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Abstract Let ϕ be a proper total coloring of a graph G. Let C(v) = {ϕ(v)}∪{ϕ(uv)|uv ∈ E(G)} denote

the set of colors assigned to a vertex v and those edges incident to v. If we have C(u) ̸= C(v) whenever

uv ∈ E(G), then ϕ is called an adjacent-vertex-distinguishing-total coloring or avd-total coloring. Let

χ′′
a(G) be the smallest integer k for which G has an avd-total coloring with k colors. In 2008, Wang

and Wang [W. Wang, Y. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J.

Comb. Optim. 19 (2010) 123–133] obtained many results about χ′′
a(G) depending on the value of the

maximum average degree.

A k-assignment L of G is a list assignment L with |L(v)| = k for each vertex v and |L(e)| = k for each

edge e. A total-L-coloring is a proper total coloring ϕ of G such that ϕ(v) ∈ L(v) whenever v ∈ V (G) and

ϕ(e) ∈ L(e) whenever e ∈ E(G). If G has a total-L-coloring such that C(u) ̸= C(v) for all uv ∈ E(G),

then G has an avd-total-L-coloring. Let Ch′′
a(G) be the smallest integer k such that G has an avd-total-

L-coloring for every k-assignment L. In this paper, we strengthen results of Wang and Wang by giving

analogous results for Ch′′
a(G).
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1. Introduction

In this paper only the simple, finite, and undirected graphs are examined. Let G be
a graph with a vertex set V (G) and an edge set E(G). A proper total coloring ϕ is a
mapping from V (G) ∪ E(G) to a set of colors such that any two adjacent vertices, any
two adjacent edges, and any vertex and its incident edge receive different colors. Let
C(v) = {ϕ(v)} ∪ {ϕ(uv)|uv ∈ E(G)} denote the set of colors assigned to a vertex v
and those edges incident to v. A proper total coloring ϕ of G is an adjacent-vertex-
distinguishing-total coloring (avd-total coloring), if C(u) ̸= C(v) whenever uv ∈ E(G).
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The smallest integer k such that G has an avd-total coloring with k colors is called the
adjacent-vertex-distinguishing-total chromatic number, denoted by χ′′

a(G).
This coloring is related to a vertex-distinguishing proper edge coloring (a proper edge

coloring with C(u) ̸= C(v) for each pair of distinct vertices u and v) which was discussed
by Balister et al. [1], Bazgan [2], and Burris and Schelp [3]. In 2002, Zhang et al. [4]
studied an adjacent vertex distinguishing proper edge coloring (a proper edge coloring
with C(u) ̸= C(v) for each pair of adjacent vertices u and v). In 2005, avd-total coloring
of graphs was introduced by Zhang et al. [5]. They obtained χ′′

a(G) for graphs in
many basic families such as paths, cycles, trees, wheels, stars, fans, complete graphs, and
complete bipartite graphs. Additionally, they posed the following conjecture.

Conjecture 1.1. [5] If G is a graph with order at least two, then χ′′
a(G) ≤ ∆(G) + 3.

Subsequently, Wang [6] and Chen [7] independently verified the conjecture for the case
∆(G) = 3. In 2009, Hulgan [8] presented a more concise proof for this result. Moreover,
he also provided short proofs for the exact value of χ′′

a(G) of complete graphs and cycles.
In 2010, Wang and Wang [9] studied outerplanar graphs with ∆(G) ≥ 3 and proved that
∆(G) + 1 ≤ χ′′

a(G) ≤ ∆(G) + 2, whereas χ′′
a(G) = ∆(G) + 2 if and only if G has

two adjacent vertices of maximum degree. In 2014, Wang and Huang [10] extended the
results to planar graphs. In 2015, Luiz et al. [11] verified the conjecture for complete
equipartite graphs. Coker and Johannson [12] used a probabilistic approach to show that
χ′′

a(G) ≤ ∆(G) + c for some constant c > 0. Pedrotti and De Mello [13] confirmed the
conjecture for indifference graphs. Chen et al. [14] obtained χ′′

a(G) of mono-cycle graphs
and square of cycles. Huang et al. [15] showed that χ′′

a(G) ≤ 2∆(G) for any graph with
∆(G) ≥ 3. In 2014, Papaioannou and Raftopoulou [16] constructed an algorithm that
gives an avd-total coloring with seven colors to any 4-regular graph.

The length of a shortest cycle in G is called girth of a graph G, denoted by g(G). The
maximum average degree of G is defined by

mad(G) = max
H⊆G

{
2|E(H)|
|V (H)|

}
.

The following lemma can be derived easily from the definition of maximum average
degree.

Lemma 1.2. If H is a subgraph of G, then mad(H) ≤ mad(G).

The following fact is well-known.

Proposition 1.3. If G is a planar graph, then mad(G) < 2g(G)/(g(G)− 2).

In 2008, Wang and Wang [17] obtained following results about χ′′
a(G) for graphs with

smaller maximum average degree.

Theorem 1.4. [17] Let G be a graph.
(1) If mad(G) < 3 and ∆(G) ≥ 5, then ∆(G) + 1 ≤ χ′′

a(G) ≤ ∆(G) + 2; and χ′′
a(G) =

∆(G) + 2 if and only if G has two vertices of maximum degree which are adjacent.
(2) If mad(G) < 3 and ∆(G) = 4, then χ′′

a(G) ≤ 6.
(3) If mad(G) < 8

3 and ∆(G) = 3, then χ′′
a(G) ≤ 5.

