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1. Introduction

Fixed point theory is a subfield of nonlinear functional analysis. It has been used as a
tool in research areas of nonlinear sciences and mathematics. In 1922, Banach [1] proved
a theorem, which is well known as “ Banach’s fixed point theorem ” to establish the
existence of solutions for integral equation.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be a contractive
mapping, that is, there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y)
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for all x, y ∈ X. Then T has a unique fixed point z ∈ X.

In 1973, Geraghty [2] studied a generalization of Banach’s contraction principle in the
setting of complete metric spaces observing the following interesting results.

We denote by Ω the class of all functions β : [0,∞) → [0, 1) satisfying β(tn) → 1,
implies tn → 0 as n→∞.

Theorem 1.2. Let (X, d) be a metric space. Let S : X → X be a self mapping. Suppose
that there exists β ∈ Ω such that for all x, y ∈ X,

d(Sx, Sy) ≤ β(d(x, y))d(x, y).

Then S has a unique fixed point p ∈ X and {Snx} converges to p for each x ∈ X.

In 1994, Matthews [3] introduced the concept of partial metric space and studied the
Banach’s contraction principle in partial metric space. After, many authors studied fixed
point results in such space. [4–6].

In 2013, the concept of α-admissible mappings is generalized by Hussian et al. [7].
Later in the same year, the concept of a pair of α-admissible is introduced by Abdeljawad
[8]. Thereafter, many papers on Geraghty’s contraction in both complete metric spaces
and partial metric spaces appeared in the literature. [9–11].

Recently, Ansari [12] (and Ansari et al. [13]) introduced the notion of a pair (F , h)
as an upper class of type I and type II and obtained some fixed point theorems which
generalized many existing results. In this paper, we introduce the notion of (α, µ), (F , h)-
type Geraghty contraction in the setting of partial metric space and prove some fixed
point and periodic point theorems for such contractions. Then, we apply our results to
establishing the existence of solution for nonlinear ordinary differential equation of second
order satisfying some boundary conditions.

2. Preliminaries

In this section, we give some definitions, examples and fundamental results.

Definition 2.1. [3] Let X be a nonempty set and p : X × X → R+ satisfy following
properties:

(PM1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y);
(PM2) p(x, x) ≤ p(x, y);
(PM3) p(x, y) = p(y, x);
(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z),

for all x, y, z ∈ X. Then p is called a partial metric on X and the pair (X, p) is known as
partial metric space.

In 1995, Matthews [3] proved that every partial metric p on X induces a metric dp :
X ×X → R+ defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X.
Notice that a metric on a set X is a partial metric d such that d(x, x) = 0 for all x ∈ X.

Definition 2.2. [3] Let (X, p) be a partial metric space.

(i) A sequence {xn}n∈N in (X, p) converges to a point x ∈ X if and only if p(x, x) =
limn→∞ p(x, xn).
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(ii) A sequence {xn}n∈N in (X, p) is called a Cauchy sequence if
limn,m→∞ p(xn, xm) exists and is finite.

(iii) A partial metric space (X, p) is said to be complete if every Cauchy sequence
{xn}n∈N inX converges, with respect to τ(p), to a point x ∈ X such that p(x, x) =
limn,m→∞ p(xn, xm).

Definition 2.3. [14] Let S : X → X and α : X × X → [0,∞). We say that S is
α-admissible if x, y ∈ X, such that

α(x, y) ≥ 1 =⇒ α(Sx, Sy) ≥ 1.

Example 2.4. [15] Consider X = [0,∞) and define S : X → X and α : X ×X → [0,∞)
by Sx = 2x, for all x, y ∈ X and

α(x, y) =

{
ey/x, if x ≥ y, x 6= 0

0, if x < y.

Then S is α-admissible.

Definition 2.5. Let T : X → X be a map and µ : X ×X → [0,∞) be a function. We
say that T is µ-subadmissible if x, y ∈ X, µ(x, y) ≤ 1 implies that µ(Tx, Ty) ≤ 1.

Lemma 2.6. [3]

(i) A partial metric space (X, p) is complete if and only if the metric space (X, dp)
is complete.

