Adjacent-Vertex-Distinguishing-Total Choice Numbers

Patcharapan Jumnongnit ${ }^{1, *}$ and Kittikorn Nakprasit ${ }^{2}$
${ }^{1}$ Division of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand e-mail : patcharapan.ju@up.ac.th
${ }^{2}$ Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
e-mail : kitnak@hotmail.com

Abstract

Let ϕ be a proper total coloring of a graph G. Let $C(v)=\{\phi(v)\} \cup\{\phi(u v) \mid u v \in E(G)\}$ denote the set of colors assigned to a vertex v and those edges incident to v. If we have $C(u) \neq C(v)$ whenever $u v \in E(G)$, then ϕ is called an adjacent-vertex-distinguishing-total coloring or avd-total coloring. Let $\chi^{\prime \prime}{ }_{a}(G)$ be the smallest integer k for which G has an avd-total coloring with k colors. In 2008, Wang and Wang [W. Wang, Y. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J. Comb. Optim. 19 (2010) 123-133] obtained many results about $\chi_{a}^{\prime \prime}(G)$ depending on the value of the maximum average degree.

A k-assignment L of G is a list assignment L with $|L(v)|=k$ for each vertex v and $|L(e)|=k$ for each edge e. A total- L-coloring is a proper total coloring ϕ of G such that $\phi(v) \in L(v)$ whenever $v \in V(G)$ and $\phi(e) \in L(e)$ whenever $e \in E(G)$. If G has a total- L-coloring such that $C(u) \neq C(v)$ for all $u v \in E(G)$, then G has an avd-total- L-coloring. Let $C h_{a}^{\prime \prime}(G)$ be the smallest integer k such that G has an avd-total-L-coloring for every k-assignment L. In this paper, we strengthen results of Wang and Wang by giving analogous results for $C h_{a}^{\prime \prime}(G)$.

MSC: 05C15; 05C07; 05C10
Keywords: coloring; vertex degree; planar graph

Submission date: 26.05.2020 / Acceptance date: 20.08.2020

1. Introduction

In this paper only the simple, finite, and undirected graphs are examined. Let G be a graph with a vertex set $V(G)$ and an edge set $E(G)$. A proper total coloring ϕ is a mapping from $V(G) \cup E(G)$ to a set of colors such that any two adjacent vertices, any two adjacent edges, and any vertex and its incident edge receive different colors. Let $C(v)=\{\phi(v)\} \cup\{\phi(u v) \mid u v \in E(G)\}$ denote the set of colors assigned to a vertex v and those edges incident to v. A proper total coloring ϕ of G is an adjacent-vertex-distinguishing-total coloring (avd-total coloring), if $C(u) \neq C(v)$ whenever uv $\in E(G)$.

[^0]The smallest integer k such that G has an avd-total coloring with k colors is called the adjacent-vertex-distinguishing-total chromatic number, denoted by $\chi^{\prime \prime}{ }_{a}(G)$.

This coloring is related to a vertex-distinguishing proper edge coloring (a proper edge coloring with $C(u) \neq C(v)$ for each pair of distinct vertices u and $v)$ which was discussed by Balister et al. [1], Bazgan [2], and Burris and Schelp [3]. In 2002, Zhang et al. [4] studied an adjacent vertex distinguishing proper edge coloring (a proper edge coloring with $C(u) \neq C(v)$ for each pair of adjacent vertices u and v). In 2005, avd-total coloring of graphs was introduced by Zhang et al. [5]. They obtained $\chi^{\prime \prime}{ }_{a}(G)$ for graphs in many basic families such as paths, cycles, trees, wheels, stars, fans, complete graphs, and complete bipartite graphs. Additionally, they posed the following conjecture.
Conjecture 1.1. [5] If G is a graph with order at least two, then $\chi^{\prime \prime}{ }_{a}(G) \leq \Delta(G)+3$.
Subsequently, Wang [6] and Chen [7] independently verified the conjecture for the case $\Delta(G)=3$. In 2009, Hulgan [8] presented a more concise proof for this result. Moreover, he also provided short proofs for the exact value of $\chi^{\prime \prime}{ }_{a}(G)$ of complete graphs and cycles. In 2010, Wang and Wang [9] studied outerplanar graphs with $\Delta(G) \geq 3$ and proved that $\Delta(G)+1 \leq \chi^{\prime \prime}{ }_{a}(G) \leq \Delta(G)+2$, whereas $\chi^{\prime \prime}{ }_{a}(G)=\Delta(G)+2$ if and only if G has two adjacent vertices of maximum degree. In 2014, Wang and Huang [10] extended the results to planar graphs. In 2015, Luiz et al. [11] verified the conjecture for complete equipartite graphs. Coker and Johannson [12] used a probabilistic approach to show that $\chi^{\prime \prime}{ }_{a}(G) \leq \Delta(G)+c$ for some constant $c>0$. Pedrotti and De Mello [13] confirmed the conjecture for indifference graphs. Chen et al. [14] obtained $\chi^{\prime \prime}{ }_{a}(G)$ of mono-cycle graphs and square of cycles. Huang et al. [15] showed that $\chi^{\prime \prime}{ }_{a}(G) \leq 2 \Delta(G)$ for any graph with $\Delta(G) \geq 3$. In 2014, Papaioannou and Raftopoulou [16] constructed an algorithm that gives an avd-total coloring with seven colors to any 4-regular graph.