Applying proposition 1.3 to Theorem 1.4 yields the following corollary.
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Corollary 1.5. [17]
Let G be a planar graph.

(1) If g(G) ≥ 6 and ∆(G) ≥ 5, then ∆(G) + 1 ≤ χ′′
a(G) ≤ ∆(G) + 2; and χ′′

a(G) =
∆(G) + 2 if and only if G has two adjacent vertices of maximum degree.
(2) If g(G) ≥ 6 and ∆(G) = 4, then χ′′

a(G) ≤ 6.
(3) If g(G) ≥ 8 and ∆(G) = 3, then χ′′

a(G) ≤ 5.

The concept of list coloring was introduced independently by Vizing [18] and by Erdős,
Rubin, and Taylor [19]. Each vertex (or edge) is assumed to have a list of legal colors
that can be used where the lists may be different. Thereafter, many colorings are studied
in the list analogous as a natural extension. In this paper, a k-assignment L of G is a list
assignment L with |L(v)| = k for each vertex v and |L(e)| = k for each edge e. A total-
L-coloring is a proper total coloring ϕ of G such that ϕ(v) ∈ L(v) whenever v ∈ V (G)
and ϕ(e) ∈ L(e) whenever e ∈ E(G). We call that G has an avd-total-L-coloring if G
has a total-L-coloring such that C(u) ̸= C(v) for all uv ∈ E(G). The smallest integer k
such that G has an avd-total-L-coloring for every k-assignment L, denoted by Ch′′

a(G),
is called the avd-total choice number. For H ⊆ G, we let LH denote a list L restricted to
a subgraph H of G. In this paper, we strengthen Theorem 1.4 and thus Corollary 1.5 by
giving analogous results for Ch′′

a(G). Naturally, some additional results are required.

2. Main Results

2.1. Graphs with Maximum Average Degree Less Than 3

Theorem 2.1. If G is a graph with mad(G) < 3 and K(G) = max{∆(G) + 2, 6}, then
Ch′′

a(G) ≤ K(G).

Proof. Assume that G is a minimal counterexample. Let |L(v)| ≥ K(G) for each vertex
v and |L(e)| ≥ K(G) for each edge e in G. By minimality and Lemma 1.2, any proper
subgraph G′ of G has Ch′′

a(G
′) ≤ K(G′) ≤ K(G). Thus there is an avd-total-LG′-coloring

ϕ of G′. The structure of G is analyzed in the claims below. After that we obtain a
contradiction by using the discharging method.

Claim 1. There is no vertex of degree at most 3 is adjacent to a leaf.

Proof. Suppose to the contrary that G contains a vertex v with dG(v) ≤ 3 adjacent to a
leaf. Without loss of generality, we may assume that dG(v) = 3 and v1, v2, v3 are neighbors
of v where v1 is a leaf. Let G′ = G− v1. Suppose that ϕ(v) = 1, ϕ(vv2) = 2, ϕ(vv3) = 3.
Since |L(vv1)| ≥ 6, we have |L(vv1) \ {1, 2, 3}| ≥ 3. Thus we can choose ϕ(vv1) = a ∈
L(vv1) \ {1, 2, 3} to obtain C(v) = {1, 2, 3, a} such that C(v2) ̸= C(v) ̸= C(v3). Finally,
we can color v1 from L(v1) \ {1, a}.

Claim 2. There does not exist a path x1x2x3 . . . xn or a cycle x1x2x3 . . . xn where x1 = xn

with dG(x1), dG(xn) ≥ 3 and dG(xi) = 2 for all i = 2, 3, . . . , n− 1, where n ≥ 4.

Proof. Suppose to the contrary that G contains such a path or a cycle. Let G′ = G−x2x3.
If n = 4, we recolor x2 with a color a ∈ L(x2) \ {ϕ(x1), ϕ(x3), ϕ(x1x2), ϕ(x3x4)}, and

color x2x3 with a color in L(x2x3) \ {a, ϕ(x3), ϕ(x1x2), ϕ(x3x4)}. Since a ∈ C(x2) but
a /∈ C(x3), we get C(x2) ̸= C(x3).

If n ≥ 5, we recolor x3x4 with a color a ∈ L(x3x4) \ {ϕ(x2), ϕ(x4), ϕ(x5), ϕ(x4x5)},
recolor x3 with a color b ∈ L(x3) \ {a, ϕ(x2), ϕ(x4), ϕ(x4x5)}, and color x2x3 with a color
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in L(x2x3) \ {a, b, ϕ(x2), ϕ(x1x2)}.
Since ϕ(x2) /∈ {a, b, ϕ(x2x3)} = C(x3) but ϕ(x2) ∈ C(x2), we get C(x2) ̸= C(x3). Since

a ∈ C(x4) \ C(x5) and b ∈ C(x3) \ C(x4), we get C(x4) ̸= C(x5) and C(x3) ̸= C(x4).

Claim 3. There does not exist a k-vertex v, k ≥ 4, with neighbors v1, v2, v3, . . . , vk such
that dG(v1) = 1, dG(vi) ≤ 2 for 2 ≤ i ≤ k − 2.