(ii) A sequence {xn} in X converges to a point x ∈ X, with respect to τ(dp) if and
only if limn→∞ p(x, xn) = p(x, x) = limn,m→∞ p(xn, xm).

(iii) If limn→∞ xn = v such that p(v, v) = 0 then limn→∞ p(xn, y) = p(v, y) for
every y ∈ X.

Lemma 2.7. [11] Let S : X → X be a triangular α-admissible mapping. Assume that
there exists x0 ∈ X such that α(x0, Sx0) ≥ 1. Define a sequence {xn} by xn+1 = Sxn.
Then we have α(xn, xm) ≥ 1 for all m,n ∈ N ∪ {0} with n < m.

In 2014 A.H. Ansari [12] introduced the concept of a pair (F , h) is an upper class.

Definition 2.8. [12] We say that the function h : R+×R+ → R is a function of subclass
of type I, if x ≥ 1 =⇒ h(1, y) ≤ h(x, y) for all y ∈ R+.

Example 2.9. [12, 13] Define h : R+ × R+ → R by:

• h(x, y) = (y + l)x, l > 1;
• h(x, y) = (x+ l)y, l > 1;
• h(x, y) = xny, n ∈ N;
• h(x, y) = y;
• h(x, y) = 1

n+1 (
∑n

i=0 x
i)y, n ∈ N;

• h(x, y) =
[

1
n+1 (

∑n
i=0 x

i) + l
]y
, l > 1, n ∈ N,

for all x, y ∈ R+. Then h is a function of subclass of type I.



1250 Thai J. Math. Vol. 18 (2020) /W. Onsod et al.

Definition 2.10. [12, 13] Let h,F : R+×R+ → R, then we say that the pair (F , h) is an
upper class of type I, if h is a function of subclass of type I and satisfying the following
conditions;

(i) 0 ≤ s ≤ 1 =⇒ F(s, t) ≤ F(1, t);
(ii) h(1, y) ≤ F(1, t) =⇒ y ≤ t,

for all t, y ∈ R+.

Example 2.11. [12, 13] Define h,F : R+ × R+ → R by:

• h(x, y) = (y + l)x, l > 1 and F(s, t) = st+ l;
• h(x, y) = (x+ l)y, l > 1 and F(s, t) = (1 + l)st;
• h(x, y) = xmy,m ∈ N and F(s, t) = st;
• h(x, y) = y and F(s, t) = t;
• h(x, y) = 1

n+1 (
∑n

i=0 x
i)y, n ∈ N and F(s, t) = st;

• h(x, y) =
[

1
n+1 (

∑n
i=0 x

i) + l
]y
, l > 1, n ∈ N and F(s, t) = (1 + l)st,

for all x, y, s, t ∈ R+. Then h the pair (F , h) is an upper class of type I.

3. Main Results

In this section, we prove some fixed point theorems for (α, µ), (F , h)-type Geraghty
contraction in complete partial metric space.

3.1. Fixed Point Results for (F , h)-Type Geraghty Contraction

We begin with the following definition.

Definition 3.1. Let (X, p) be a partial metric space and let C be a nonempty subset of
X. A mapping T : C → C is called an (α, µ), (F , h)-type Garaghty contraction if there
exist β ∈ Ω and α, µ : C ×C → [0,∞) such that, for all x, y ∈ C, satisfying the following
inequality:

h(α(x, y), p(Tx, Ty)) ≤ F(µ(x, y), β(p(x, y))p(x, y)), (3.1)

where the pair (F , h) is an upper class of type I.

Example 3.2. Let X = R and C = [0, 1]. Define p : C × C → [0,∞) by

p(x, y) = max{x, y}

for all x, y ∈ C. It is easy to check that p is a partial metric space and define α, µ :
C × C → [0,∞) by

α(x, y) = 1

and

µ(x, y) = 2

for all x, y ∈ C.

