{otherwise.} \end{cases}$$

Then $\alpha \in T_{\mathcal{F}(S)}(X)$, ran $\alpha = S \cup \{b\}$ and ran $(\alpha^2) = (S \cup \{b\})\alpha = S$. Since $b \notin S$, ran $\alpha \neq \operatorname{ran}(\alpha^2)$. Then α is not a left regular element of $T_{\mathcal{F}(S)}(X)$ by Theorem 3.2.

For the converse, if S = X, then $T_{\mathcal{F}(S)}(X) = \{1_X\}$ and hence $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup. Assume that $|X \setminus S| = 1$. Let $\alpha \in T_{\mathcal{F}(S)}(X)$. Then ran $\alpha = S$ or ran $\alpha = X$. If ran $\alpha = S$, then ran $(\alpha^2) = (\operatorname{ran} \alpha)\alpha = S\alpha = S = \operatorname{ran} \alpha$, so α is left regular in $T_{\mathcal{F}(S)}(X)$ by Theorem 3.2. If ran $\alpha = X$, then ran $(\alpha^2) = (\operatorname{ran} \alpha)\alpha = X\alpha = \operatorname{ran} \alpha$, so α is left regular in $T_{\mathcal{F}(S)}(X)$ by Theorem 3.2. Hence $T_{\mathcal{F}(S)}(X)$ is a left regular semigroup.

Next, we give a characterization of the left regular elements in the semigroup $P_{\mathcal{F}(S)}(X)$.

Theorem 3.5. For $\alpha \in P_{\mathcal{F}(S)}(X)$, α is left regular if and only if $\operatorname{ran} \alpha = \operatorname{ran}(\alpha^2)$.

Proof. Assume that α is a left regular element of $P_{\mathcal{F}(S)}(X)$. Since $P_{\mathcal{F}(S)}(X) \subseteq P(X)$, we obtain α is left regular in P(X). By Lemma 3.1, ran $\alpha = \operatorname{ran}(\alpha^2)$.

Conversely, suppose that ran $\alpha = \operatorname{ran}(\alpha^2)$. For each $x \in \operatorname{dom} \alpha = \bigcup_{y \in \operatorname{ran} \alpha} y \alpha^{-1}$, choose

 $y_x \in \operatorname{ran} \alpha$ such that $x \in y_x \alpha^{-1}$. Since $y_x \in \operatorname{ran} \alpha = \operatorname{ran}(\alpha^2)$, we can choose $d_{y_x} \in \operatorname{dom}(\alpha^2)$ such that $d_{y_x} \alpha^2 = y_x$. We then have $d_{y_x} \alpha^2 = x \alpha$. Define $\beta : \operatorname{dom} \alpha \to X$ by

$$x\beta = \begin{cases} x & \text{if } x \in \operatorname{dom} \alpha \cap S, \\ d_{y_x} & \text{if } x \in \operatorname{dom} \alpha \setminus S. \end{cases}$$

Then $\beta \in P_{\mathcal{F}(S)}(X)$. If $x \in \operatorname{dom} \alpha \cap S$, then $x\alpha = x \in \operatorname{dom} \alpha$ which implies that $x \in \operatorname{dom}(\alpha^2)$. Hence $\operatorname{ran} \beta \subseteq \operatorname{dom}(\alpha^2)$. We then have $\operatorname{dom}(\beta\alpha^2) = (\operatorname{ran} \beta \cap \operatorname{dom}(\alpha^2))\beta^{-1} = (\operatorname{ran} \beta)\beta^{-1} = \operatorname{dom} \beta = \operatorname{dom} \alpha$. Let $x \in \operatorname{dom} \alpha$. If $x \in S$, then $x\alpha = x = x\beta$, so $x\beta\alpha^2 = x\alpha^2 = (x\alpha)\alpha = x\alpha$. If $x \notin S$, then $x\beta = d_{y_x}$ which implies that $x\beta\alpha^2 = d_{y_x}\alpha^2 = x\alpha$. This shows that $\alpha = \beta\alpha^2$. Hence α is a left regular element of $P_{\mathcal{F}(S)}(X)$.

It is easy to see that if |X| = 1, then $P_{\mathcal{F}(S)}(X)$ is a left regular semigroup. We end this section by characterizing when $P_{\mathcal{F}(S)}(X)$ is a left regular semigroup where |X| > 1.