Proof. Suppose to the contrary that G contains such a vertex v. For 2 ≤ i ≤ k − 2,
if vi is a 2-vertex, we let ui ̸= v be the second neighbor of vi. Note that ui has de-
gree at least 3 by Claim 2 if it exists. Let G′ = G − v1. Without loss of general-
ity, we may assume that ϕ(v) = 1, ϕ(vvi) = i for i = 2, 3, . . . , k. Let a, b ∈ L(vv1) \
{1, 2, 3, . . . , k}. If C(vk−1) ̸= {1, 2, 3, . . . , k, a} ̸= C(vk), we color vv1 with a. Thus
C(v) = {1, 2, 3, . . . , k, a}. If C(vk−1) ̸= {1, 2, 3, . . . , k, b} ̸= C(vk), we color vv1 with b.
Consequently, C(v) = {1, 2, 3, . . . , k, b}. Hence C(v) ̸= C(vi) for i = k − 1, k. Assume
that C(vk−1) = {1, 2, 3, . . . , k, a} and C(vk) = {1, 2, 3, . . . , k, b}.
Case 1. d(v2) = 1.

We recolor vv2 with s ∈ L(vv2)\{1, 2, . . . , k} and choose ϕ(vv1) ∈ L(vv1)\{1, 2, . . . , k, s}.
Thus 2 ∈ C(vk−1) \ C(v) and 2 ∈ C(vk) \ C(v). Hence C(v) ̸= C(vi) for i = k − 1, k.

Finally, we color v1 with a color in L(v1)\{ϕ(v), ϕ(vv1)} and we recolor v2 with a color
in L(v2) \ {ϕ(v), ϕ(vv2)}.
Case 2. d(v2) = 2.

The proof is similar to Case 1 except we recolor vv2 with s ∈ L(vv2)\{1, 2, ..., k, ϕ(v2u2)}
and recolor v2 with a color in L(v2) \ {ϕ(v), ϕ(vv2), ϕ(u2), ϕ(v2u2)}.

Claim 4. A 2-vertex v is not adjacent to a 3-vertex u.

Proof. Suppose to the contrary that G contains a 2-vertex v adjacent to a 3-vertex u
and another vertex w. Let u1, u2 ̸= v be the other neighbors of u. By Claims 1 and 2,
dG(w) ≥ 3. Let G′ = G − uv. Without loss of generality, we may assume that ϕ(u) =
1, ϕ(uu1) = 2, ϕ(uu2) = 3. Since |L(uv)| ≥ 6, we can choose ϕ(uv) = a ∈ L(uv) \ {1, 2, 3}
such that C(u1) ̸= {1, 2, 3, a} ̸= C(u2). Hence C(u) ̸= C(ui) for i = 1, 2. Finally, we
recolor v with a color in L(v) \ {1, a, ϕ(w), ϕ(vw)}.

Claim 5. A 4-vertex v is not adjacent to three 2-vertices.

Proof. Suppose to the contrary that G contains a 4-vertex v with neighbors v1, v2, v3, v4
such that dG(v1) = dG(v2) = dG(v3) = 2. Let u1 ̸= v be the second neighbor of v1. By
Claims 1 and 2, we have dG(u1) ≥ 3. Let G′ = G − vv1. Without loss of generality,
we may assume that ϕ(v) = 1, ϕ(vvi) = i for i = 2, 3, 4. Since |L(vv1) \ {1, 2, 3, 4}| ≥ 2,
we can choose ϕ(vv1) = a ∈ L(vv1) \ {1, 2, 3, 4} such that C(v4) ̸= {1, 2, 3, a} = C(v).
Finally, we recolor v1 with a color in L(v1) \ {1, a, ϕ(u1), ϕ(v1u1)}. Since dG(u1) ≥ 3 by
Claim 2, we have C(v1) ̸= C(u1).

Claim 6. A 5-vertex v is not adjacent to five 2-vertices.

Proof. Suppose to the contrary that G contains a 5-vertex v adjacent to five 2-vertices
v1, v2, v3, v4, v5. For 1 ≤ i ≤ 5, let ui ̸= v be the second neighbor of vi. We note that
dG(ui) ≥ 3 by Claims 1 and 2. Let G′ = G−vv1. First, we uncolor v, v1, v2, v3, v4, and v5.
Since L(vv1) ≥ 6, we can color vv1 with a color in L(vv1)\{ϕ(vv2), ϕ(vv3), ϕ(vv4), ϕ(vv5),
ϕ(v1u1)}. Next, we color v with a color in L(v) \ {ϕ(vv1), ϕ(vv2), ϕ(vv3), ϕ(vv4), ϕ(vv5)}.
Finally, we color vi with a color in L(vi) \ {ϕ(v), ϕ(ui), ϕ(vvi), ϕ(vui)} for 1 ≤ i ≤ 5.
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Observe that C(v) ̸= C(vi) ̸= C(ui) because dG(v) ̸= dG(vi) ̸= dG(ui). Therefore, we
have an avd-total-LG-coloring ϕ of G.

Let H be a graph obtained by removing all leaves of G. The properties of the graph
H are collected in the following Claim 7:
Claim 7.
(1) Each vertex in H has degree at least 2.
(2) If v ∈ V (G) with 2 ≤ dG(v) ≤ 3, then dH(v) = dG(v).
(3) If v ∈ V (H) with dH(v) = 2, then dG(v) = 2.
(4) If v ∈ V (G) with dG(v) ≥ 4, then dH(v) ≥ 3.
(5) H cannot contain a 2-vertex adjacent to a 2-vertex or a 3-vertex.