Define the mapping T : C → C by

Tx = x2



Fixed and Periodic Point Results for Generalized Geraghty ... 1251

and define β : [0,∞) → [0, 1) by β(t) = 1
t+1 and h,F : R+ × R+ → R by h(x, y) = y,

F(s, t) = st, respectively, for all s, t, x, y ∈ C.
Now, we will show that the Definition (3.1) is true. We consider

h(α(x, y), p(T (x), T (y))) = h(1, p(x2, y2)). (3.2)

If x > y, then from (3.2), we obtain

h(α(x, y), p(T (x), T (y))) = h(1, p(x2, y2))

= h(1,max{x2, y2})
= h(1, x2)

= x2

≤ 2x

x+ 1

= F(2,
x

x+ 1
)

= F(2,

(
1

x+ 1

)
(x))

= F(2, β(x)(x))

= F(2, β(max{x, y})(max{x, y}))
= F(µ(x, y), β(p(x, y))p(x, y)).

Similarly, for cases x < y and x = y.
So, Definition (3.1) holds.

Theorem 3.3. Let (X, p) be a complete partial metric space and let C be a nonempty
subset of X and α, µ : X × X → [0,∞) be a function. Suppose that T : C → C be an
(α, µ), (F , h)-type Geraghty contraction satisfying the following conditions:

(i) T is α-admissible and µ-subadmissible;
(ii) there exists x0 ∈ C such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1;

(iii) T is continuous.

Then T has a fixed point x∗ ∈ C.

Proof. Let x0 ∈ C such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1 and define a sequence {xn}
by xn+1 = Txn for all n ∈ N. In particular, if xn = Txn for all n ∈ N, then T has a fixed
point in C. So, we assume that xn 6= xn+1 for all n ∈ N. From condition (ii) and (i), we
have

α(x0, x1) = α(x0, Tx0) ≥ 1 =⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1

and

µ(x0, x1) = µ(x0, Tx0) ≤ 1 =⇒ µ(Tx0, Tx1) = µ(x1, x2) ≤ 1.

By induction, we have

α(xn, xn+1) ≥ 1 (3.3)

and

µ(xn, xn+1) ≤ 1. (3.4)
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Since T is (α, µ), (F , h)-type Garaghty contraction, then for all n ∈ N, we have

h(1, p(xn, xn+1)) ≤ h(α(xn, xn+1, p(Txn−1, Txn)))

≤ F(µ(xn, xn+1), β(p(xx−1, xn))p(xn−1, xn))

≤ F(1, β(p(xx−1, xn))p(xn−1, xn))

which implies that

p(xn, xn+1) ≤ β(p(xx−1, xn))p(xn−1, xn) (3.5)

< p(xn−1, xn).

That is

p(xn, xn+1) < p(xn−1, xn).

So, the sequence {p(xn, xn+1)} is nonnegative and decreasing. Now, we will show that
limn→∞ p(xn, xn+1) = 0. It is clear that {p(xn, xn+1)} is a decreasing sequence. Thus,
there exists r > 0, such that

lim
n→∞

p(xn, xn+1) = r.

From condition (3.5), we have

p(xn, xn+1)

p(xn−1, xn)
≤ β(p(xn−1, xn)) < 1.

By, taking n→∞, we have

β(p(xn−1, xn))→ 1 as n→∞.,
that is

lim
n→∞

β(p(xn−1, xn)) = 1.

By the property of β ∈ Ω, which implies that

lim
n→∞

p(xn−1, xn) = 0. (3.6)

Now, we will show that {xn} is a Cauchy sequence. Suppose on contrary that {xn} is
not a Cauchy sequence. That is. there exists ε > 0, we can find subsequence {xmk

} and
{xnk

} such that, for all positive integers k, we have mk > nk > k,

p(xmk
, xnk

) ≥ ε
and

p(xmk
, xnk−1

) < ε.

So, we have

ε ≤ p(xmk
, xnk

)

≤ p(xmk
, xnk−1

) + p(xnk−1
, xnk

)− p(xnk−1
, xnk−1

)

≤ p(xmk
, xnk−1

) + p(xnk−1
, xnk

)

< ε+ p(xnk−1
, xnk

).