The length of a shortest cycle in G is called girth of a graph G, denoted by $g(G)$. The maximum average degree of G is defined by

$$
\operatorname{mad}(G)=\max _{H \subseteq G}\left\{\frac{2|E(H)|}{|V(H)|}\right\}
$$

The following lemma can be derived easily from the definition of maximum average degree.

Lemma 1.2. If H is a subgraph of G, then $\operatorname{mad}(H) \leq \operatorname{mad}(G)$.
The following fact is well-known.
Proposition 1.3. If G is a planar graph, then $\operatorname{mad}(G)<2 g(G) /(g(G)-2)$.
In 2008, Wang and Wang [17] obtained following results about $\chi^{\prime \prime}{ }_{a}(G)$ for graphs with smaller maximum average degree.

Theorem 1.4. [17] Let G be a graph.
(1) If $\operatorname{mad}(G)<3$ and $\Delta(G) \geq 5$, then $\Delta(G)+1 \leq \chi^{\prime \prime}{ }_{a}(G) \leq \Delta(G)+2$; and $\chi^{\prime \prime}{ }_{a}(G)=$ $\Delta(G)+2$ if and only if G has two vertices of maximum degree which are adjacent.
(2) If $\operatorname{mad}(G)<3$ and $\Delta(G)=4$, then $\chi^{\prime \prime}{ }_{a}(G) \leq 6$.
(3) If $\operatorname{mad}(G)<\frac{8}{3}$ and $\Delta(G)=3$, then $\chi^{\prime \prime}{ }_{a}(G) \leq 5$.

Applying proposition 1.3 to Theorem 1.4 yields the following corollary.

Corollary 1.5. [17]
Let G be a planar graph.
(1) If $g(G) \geq 6$ and $\Delta(G) \geq 5$, then $\Delta(G)+1 \leq \chi^{\prime \prime}{ }_{a}(G) \leq \Delta(G)+2$; and $\chi^{\prime \prime}{ }_{a}(G)=$ $\Delta(G)+2$ if and only if G has two adjacent vertices of maximum degree.
(2) If $g(G) \geq 6$ and $\Delta(G)=4$, then $\chi^{\prime \prime}{ }_{a}(G) \leq 6$.
(3) If $g(G) \geq 8$ and $\Delta(G)=3$, then $\chi^{\prime \prime}{ }_{a}(G) \leq 5$.

The concept of list coloring was introduced independently by Vizing [18] and by Erdős, Rubin, and Taylor [19]. Each vertex (or edge) is assumed to have a list of legal colors that can be used where the lists may be different. Thereafter, many colorings are studied in the list analogous as a natural extension. In this paper, a k-assignment L of G is a list assignment L with $|L(v)|=k$ for each vertex v and $|L(e)|=k$ for each edge e. A total-L-coloring is a proper total coloring ϕ of G such that $\phi(v) \in L(v)$ whenever $v \in V(G)$ and $\phi(e) \in L(e)$ whenever $e \in E(G)$. We call that G has an avd-total-L-coloring if G has a total- L-coloring such that $C(u) \neq C(v)$ for all $u v \in E(G)$. The smallest integer k such that G has an avd-total- L-coloring for every k-assignment L, denoted by $C h_{a}^{\prime \prime}(G)$, is called the avd-total choice number. For $H \subseteq G$, we let L_{H} denote a list L restricted to a subgraph H of G. In this paper, we strengthen Theorem 1.4 and thus Corollary 1.5 by giving analogous results for $C h_{a}^{\prime \prime}(G)$. Naturally, some additional results are required.