Proof. (1) Suppose to the contrary that a vertex v in H has dH(v) ≤ 1. One can easily
see that H does not contain a vertex v with dG(v) ≤ 1.
If dG(v) = 2 or 3, then the vertex v cannot be adjacent to a leaf in G by Claim 1.
If dG(v) ≥ 4, then the vertex v is adjacent to at least dG(v) − 1 leaves in G. This
contradicts Claim 3. Hence each vertex v in H has dH(v) ≥ 2.

(2) Since a vertex v with dG(v) = 2 or 3 is not adjacent to a leaf in G by Claim 1, we
do not remove its neighbor in G. Hence dH(v) = dG(v).

(3) Suppose to the contrary that dG(v) ≥ 3. If dG(v) = 3, then the vertex v is adjacent
to a leaf in G. This contradicts Claim 1.
If dG(v) ≥ 4, then the vertex v is adjacent to at least dG(v) − 2 leaves in G. This
contradicts Claim 3. Hence dG(v) = 2.

(4) Assume that v ∈ V (G) with dG(v) ≥ 4. Then we have that the vertex v is adjacent
to at most dG(v)− 3 leaves in G by Claim 3. Thus dH(v) ≥ 3.

(5) Suppose to the contrary that a 2-vertex u in H is adjacent to a 2-vertex v. By
Claim 7(3), we have dG(v) = dH(v) = 2 = dH(u) = dG(u). This contradicts Claim 2.
Suppose to the contrary that a 2-vertex u in H is adjacent to a 3-vertex v.
The case dG(v) = 3 contradicts Claim 4.
If dG(v) ≥ 4, then the vertex v is adjacent to dG(v) − 3 leaves in G. This contradicts
Claim 3. Hence H cannot contain a 2-vertex adjacent to a 2-vertex or a 3-vertex.

Next, we complete the proof by using the discharging method derived by Wang and
Wang [17]. We present their method here for the convenience of readers. First of all,
define an initial charge function w(v) = dH(v) for every v ∈ V (H). Next, rearrange the
weights according to the designed rule. When the discharging is finished, we have a new
charge w′. However, the sum of all charges is kept fixed. Finally, we want to show that
w′(v) ≥ 3 for all v ∈ V (H). This leads to the following contradiction:

3 =
3|V (H)|
|V (H)|

≤
∑

v∈V (H) w
′(v)

|V (H)|
=

∑
v∈V (H) w(v)

|V (H)|
=

2|E(H)|
|V (H)|

≤ mad(H) < 3.

The discharging rule is defined as follows :
(R). Every vertex v of degree at least 4 gives 1

2 to each adjacent 2-vertex.
Let v ∈ V (H). By Claim 7(1), we get dH(v) ≥ 2.
Case 1. dH(v) = 2. The vertex v is adjacent to two vertices of degree at least 4 by

Claim 7(5). Thus each of vertices sends 1
2 to v by (R). Hence w′(v) = dH(v) + 2( 12 ) =

2 + 1 = 3.
Case 2. dH(v) = 3. We have w′(v) = w(v) = 3.
Case 3. dH(v) = 4. Suppose to the contrary that v is adjacent to at least three
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2-vertices, say v1, v2, and v3. By Claim 7(3), we get dG(v1) = dG(v2) = dG(v3) = 2.
Subcase 3.1 dG(v) = 4. Then we have that a 4-vertex v is adjacent to three 2-vertices

in G. This contradicts Claim 5.
Subcase 3.2 dG(v) = k ≥ 5. Then there exist k − 4 neighbors of v in G which are

leaves. This contradicts Claim 3.
Thus v is adjacent to at most two 2-vertices in H. Hence w′(v) ≥ 4− 2( 12 ) = 3.
Case 4. dH(v) = 5. Suppose to the contrary that v is adjacent to five 2-vertices, say

v1, v2, v3, v4, and v5. By Claim 7(3), we get dG(vi) = 2 for 1 ≤ i ≤ 5.
Subcase 4.1 dG(v) = 5. Then we have that a 5-vertex v is adjacent to five 2-vertices

in G. This contradicts Claim 6.
Subcase 4.2 dG(v) = k ≥ 6. Then there exist k − 5 neighbors of v in G which are

leaves. This contradicts Claim 3.
Thus v is adjacent to at most four 2-vertices. Hence w′(v) ≥ 5− 4( 12 ) = 3.
Case 5. dH(v) ≥ 6. The vertex v is adjacent to at most dH(v) 2-vertices and hence

w′(v) ≥ dH(v)− 1
2dH(v) = 1

2dH(v) ≥ 3 by (R).

Theorem 2.2. Let G be a graph with mad(G) < 3 and without adjacent vertices of
maximum degree. Let K ′(G) = max{∆(G) + 1, 6}. Then Ch′′

a(G) ≤ K ′(G).

Proof. The proof is proceeded by contradiction. Assume that G is a minimum counterex-
ample. Let |L(v)| ≥ K ′(G) for each vertex v and |L(e)| ≥ K ′(G) for each edge e in G.
With the same argument, we can prove that G satisfies Claims 1, 2, 4, 5, and 6 as in
Theorem 2.1.

If G does not satisfy Claim 3, we suppose that v is a k-vertex, k ≥ 4, with neighbors
v1, v2, . . . , vk such that dG(v1) = 1, dG(vi) ≤ 2 for 2 ≤ i ≤ k− 2, we denote by ui ̸= v the
second neighbor of vi. Let G

′ = G− v1. Without loss of generality, we may assume that
ϕ(v) = 1, ϕ(vvi) = i for i = 2, 3, . . . , k.