Theorem 3.6. Let |X| > 1. Then $P_{\mathcal{F}(S)}(X)$ is a left regular semigroup if and only if S = X.

Proof. Assume that $S \neq X$. Let $a \in S$ and $b \in X \setminus S$. Define $\alpha : \{b\} \to X$ by $b\alpha = a$. Then $\alpha \in P_{\mathcal{F}(S)}(X)$ and ran $\alpha \neq \operatorname{ran}(\alpha^2)$, so α is not left regular in $P_{\mathcal{F}(S)}(X)$ by Theorem 3.5.

Conversely, if S = X, then every element of $P_{\mathcal{F}(S)}(X)$ is idempotent and hence $P_{\mathcal{F}(S)}(X)$ is a left regular semigroup.

4. RIGHT REGULARITY OF $T_{\mathcal{F}(S)}(X)$ AND $P_{\mathcal{F}(S)}(X)$

In this section, we give characterizations of the right regular elements of the semigroups $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$. In addition, the right regularity of $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$ is determined by making use of our characterizations.

The following lemma is needed to determine the right regular elements of $T_{\mathcal{F}(S)}(X)$ and $P_{\mathcal{F}(S)}(X)$.

Lemma 4.1. If α is a right regular element of P(X), then $\operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$ and $\alpha_{|_{\operatorname{ran} \alpha}}$ is injective.

Proof. Assume that α is a right regular element of P(X). Then $\alpha = \alpha^2 \beta$ for some $\beta \in P(X)$. Let $y \in \operatorname{ran} \alpha$. Then $y = x\alpha$ for some $x \in \operatorname{dom} \alpha$. Since $x \in \operatorname{dom} \alpha = \operatorname{dom}(\alpha^2\beta)$, we get $y = x\alpha \in \operatorname{dom} \alpha$. Hence $\operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$. Let $x, y \in \operatorname{ran} \alpha$ be such that $x\alpha = y\alpha$. Then there are $a, b \in \operatorname{dom} \alpha$ such that $x = a\alpha$ and $y = b\alpha$. Thus $x = a\alpha = a\alpha^2\beta = x\alpha\beta = y\alpha\beta = b\alpha^2\beta = b\alpha = y$. This shows that $\alpha|_{\operatorname{ran} \alpha}$ is injective.

Now, we give a characterization of the right regular elements in $T_{\mathcal{F}(S)}(X)$.

Theorem 4.2. For $\alpha \in T_{\mathcal{F}(S)}(X)$, α is right regular if and only if $\alpha_{|_{ran \alpha}}$ is injective.

Proof. Assume that α is a right regular element of $T_{\mathcal{F}(S)}(X)$. Since $T_{\mathcal{F}(S)}(X) \subseteq P(X)$, we have α is right regular in P(X). By Lemma 4.1, $\alpha_{|_{ran}\alpha|}$ is injective.

Conversely, suppose that $\alpha_{|\operatorname{ran}\alpha}$ is injective. For each $x \in \operatorname{ran}(\alpha^2) = (\operatorname{ran}\alpha)\alpha$, there is a unique $y_x \in \operatorname{ran}\alpha$ such that $y_x\alpha = x$. Define $\beta: X \to X$ by

$$x\beta = \begin{cases} y_x & \text{if } x \in \operatorname{ran}(\alpha^2), \\ x & \text{if } x \in X \setminus \operatorname{ran}(\alpha^2). \end{cases}$$

Let $x \in S \subseteq \operatorname{ran}(\alpha^2)$. Then $x = x\alpha \in \operatorname{ran} \alpha$, so $y_x = x$ by the uniqueness of y_x . Then $x\beta = y_x = x$. Hence $\beta \in T_{\mathcal{F}(S)}(X)$. Let $x \in X$. Since $x\alpha^2 \in \operatorname{ran}(\alpha^2)$ and $x\alpha \in \operatorname{ran} \alpha$ such that $(x\alpha)\alpha = x\alpha^2$, we get $y_{x\alpha^2} = x\alpha$. Then $x\alpha^2\beta = y_{x\alpha^2} = x\alpha$. We have that $\alpha = \alpha^2\beta$. This proves that α is a right regular element of $T_{\mathcal{F}(S)}(X)$.

Theorem 4.3. If $|X| \leq 2$, then $T_{\mathcal{F}(S)}(X)$ is a right regular semigroup.