That is

ε < ε+ p(xnk−1
, xnk

), (3.7)

from conditions (3.6) and (3.7), we have

lim
k→∞

p(xmk
, xnk

) = ε. (3.8)
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By triangle inequality, we have

p(xmk
, xnk

) ≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk

)− p(xmk+1
, xmk+1

)

≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk

)

≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk+1

) + p(xnk+1
, xnk

)− p(xnk+1
, xnk+1

)

≤ p(xmk
, xmk+1

) + p(xmk+1
, xnk+1

) + p(xnk+1
, xnk

),

and

p(xmk+1
, xnk+1

) ≤ p(xmk+1
, xmk

) + p(xmk
, xnk+1

)− p(xmk
, xmk

)

≤ p(xmk+1
, xmk

) + p(xmk
, xnk+1

)

≤ p(xmk+1
, xmk

) + p(xmk
, xnk

) + p(xnk
, xnk+1

)− p(xnk
, xnk

)

≤ p(xmk+1
, xmk

) + p(xmk
, xnk

) + p(xnk
, xnk+1

).

Taking k →∞ and from condition (3.6) and (3.8), we have

lim
k→∞

p(xmk+1
, xnk+1

) = ε.

Now, we consider

h(1, p(xnk+1
, xmk+2

)) ≤ h(α(xnk
, xmk+1

), p(xnk+1
, xmk+2

))

= h(α(xnk
, xmk+1

), p(Txnk
, Txmk+1

))

≤ F(α(xnk
, xmk+1

), β(p(xnk
, xmk+1

))p(xnk
, xmk+1

))

≤ F(1, β(p(xnk
, xmk+1

))p(xnk
, xmk+1

))

which implies that

p(xnk+1
, xmk+2

) ≤ β(p(xnk
, xmk+1

))p(xnk
, xmk+1

).

That is

p(xnk+1
, xmk+2

)

p(xnk
, xmk+1

)
≤ β(p(xnk

, xmk+1
)) < 1,

taking n→∞ in the above inequality, we have

β(p(xnk
, xmk+1

))→ 1 as n→∞.

By using the property of β ∈ Ω, which implies that

lim
k→∞

p(xnk
, xmk+1

) = 0 < ε,

which is contradiction. So,

lim
n,m→∞

p(xn, xm) = 0.

That is {xn} is a Cauchy sequence in (X, p). By Lemma 2.6 (iii) {xn} is also Cauchy
sequence in (X, dp). Since (X, p) is complete, (X, dp) is also complete. Thus there exists
x∗ ∈ C ⊂ X such that limn→∞ p(xn, x

∗) = 0 = p(x∗, x∗) = limn,m→∞ p(xn, xm) and
since T is continuous, we have

x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx∗.

Thus x∗ is a fixed point of T .
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Theorem 3.4. Let (X, p) be a complete partial metric space and let C be a nonempty
subset of X and α, µ : X × X → [0,∞) be a function. Suppose that T : C → C be an
(α, µ), (F , h)-type Geraghty contraction satisfying the following conditions:

(i) T is α-admissible and µ-subadmissible;
(ii) there exists x0 ∈ C such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1, µ(xn, xn+1) ≤ 1 for all
n ∈ N and xn → x as n→∞, then α(xn, x) ≥ 1, µ(xn, x) ≤ 1 for all n ∈ N.

Then T has a fixed point x∗ ∈ C.

Proof. Let x0 ∈ C be such that α(x0, Tx0) ≥ 1 and let xn = Txn−1 for all n ∈ N.
Following the proof of Theorem 3.3, we obtain {xn} is a Cauchy sequence in complete

partial metric space Ṫhen there exists x∗ ∈ C such that xn → x∗ as n→∞.
We suppose that condition (iii) holds. So, α(x∗, Tx∗) ≥ 1, µ(x∗, Tx∗) ≤ 1. By (3.1),

we have

h(1, p(Tx∗, xn+1)) ≤ h(α(x∗, Tx∗), p(Tx∗, xn+1)

= h(α(x∗, Tx∗), p(Tx∗, Txn)

≤ F(µ(x∗, Tx∗), β(p(x∗, xn))p(x∗, xn))

≤ F(1, β(p(x∗, xn))p(x∗, xn))

which implies that

p(Tx∗, xn+1) ≤ β(p(x∗, xn))p(x∗, xn).