If dG(v) = ∆(G), then dG(vk−1) ̸= ∆(G) ̸= dG(vk) by assumption. We can pro-
ceed by coloring vv1 and v1. Next, we consider the case dG(v) = k < ∆(G). Let
a, b ∈ L(vv1) \ {1, 2, 3, . . . , k, a}.

If C(vk−1) ̸= {1, 2, 3, ..., k, a} ̸= C(vk), we color vv1 with a. Thus C(v) = {1, 2, 3, ..., k, a}.
If C(vk−1) ̸= {1, 2, 3, ..., k, b} ̸= C(vk), we color vv1 with b. Thus C(v) = {1, 2, 3, ..., k, b}.

Hence C(v) ̸= C(vi) for i = k − 1, k. Assume that C(vk−1) = {1, 2, 3, . . . , k, a} and
C(vk) = {1, 2, 3, . . . , k, b}. The remaining proof is similar to that of Claim 3 in Theorem
2.1. Therefore, G satisfies Claim 3.

Similarly, let H be the graph obtained by removing all leaves of G. Then mad(H) ≤
mad(G) < 3 by Lemma 1.2. Using the same initial charge function w(v) = dH(v) for
every v ∈ V (H) and the same discharging rule (R) as in Theorem 2.1, we can complete
the proof by providing a contradiction.

2.2. Graphs with Maximum Average Degree Less Than 8
3

Theorem 2.3. If G is a graph with mad(G) < 8
3 and ∆(G) ≤ 3, then Ch′′

a(G) ≤ 5.

Proof. The proof is proceeded by contradiction. Assume that G is a minimum counterex-
ample. Let |L(v)| ≥ 5 for each vertex v and |L(e)| ≥ 5 for each edge e in G. For any
proper subgraph G′ of G, we always assume that there is an avd-total-LG′ -coloring ϕ of
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G′ by minimality of G.

Claim 1. G satisfies the following properties
(a) No 2-vertex is adjacent to a leaf.
(b) No 3-vertex is adjacent to a leaf and another vertex with degree at most 2.
(c) There are no adjacent 2-vertices.

Proof. (a) Suppose to the contrary that G contains a 2-vertex v with neighbors v1, v2
such that v1 is a leaf and u2 is another neighbor of v2 if it exists. Let G′ = G−vv1. Since
|L(vv1)| ≥ 5, we can color vv1 with a color in L(vv1) \ {ϕ(v), ϕ(vv2), ϕ(v2), ϕ(v2u2)}.
Thus C(v) ̸= C(v2). Finally, we can color v1 from L(v1) \ {ϕ(v), ϕ(vv1)}.
(b) Suppose to the contrary that G contains 3-vertex v with neighbors v1, v2, v3 such that
dG(v1) = 1 and dG(v2) ≤ 2. Let G′ = G− v1. Since |L(vv1)| = 5, we can color vv1 with
a color a in L(vv1) \ {ϕ(v), ϕ(vv2), ϕ(vv3)} to make C(v) ̸= C(v3). Finally, we can color
v1 from L(v1) \ {ϕ(v), a}.
(c) Suppose to the contrary that G contains two adjacent 2-vertices u and v. Let u1 ̸= v
be the second neighbor of u, and v1 be the second neighbor of v. Note that dG(v1) and
dG(u1) = 2 or 3 by (a). Then the proof is similar to that of Claim 2 in Theorem 2.1.

Claim 2. Suppose that v is a 3-vertex adjacent to a leaf v1 and two other vertices v2
and v3. Let ϕ be an avd-total-LG−v1 -coloring of the subgraph G− v1. Then
(1) L(vv1) = {ϕ(v), ϕ(v2), ϕ(v3), ϕ(vv2), ϕ(vv3)}, C(v2) = {ϕ(v), ϕ(v2), ϕ(vv2), ϕ(vv3)},
and C(v3) = {ϕ(v), ϕ(v3), ϕ(vv2), ϕ(vv3)},
(2) |L(v) \ {ϕ(v2), ϕ(v3), ϕ(vv2), ϕ(vv3)}| = 1.

Proof. (1) Without loss of generality, we may assume that ϕ(v) = 1 and ϕ(vvi) = i for i =
2, 3. Let {a, b} ⊆ L(vv1) \ {1, 2, 3}. Note that we cannot extend an avd-total-L-coloring
ϕ to a counterexample G. If C(v2) ̸= {1, 2, 3, a} ̸= C(v3), we color vv1 with a. If C(v2) ̸=
{1, 2, 3, b} ̸= C(v3), we color vv1 with b. Hence C(v) ̸= C(vi) for i = 2, 3. Assume that
C(v2) = {1, 2, 3, a} and C(v3) = {1, 2, 3, b}. Since ϕ(v2) ̸= 1, 2, we have ϕ(v2) = 3 or a. If
ϕ(v2) = 3, then we recolor ϕ(v) with t ∈ L(v)\{1, 2, 3, ϕ(v3)} and color vv1 with a color in
L(vv1) \ {1, 2, 3, t}. Thus 1 ∈ C(v2) \C(v) and 1 ∈ C(v3) \C(v). Hence C(v) ̸= C(vi) for
i = 2, 3. Moreover, ϕ(v2) = a. Similarly, ϕ(v3) = b. Therefore, L(vv1) = {1, 2, 3, a, b} =
{ϕ(v), ϕ(vv2), ϕ(vv3), ϕ(v2), ϕ(v3)}, C(v2) = {1, 2, 3, a} = {ϕ(v), ϕ(vv2), ϕ(vv3), ϕ(v2)},
and C(v3) = {1, 2, 3, b} = {ϕ(v), ϕ(vv2), ϕ(vv3), ϕ(v3)}.