Proof. Assume that $|X| \leq 2$. If |X| = 1, then $T_{\mathcal{F}(S)}(X)$ contains only one element and hence it is a right regular semigroup. Suppose that |X| = 2. If S = X, then $T_{\mathcal{F}(S)}(X) = \{1_X\}$, so it is right regular. If $S \neq X$, then we have

$$T_{\mathcal{F}(S)}(X) = \left\{ \begin{pmatrix} a & b \\ a & a \end{pmatrix}, \begin{pmatrix} a & b \\ a & b \end{pmatrix} \right\} \text{ or } T_{\mathcal{F}(S)}(X) = \left\{ \begin{pmatrix} a & b \\ a & b \end{pmatrix}, \begin{pmatrix} a & b \\ b & b \end{pmatrix} \right\}$$

where $X = \{a, b\}$. We see that $\alpha_{|_{\operatorname{ran}\alpha}}$ is injective for all $\alpha \in T_{\mathcal{F}(S)}(X)$. By Theorem 4.2. $T_{\mathcal{F}(S)}(X)$ is a right regular semigroup.

Next, we characterize when $T_{\mathcal{F}(S)}(X)$ is a right regular semigroup where |X| > 2.

Theorem 4.4. Let |X| > 2. Then $T_{\mathcal{F}(S)}(X)$ is a right regular semigroup if and only if S = X or $|X \setminus S| = 1$.

Proof. Assume that $S \neq X$ and $|X \setminus S| > 1$. Let $a \in S$ and let $b, c \in X \setminus S$ such that $b \neq c$. Define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} x & \text{if } x \in S, \\ a & \text{if } x = b, \\ b & \text{otherwise} \end{cases}$$

Then $\alpha \in T_{\mathcal{F}(S)}(X)$ and ran $\alpha = S \cup \{b\}$. Since $a, b \in \operatorname{ran} \alpha$ and $a\alpha = a = b\alpha$ but $a \neq b$, it follows that $\alpha_{|_{\operatorname{ran} \alpha}}$ is not injective. Then α is not right regular in $T_{\mathcal{F}(S)}(X)$ by Theorem 4.2. Hence $T_{\mathcal{F}(S)}(X)$ is not a right regular semigroup.

Conversely, if S = X, then $T_{\mathcal{F}(S)}(X) = \{1_X\}$ and hence $T_{\mathcal{F}(S)}(X)$ is a right regular semigroup. Assume that $|X \setminus S| = 1$. Let $\alpha \in T_{\mathcal{F}(S)}(X)$. Then $\alpha = 1_X$ or ran $\alpha = S$. It

is easy to see that $\alpha_{|_{\operatorname{ran}\alpha}}$ is injective. So α is right regular in $T_{\mathcal{F}(S)}(X)$ by Theorem 4.2. Hence $T_{\mathcal{F}(S)}(X)$ is a right regular semigroup.

Theorem 4.5. For $\alpha \in P_{\mathcal{F}(S)}(X)$, α is right regular if and only if $\operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$ and $\alpha_{|_{\operatorname{ran} \alpha}}$ is injective.

Proof. Suppose that α is right regular in $P_{\mathcal{F}(S)}(X)$. Since $P_{\mathcal{F}(S)}(X) \subseteq P(X)$, we get α is right regular in P(X). By Lemma 4.1, ran $\alpha \subseteq \text{dom } \alpha$ and $\alpha_{\text{lran } \alpha}$ is injective.

For the converse, assume that $\operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$ and $\alpha_{|_{\operatorname{ran}\alpha}}$ is injective. Since $\operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$, we get $\operatorname{ran}(\alpha^2) = (\operatorname{ran} \alpha \cap \operatorname{dom} \alpha)\alpha = (\operatorname{ran} \alpha)\alpha$. For each $x \in \operatorname{ran}(\alpha^2)$, there is a unique $y_x \in \operatorname{ran} \alpha$ such that $y_x \alpha = x$. Define $\beta : \operatorname{ran}(\alpha^2) \to X$ by

 $x\beta = y_x$ for all $x \in \operatorname{ran}(\alpha^2)$.