So, we have

p(Tx∗, x∗) ≤ p(Tx∗, xn+1) + p(xn+1, x
∗)− p(xn+1, xn+1)

≤ p(Tx∗, xn+1) + p(xn+1, x
∗)

≤ β(p(x∗, xn))p(x∗, xn) + p(xn+1, x
∗).

That is

p(Tx∗, x∗) ≤ β(p(x∗, xn))p(x∗, xn) + p(xn+1, x
∗).

Taking n→∞ in the above inequality, we obtain

p(Tx∗, x∗) = 0.

So from the definition of dp we get x∗ = Tx∗. Therefore x∗ is a fixed point of T .

Indeed, the uniqueness of fixed point, we considering the following condition:
(C): for all x, y ∈ Fix(T ), α(x, y) ≥ 1, µ(x, y) ≤ 1.

Theorem 3.5. From Theorem 3.3, if we add condition (C), then the uniqueness of fixed
point is obtained.

Proof. Suppose that y∗ ∈ C is an another fixed point in T such that x∗ 6= y∗ and
Ty∗ = y∗. Then, we have

h(1, p(x∗, y∗)) ≤ h(α(x∗, y∗), p(Tx∗, T y∗))

≤ F(µ(x∗, y∗), β(p(x∗, y∗))p(x∗, y∗))

≤ F(1, β(p(x∗, y∗))p(x∗, y∗))
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which implies that

p(x∗, y∗) ≤ β(p(x∗, y∗))p(x∗, y∗)

< p(x∗, y∗),

which is contradiction. So, x∗ = y∗

The Example 3.2 satisfies all the hypothesis of Theorem 3.4, so, T has unique fixed
point x = 1. On the other hand, p(x, y) = 0 if and only if x = y for all x, y ∈ C in
Theorem 3.3 and 3.4. Then, we deduce the following corollary:

Corollary 3.6. Let (X, p) be a complete metric space and let C be a nonempty subset of
X and α, µ : X×X → [0,∞) be a function. Suppose that T : C → C be an (α, µ), (F , h)-
type Geraghty contraction satisfying the following conditions:

(i) T is α-admissible and µ-subadmissible;
(ii) there exists x0 ∈ C such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1;

(iii) T is continuous.

Then T has a fixed point x∗ ∈ C.

Corollary 3.7. Let (X, p) be a complete metric space and let C be a nonempty subset of
X and α, µ : X×X → [0,∞) be a function. Suppose that T : C → C be an (α, µ), (F , h)-
type Geraghty contraction satisfying the following conditions:

(i) T is α-admissible and µ-subadmissible;
(ii) there exists x0 ∈ C such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1;

(iii) if {xn} is a sequence in X such that α(xn, xn+1) ≥ 1, µ(xn, xn+1) ≤ 1 for all
n ∈ N and xn → x as n→∞, then α(xn, x) ≥ 1, µ(xn, x) ≤ 1 for all n ∈ N.

Then T has a fixed point x∗ ∈ C.

3.2. Periodic Point Results

In this section, we prove some periodic point results in complete partial metric space.
We need the following definition.

Definition 3.8. [16] A mapping T : C → C is said to have the property (P ) if Fix(Tn) =
Fix(T ) foe every n ∈ N, where Fix(T ) := {x ∈ X : Tx = x}.

Theorem 3.9. Let (X, p) be a complete partial metric space and let C be a nonempty
subset of X and α, µ : X × X → [0,∞) be a function. Suppose that T : C → C be a
mapping satisfying the following conditions:

(i) there exist β ∈ Ω and α, µ : C × C → [0,∞) such that, such that

h(α(x, y), p(Tx, Ty) ≤ F(µ(x, y), β(p(x, y))p(x, y)

holds, for all x, y ∈ C.
(ii) T is α-admissible and µ-subadmissible;

(iii) there exists x0 ∈ C such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1;
(iv) if {xn} is a sequence in C such that α(xn, xn+1) ≥ 1, µ(xn, xn+1) ≤ 1 for all
n ∈ N and p(xn, x)→ 0 as n→∞. Then p(TxnTx)→ 0 as n→∞;