(2) Claim 2(2) follows Claim 2(1) immediately.

Claim 3. There do not exist two adjacent 3-vertices each of which is adjacent to a leaf.

Proof. Suppose to the contrary that G contains two adjacent 3-vertices u and v such that
u is adjacent to a leaf u1 and v is adjacent to a leaf v1. Let u2 and v2 be the third neighbor
of u and v respectively. Let G′ = G− u1. By Claim 2(1), we may assume that ϕ(u) = 1,
ϕ(uu2) = 2, ϕ(uv) = 3, ϕ(u2) = 4, ϕ(v) = 5, C(u2) = {1, 2, 3, 4}, C(v) = {1, 2, 3, 5}, and
L(uu1) \ {1, 2, 3} = {4, 5}. By Claim 2(2), L(u) = {1, 2, 3, 4, 5}.
Case 1. If 4 ∈ L(uv) and C(v2) ̸= {1, 2, 4, 5}, then we recolor uv by 4. Now we have
C(v) = {1, 2, 4, 5}. Thus C(v) ̸= C(v2). Since {ϕ(uu2), ϕ(u2), ϕ(uv), ϕ(v)} = {2, 4, 5},
we have |L(u) \ {ϕ(uu2), ϕ(u2), ϕ(uv), ϕ(v)}| ≥ 2. This contradicts Claim 2(2).
Case 2. If 4 ∈ L(uv) and C(v2) = {1, 2, 4, 5}, then we recolor uv by 4 and vv1 by
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b ∈ L(vv1) \ {1, 2, 4, 5}. Since b ∈ C(v) \ C(v2), C(v) ̸= C(v2). Now, ϕ is an avd-
total-LG′ -coloring of G′. Since {ϕ(uu2), ϕ(u2), ϕ(uv), ϕ(v)} = {2, 4, 5}, we have |L(u) \
{ϕ(uu2), ϕ(u2), ϕ(uv), ϕ(v)}| ≥ 2. This contradicts Claim 2(2).
Case 3. If 4 /∈ L(uv), then we color uu1 by 4 and recolor uv by c ∈ L(uv) \ {1, 2, 3, 4, 5}.
Since |L(vv1)| ≥ 5, we can choose a color that is not 4 to recolor vv1 such that C(v) ̸=
C(v2). Since c ∈ C(u) \ C(u2), we get C(u) ̸= C(u2). Since 4 ∈ C(u) \ C(v), we get
C(u) ̸= C(v). Recolor v1 as needs to complete an avd-total-L-coloring of G.

Claim 4. There is no 3-vertex is adjacent to two 3-vertices each of which is adjacent to
a leaf.

Proof. Assume that G contains a 3-vertex u with neighbors x, y, z such that y is adjacent
to a leaf y1, and z is adjacent to a leaf z1. Let y2 be the remaining neighbor of y and z2 be
the remaining neighbor of z. Let G′ = G \ {y1, z1}. Let ϕ1 be an avd-total-LG′-coloring
of G′. Let a partial total-L-coloring ϕ of G obtained from a coloring ϕ1 except that we
uncolor u, y, z, uy, and uz.

Choose L′(u) ⊆ L(u) \ {ϕ(ux), ϕ(x)}, L′(uy) ⊆ L(uy) \ {ϕ(ux), ϕ(yy2)}, and L′(uz) ⊆
L(uz) \ {ϕ(ux), ϕ(zz2)} such that |L′(u)| = |L′(uy)| = |L′(uz)| = 3 with ϕ1(u) ∈
L′(u), ϕ1(uy) ∈ L′(uy), and ϕ1(uz) ∈ L′(uz). Let A = {(c1, c2, c3) : c1 ∈ L′(uy), c2 ∈
L′(u), c3 ∈ L′(uz), c1 ̸= c2 ̸= c3 ̸= c1}.

Note that if we extend ϕ to uy, u, uz with (ϕ(uy), ϕ(u), ϕ(uz)) ∈ A, then we have a
proper partial total-L-coloring of G. One can see that we can continue extending ϕ to
y, yy1, y1, z, zz1, z1 to have a proper total-L-coloring of G. However, the resulting coloring
is an avd-total-L-coloring of G if and only if C(u) ̸= C(y) ̸= C(y2), and C(u) ̸= C(z) ̸=
C(z2), and C(u) ̸= C(x). Now we attempt to show that there is (c1, c2, c3) in A such that
extending ϕ to uy, u, uz with c1, c2, c3, respectively, can lead to an avd-total-L-coloring
of G. Let Ax be a set of (c1, c2, c3) in A such that using (ϕ(uy), ϕ(u), ϕ(uz)) = (c1, c2, c3)
cannot lead to an avd-total-L-coloring of G in which C(u) ̸= C(x). Let Ay be a set of
(c1, c2, c3) in A such that using (ϕ(uy), ϕ(u), ϕ(uz)) = (c1, c2, c3) cannot lead to an avd-
total-L-coloring of G in which C(u) ̸= C(y) ̸= C(y2). The definition of Az is defined
similarly to Ay.
Observation 1. |Ay| ≤ 2. Assume (1, 2, 3) ∈ Ay. Without loss of generality, let ϕ(ux) =
4. Let ϕ(yy2) = a and ϕ(y2) = b. By the definition of Ay and Claim 2(2), we have 1, 2, a, b
are four distinct elements in L(y).