Let $x \in \operatorname{dom} \beta \cap S$. Then $x \in \operatorname{ran}(\alpha^2) \cap S$. Since $\operatorname{ran}(\alpha^2) \subseteq \operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$, we have $x \in \operatorname{ran} \alpha$ and $x\alpha = x$. By the uniqueness of y_x , we obtain $y_x = x$. Then $x\beta = y_x = x$. Hence $\beta \in P_{\mathcal{F}(S)}(X)$. Clearly, $\operatorname{dom}(\alpha^2\beta) \subseteq \operatorname{dom} \alpha$. If $x \in \operatorname{dom} \alpha$, then $x\alpha \in \operatorname{ran} \alpha \subseteq \operatorname{dom} \alpha$ and $x\alpha^2 \in \operatorname{ran}(\alpha^2) = \operatorname{dom} \beta$, so $x \in \operatorname{dom}(\alpha^2\beta)$. It follows that $\operatorname{dom} \alpha = \operatorname{dom}(\alpha^2\beta)$. Let $x \in \operatorname{dom} \alpha$. Since $x\alpha^2 \in \operatorname{ran}(\alpha^2)$ and $x\alpha \in \operatorname{ran} \alpha$ such that $(x\alpha)\alpha = x\alpha^2$, we get $y_{x\alpha^2} = x\alpha$. Then $x\alpha^2\beta = y_{x\alpha^2} = x\alpha$. This shows that $\alpha = \alpha^2\beta$. Hence α is a right regular element of $P_{\mathcal{F}(S)}(X)$.

Clearly, $P_{\mathcal{F}(S)}(X)$ is right regular when |X| = 1. As a consequence of Theorem 4.5, a necessary and sufficient condition for the semigroup $P_{\mathcal{F}(S)}(X)$ with |X| > 1 to be right regular semigroup can be given as follows :

Theorem 4.6. Let |X| > 1. Then $P_{\mathcal{F}(S)}(X)$ is a right regular semigroup if and only if S = X.

Proof. Assume that $S \neq X$. Let $a \in S$ and $b \in X \setminus S$. Define $\alpha : \{b\} \to X$ by $b\alpha = a$. Then $\alpha \in P_{\mathcal{F}(S)}(X)$ and ran $\alpha \notin \text{dom } \alpha$, so α is not right regular in $P_{\mathcal{F}(S)}(X)$ by Theorem 4.5.

Conversely, if S = X, then every element of $P_{\mathcal{F}(S)}(X)$ is idempotent and hence $P_{\mathcal{F}(S)}(X)$ is a left regular semigroup.

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments and suggestions on the manuscript.

References

- E. Laysirikul, C. Namnak, Regularity for semigroups of transformations that preserve equivalence, JP J. Algebra Number Theory Appl. 28 (2013) 99–105.
- [2] E. Laysirikul, Semigroups of full transformations with restriction on the fixed set is bijective, Thai J. Math. 14 (2016) 497–503.
- [3] C. Namnak, E. Laysirikul, Right regular and left regular elements of E-orderpreserving transformation semigroups, Int. J. Algebra 7 (2013) 289–296.
- [4] S. Nenthein, P. Youngkhong, Y. Kemprasit, Regular elements of some transformation semigroup, Pure Math. Appl. 16 (2005) 307–314.

- [5] J. Sanwong, W. Sommanee, Regularity and Green's relations on a semigroup of transformations with restricted range, Int. J. Math. Math. Sci. 10 (2008) doi:10.1155/2008/794013.
- [6] N. Sirasuntorn, Y. Kemprasit, Left regular and right regular elements of semigroups of 1-1 transformations and 1-1 linear transformations, Int. J. Algebra 4 (2010) 1399– 1406.
- [7] N. Sawatraksa, C. Namnak, E. Laysirikul, Left regular and right regular elements of the semigroup of transformations restricted by an equivalence, Naresuan University Journal: Science and Technology 26 (2018) 89–93.
- [8] N. Sawatraksa, C. Namnak, R. Chinram, Left and right regular elements of the semigroups of transformations preserving an equivalence relation and a cross-section, Asian-Eur. J. Math. 12 (2019) 1–13.
- [9] K.D. Magill Jr., Subsemigroups of S(X), Math. Japonicae 11 (1966) 109–115.
- [10] W. Choomanee, P. Honyam, J. Sanwong, Regularity in semigroups of transformations with invariant sets, Int. J. Pure Appl. Math. 87 (2013) 151–164.
- [11] P. Honyam, J. Sanwong, Semigroups of transformations with fixed sets, Quaest. Math. 36 (2013) 79–92.