(v) if z ∈ Fix(Tn) and z /∈ Fix(T ), then α(Tn−1z, Tnz) ≥ 1, µ(Tn−1z,Tnz) ≤ 1

Then T has the property (P).
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Proof. Let x0 ∈ C be such that α(x0, Tx0) ≥ 1, µ(x0, Tx0) ≤ 1 and define sequence {xn}
by xn = Tnxn = Txn−1. By (ii), we have α(x1, x2) = α(Tx0, Tx1) ≥ 1 and by induction,
we have

α(xn, xn+1) ≥ 1 (3.9)

and

µ(xn, xn+1) ≤ 1 (3.10)

for all n ∈ N. If there exists n0 ∈ N such that xn0 = xn0+1 = Txn0 , then xn0 is a fixed
point of T . So, we assume that xn 6= xn+1 or p(Txn−1, T

2xn−1) > 0 for all n ∈ N. From
(3.9), (3.10) and (i), we have

h(1, p(xn, xn+1)) = h(1, p(Txn−1, T
2xn−1))

≤ h(α(xn−1, Txn−1), p(Txn−1, T
2xn−1))

≤ F(µ(xn−1, Txn−1), β(p(xn−1, Txn−1))p(xn−1, Txn−1))

≤ F(1, β(p(xn−1, Txn−1))p(xn−1, Txn−1)),

which implies that

p(xn, xn+1) ≤ β(p(xn−1, Txn−1))p(xn−1, Txn−1)

= β(p(xn−1, xn))p(xn−1, xn)

< p(xn−1, xn).

That is

p(xn, xn+1) < p(xn−1, xn).

Following the proof of Theorem 3.3, we obtain {xn} is a Cauchy sequence in complete

partial metric space Ṫhen there exists x∗ ∈ C such that xn → x∗ as n→∞.
By (iv), we have p(xn+1, Tx

∗) = p(Txn, Tx
∗) → 0 as n → ∞, that is x∗ = Tx∗. So,

T has a fixed point and Fix(Tn) = Fix(T ) is true for n = 1. Let n > 1 and suppose on
contrary, that is, there exists z ∈ Fix(Tn) and z /∈ Fix(T ), such that p(z, Tz) > 0.

Now, from (i) and (v), we have

h(1, p(z, Tz)) = h(1, p(Tnz, Tn(Tz)))

= h(1, p(T (Tn−1z), T 2(Tn−1z)))

≤ h(α(Tn−1z, Tnz), p(T (Tn−1z), T 2(Tn−1z)))

≤ F(µ(Tn−1z, Tnz), β(p(Tn−1z, Tnz))p(Tn−1z, Tnz))

≤ F(1, β(p(Tn−1z, Tnz))p(Tn−1z, Tnz))

which implies that

p(z, Tz) ≤ β(p(Tn−1z, Tnz))p(Tn−1z, Tnz)

≤ β(p(Tn−2z, Tn−1z))p(Tn−2z, Tn−1z)

...

≤ β(p(z, Tz))p(z, Tz)

< p(z, Tz).
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That is

p(z, Tz) < p(z, Tz),

which is a contradiction. That is, Fix(Tn) = Fix(T ) and so T has the property (P).

4. An Application to Second Order Differential Equations

Consider the boundary value problem for second order differentiable problem of the
from {

x
′′
(t) = −f(t, x(t)), t ∈ I,

x(0) = x(1) = 0,
(4.1)

where I = [0, 1], f ∈ C(I × R,R).

In this section, we are going to apply Theorem 3.3 to study of existence and uniqueness
of splution for a type of second order differential equations. Our approach is inspired by
Section 5 of [17]. It is known and easy to check, that problem (4.1) is equivalent to the
integral equation

x(t) =

∫ 1

0

G(t, s)f(s, x(s))ds, (4.2)

for t ∈ I, where G is the green function defined by

G(t, s) =

{
(1− t)s if 0 ≤ s ≤ t ≤ 1,

(1− s)t if 0 ≤ t ≤ s ≤ 1.

This is, if x ∈ C2(I,R), then x is a solution of problem (4.1) if and only if it is a solu-
tion of the integral equation (4.2) Let X = C(I) be the space of all continuous functions
defined on I and ‖ u ‖∞= maxt∈I |u(t)| for each u ∈ X.