Suppose to the contrary that a is neither 3 nor 4. Choose ϕ(y) ∈ L(y) \ {1, 2, a, b}.
Since L(yy1) \ {1, a, ϕ(y)} has at least two elements, we can choose ϕ(yy1) such that
C(y) ̸= C(y2). Since a ∈ C(y) \ C(u), we also have C(y) ̸= C(u). This contradicts the
definition of Ay. Thus a = 3 or 4.

b b b b b

b bb

b a = 3 4 1 2 3

y2
y u z z2

y1 z1x

C(y2) = {1, 3, 4, b}

L(y) = {1, 2, 3, 4, b}

4

Fig. 1 Case 1. a = 3
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Case 1. a = 3. Let d ∈ L(y) \ {1, 2, 3, b}. Choose ϕ(y) = d. Suppose to the contrary that
d is not 4. Since L(yy1) \ {1, 3, d} has at least two elements, we can choose ϕ(yy1) such
that C(y) ̸= C(y2). Since d ∈ C(y) \ C(u), we have C(y) ̸= C(u). This contradicts the
definition of Ay. Thus ϕ(y) = d = 4 and L(y) = {1, 2, 3, 4, b}. By Claim 2(1), L(yy1) =
{1, 2, 3, 4, b}. Moreover, C(y2) = {1, 3, 4, b} otherwise we can choose ϕ(yy2) = b to make
C(y2) ̸= C(y) ̸= C(u).

Now we claim that (2, 1, 3) is the only other possible element in Ay. Let (c1, c2, c3) ∈
Ay. Claim 2(2) implies that {c1, c2} = {1, 2}. Consequently, we must choose ϕ(y) = 4.
Suppose to the contrary that c3 ̸= 3. We can extend ϕ(yy1) to obtain C(y) ̸= C(y2). Since
3 ∈ C(y) \ C(u), we also have C(y) ̸= C(u) which contradicts the definition of Ay. Thus
c3 = 3. Hence (c1, c2, c3) = (1, 2, 3) or (2, 1, 3).

b b b b b

b bb

b a = 4 3 1 2 3

y2
y u z z2

y1 z1x

C(y2) = {1, 3, 4, b}

L(y) = {1, 2, 3, 4, b}

L(yy1) = {1, 2, 3, 4, b} 4

Fig. 2 Case 2. a = 4

Case 2. a = 4.
Similar to the previous case, one can show that ϕ(y) = 3, L(y) = L(yy1) = {1, 2, 3, 4, b},

and C(y2) = {1, 3, 4, b}. Now we claim that (3, 2, 1) is the only other possible element in
Ay. Let (c1, c2, c3) ∈ Ay. Claim 2(2) implies that {c1, c2} ⊆ {1, 2, 3}.

Suppose to the contrary that {c1, c2} = {1, 3}. Choose ϕ(y) = 2 for {c1, c2} = {1, 3}
and ϕ(yy1) = b. Since 2 ∈ C(y) \ C(y2) and b ∈ C(y) \ C(u), we also have C(y) ̸= C(y2)
and C(y) ̸= C(u) which contradicts the definition of Ay. Thus {c1, c2} ̸= {1, 3}.

If (c1, c2) = (2, 1), then we can choose ϕ(y) = 3 and ϕ(yy1) = b to obtain C(u) ̸=
C(y) ̸= C(y2). If (c1, c2) = (2, 3), then we can choose ϕ(y) = 1 and ϕ(yy1) = b to obtain
C(u) ̸= C(y) ̸= C(y2). Combining with {c1, c2} ̸= {1, 3}, we have (c1, c2) = (1, 2) or
(3, 2).

We show that c3 ∈ {1, 2, 3}. If c3 = d /∈ {1, 2, 3, 4, b}, then we can choose ϕ(yy1) after
choosing ϕ(y) to obtain C(y) ̸= C(y2). Since d ∈ C(u) \C(y), we also have C(y) ̸= C(u).
Thus c3 ∈ {1, 2, 3, 4, b}. Since ϕ(ux) = 4, we have c3 ̸= 4. If c3 = b, we can choose
ϕ(y) ̸= b ̸= ϕ(yy1) to obtain C(u) ̸= C(y) ̸= C(y2). Thus c3 ∈ {1, 2, 3}. Consequently
(c1, c2, c3) is (1, 2, 3) or (3, 2, 1). This completes the proof of the observation.

Next, we consider |A| and |Ax| to complete the proof. Assume ϕ1(uy) = 1, ϕ1(u) =
2, ϕ1(uz) = 3. Consider the case that L′(uy) = L′(u) = L′(uz). By the definition of
L′(uy), L′(u), and L′(uz), we have L′(uy) = L′(u) = L′(uz) = {1, 2, 3}. Thus |A| = 6. Ex-
tending ϕ to uy, u, uz where (ϕ(uy),ϕ(u),ϕ(uz)) is inA always results in {ϕ(uy),ϕ(u),ϕ(uz)}
= {1, 2, 3}. Thus C(u) = {1, 2, 3, 4} which is not equal to C(x) from the beginning. Hence
|Ax| = 0. Therefore |A \ (Ax ∪Ay ∪Az)| ≥ 6− (0 + 2 + 2) ≥ 2.