Consider the partial metric p on X given by

p(x, y) =‖ x− y ‖∞ + ‖ x ‖∞ + ‖ y ‖∞ for all x, y ∈ X
Note that p is also a partial metric on X and that

dp(x, y) := 2p(x, y)− p(x, x)− p(y, y) = 2 ‖ x− y ‖∞ .

Hence, (X, p) is a complete as the metric space (X, ‖ · ‖∞) is complete.

Theorem 4.1. Assume the following conditions:

(i) there exists continuous functions α : I → R+ and β : I → R+ such that

|f(s, a)− f(s, b)| ≤ 8α(s)|a− b|, for s ∈ I and a, b ∈ R,
|f(s, a)| ≤ 8β(s)|a|, for s ∈ I and a ∈ R;

(ii) maxs∈I α(s) = λ1 <
1
3 and maxs∈I β(s) = λ2 <

1
3 .

Then the problem (4.1) has unique solution u ∈ X = C(I,R).
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Proof. Define the self-map T : X → X by

Tx(t) =

∫ 1

0

G(t, s)f(s, x(s))ds,

for all x ∈ X and t ∈ I. Then, the problem (4.1) is equivalent to finding a fixed point u
of T in X.

Let x, y ∈ X, we have

|Tx(t)− Ty(t)| = |
∫ 1

0

G(t, s)f(s, x(s))ds−
∫ 1

0

G(t, s)f(s, y(s))ds|

≤
∫ 1

0

G(t, s)|f(s, x(s))− f(s, y(s))|ds

≤ 8

∫ 1

0

G(t, s)α(s)|x(s)− y(s)|ds

≤ 8λ1 ‖ x− y ‖∞ sup
t∈I

∫ 1

0

G(t, s)ds

= λ1 ‖ x− y ‖∞ .

Next, we recall that for each t ∈ I one has
∫ 1

0
G(t, s)ds = t(1−t)

2 , and then

sup
t∈I

∫ 1

0

G(t, s)ds =
1

8
.

Therefore,

‖ Tx− Ty ‖∞≤ λ1 ‖ x− y ‖∞ . (4.3)

Moreover, we have

|Tx(t)| = |
∫ 1

0

G(t, s)f(s, x(s))ds|

=

∫ 1

0

G(t, s)|f(s, x(s))|ds

≤ 8

∫ 1

0

G(t, s)β(s)|x(s)|ds

≤ 8λ2 ‖ x ‖∞ sup
t∈I

∫ 1

0

G(t, s)ds

≤ λ2 ‖ x ‖∞ .

Thus,

‖ Tx ‖∞≤ λ2 ‖ x ‖∞ . (4.4)

Similarly,

‖ Ty ‖∞≤ λ2 ‖ y ‖∞ . (4.5)
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Assuming β(p(x, y)) = (λ1 + 2λ2) < 1. Using (4.3)-(4.5), we have

p(Tx, Ty) =‖ Tx− Ty ‖∞ + ‖ Tx ‖∞ + ‖ Ty ‖∞
≤ λ1 ‖ x− y ‖∞ +λ2 ‖ x ‖∞ +λ2 ‖ y ‖∞
≤ (λ1 + 2λ2)(‖ x− y ‖∞ + ‖ x ‖∞ + ‖ y ‖∞)

= β(p(x, y))p(x, y).

Then,

p(Tx, Ty) ≤ β(p(x, y))p(x, y) (4.6)

Also, define α(x, y) = 1 and µ(x, y) = 1 for all x, y ∈ X. Taking the function h,F :
R+ × R+ → R defined by h(x, y) = y and F(s, t) = t for all x, y, s, t ∈ R+.

Since

p(x, y) = h(1, p(x, y)) = h(α(x, y), p(x, y)),

and

β(p(x, y))p(x, y) = F(1, β(p(x, y))p(x, y)) = F(µ(x, y), β(p(x, y))p(x, y)).

Then

h(α(x, y), p(x, y)) ≤ F(µ(x, y), β(p(x, y))p(x, y)).

Therefore all hypothesis of Theorem 3.3 are satisfied, and so T has a unique fixed point
u ∈ X, that is, the problem (4.1) has a unique solution u ∈ C2(I).
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