Now assume that at least two of L′(uy), L′(u), L′(uz) are not equal. Recall that each
of L′(uy), L′(u), L′(uz) has 3 elements. We show that |A| ≥ 10. First, consider the case
d ∈ L′(uy)∪L′(u)∪L′(uz) is in one set, say L′(uy), but not in other two sets. There are
at least 6 sets of (c1 = d, c2, c3) and at least 4 sets of (c1 ̸= d, c2, c3) in A. Thus |A| ≥ 10
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in this case. Next, consider the case that each d ∈ L′(uy) ∪ L′(u) ∪ L′(uz) is in at least
two of L′(uy), L′(u), L′(uz). This happens only if |L′(uy) ∪ L′(u) ∪ L′(uz)| = 4 and only
one element appears in L′(uy) ∩ L′(u) ∩ L′(uz). One can enumerate that |A| = 11.

Let (c1, c2, c3) ∈ Ax. Thus C(x) = {c1, c2, c3, 4}. By the aforementioned property of
L′(uy), L′(u), and L′(uz), we may assume c3 /∈ L′(uy). Thus (c3, c1, c2) and (c3, c2, c1) is
not in Ax. Hence |Ax| ≤ 4. Therefore |A \ (Ax ∪Ay ∪Az)| ≥ 10− (4 + 2 + 2) ≥ 2.

This means we can extend ϕ to uy, u, uz with (ϕ(uy), ϕ(u), ϕ(uz)) ∈ A\(Ax∪Ay∪Az).
By definitions of Ax, Ay, and Az, we can extend ϕ further to be an avd-total-L-coloring
of G

With a similar proof, one can obtain the followings:
Claim 5. There is no 3-vertex v is adjacent to a 2-vertex and a 3-vertex u such that u
is adjacent to a leaf.
Claim 6. There is no 3-vertex v is adjacent to two 2-vertices.

Proof. Suppose to the contrary that G contains a 3-vertex v adjacent to two 2-vertices
v1, v2, and the third vertex v3. Let G′ = G − {vv1, vv2}. Without loss of generality, we
may assume that ϕ(v3) = 1,ϕ(vv3) = 2, and C(v3) ⊆ {1, 2, 3, 4}. Since |L(v)| = 5, we
can choose a ∈ L(v) \ {1, 2, 3, 4} to recolor v and then properly color vv1,vv2, and recolor
v1,v2 (if needed). Since a ∈ C(v) \ C(v3), we get C(v) ̸= C(v3). Moreover, Claim 1(c)
yields that vi is not adjacent to a 2-vertex for each i = 1, 2. Consequently, if ui is the
second neighbor of vi where i = 1 or 2, then C(vi) ̸= C(ui). Thus we obtain a desired
coloring.

Let H be the graph obtained by removing all leaves of G. The properties of the graph
H are collected in the following Claim 7:
Claim 7.
(1) Each vertex in H has degree at least 2.
(2) There are no adjacent 2-vertices.
(3) Every 3-vertex is adjacent to at most one 2-vertex.

Proof. (1) Suppose to the contrary that a vertex v has dH(v) ≤ 1.
If dG(v) = 2, then v is adjacent to a leaf in G which contradicts Claim 1(a).
If dG(v) = 3, then v is adjacent to at least two leaves in G which contradicts Claim 1(b).

(2) Suppose to the contrary that H contains a 2-vertex u adjacent to a 2-vertex v.
The case dG(u) = dG(v) = 2 contradicts Claim 1(c).
The case dG(u) = 3 and dG(v) = 2 or dG(u) = 2 and dG(v) = 3 contradicts Claim 1(b).
The case dG(u) = dG(v) = 3, implies there exist two adjacent 3-vertices each of which is
adjacent to a leaf. This contradicts Claim 3.

(3) Suppose to the contrary that H contains a 3-vertex u adjacent to two 2-vertices,
say x and y.
The case dG(x) = dG(y) = 2 contradicts Claim 6.
The case dG(x) = 3 and dG(y) = 2 or dG(x) = 2 and dG(y) = 3 contradicts Claim 5.
The case dG(x) = dG(y) = 3 contradicts Claim 4.

Next, we complete the proof by using the discharging method derived by Wang and
Wang [17]. We present their method here for the convenience of readers. We use the
same initial charge function w(v) = dH(v) for all v ∈ V (H) and define the discharging
rule as follows :

(R′). Every 3-vertex gives 1
3 to its adjacent 2-vertex.



Adjacent-Vertex-Distinguishing-Total Choice Numbers 1223

Let w′(v) denote the new charge of a vertex v after the discharging process is finished
on H. If v is a 3-vertex, then v is adjacent to at most one 2-vertex by Claim 7(3). Hence
we have w′(v) ≥ 3 − 1

3 = 8
3 by (R′). If v is a 2-vertex, then v is not adjacent to any

2-vertex by Claim 7(2). It follows that v is adjacent to two 3-vertices. Hence we have
w′(v) = 2 + 1

3 + 1
3 = 8

3 by (R′). Therefore, w′(v) ≥ 8
3 for any v ∈ V (H). However, this

leads to the following contradiction :

8

3
=

8
3 |V (H)|
|V (H)|

≤
∑

v∈V (H) w
′(v)

|V (H)|
=

∑
v∈V (H) w(v)

|V (H)|
=

2|E(H)|
|V (H)|

≤ mad(H) <
8

3
.
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