2. Main Results

2.1. Graphs with Maximum Average Degree Less Than 3

Theorem 2.1. If G is a graph with $\operatorname{mad}(G)<3$ and $K(G)=\max \{\Delta(G)+2,6\}$, then $C h_{a}^{\prime \prime}(G) \leq K(G)$.
Proof. Assume that G is a minimal counterexample. Let $|L(v)| \geq K(G)$ for each vertex v and $|L(e)| \geq K(G)$ for each edge e in G. By minimality and Lemma 1.2, any proper subgraph G^{\prime} of G has $C h_{a}^{\prime \prime}\left(G^{\prime}\right) \leq K\left(G^{\prime}\right) \leq K(G)$. Thus there is an avd-total- $L_{G^{\prime}}$-coloring ϕ of G^{\prime}. The structure of G is analyzed in the claims below. After that we obtain a contradiction by using the discharging method.

Claim 1. There is no vertex of degree at most 3 is adjacent to a leaf.
Proof. Suppose to the contrary that G contains a vertex v with $d_{G}(v) \leq 3$ adjacent to a leaf. Without loss of generality, we may assume that $d_{G}(v)=3$ and v_{1}, v_{2}, v_{3} are neighbors of v where v_{1} is a leaf. Let $G^{\prime}=G-v_{1}$. Suppose that $\phi(v)=1, \phi\left(v v_{2}\right)=2, \phi\left(v v_{3}\right)=3$. Since $\left|L\left(v v_{1}\right)\right| \geq 6$, we have $\left|L\left(v v_{1}\right) \backslash\{1,2,3\}\right| \geq 3$. Thus we can choose $\phi\left(v v_{1}\right)=a \in$ $L\left(v v_{1}\right) \backslash\{1,2,3\}$ to obtain $C(v)=\{1,2,3, a\}$ such that $C\left(v_{2}\right) \neq C(v) \neq C\left(v_{3}\right)$. Finally, we can color v_{1} from $L\left(v_{1}\right) \backslash\{1, a\}$.

Claim 2. There does not exist a path $x_{1} x_{2} x_{3} \ldots x_{n}$ or a cycle $x_{1} x_{2} x_{3} \ldots x_{n}$ where $x_{1}=x_{n}$ with $d_{G}\left(x_{1}\right), d_{G}\left(x_{n}\right) \geq 3$ and $d_{G}\left(x_{i}\right)=2$ for all $i=2,3, \ldots, n-1$, where $n \geq 4$.

Proof. Suppose to the contrary that G contains such a path or a cycle. Let $G^{\prime}=G-x_{2} x_{3}$.
If $n=4$, we recolor x_{2} with a color $a \in L\left(x_{2}\right) \backslash\left\{\phi\left(x_{1}\right), \phi\left(x_{3}\right), \phi\left(x_{1} x_{2}\right), \phi\left(x_{3} x_{4}\right)\right\}$, and color $x_{2} x_{3}$ with a color in $L\left(x_{2} x_{3}\right) \backslash\left\{a, \phi\left(x_{3}\right), \phi\left(x_{1} x_{2}\right), \phi\left(x_{3} x_{4}\right)\right\}$. Since $a \in C\left(x_{2}\right)$ but $a \notin C\left(x_{3}\right)$, we get $C\left(x_{2}\right) \neq C\left(x_{3}\right)$.

If $n \geq 5$, we recolor $x_{3} x_{4}$ with a color $a \in L\left(x_{3} x_{4}\right) \backslash\left\{\phi\left(x_{2}\right), \phi\left(x_{4}\right), \phi\left(x_{5}\right), \phi\left(x_{4} x_{5}\right)\right\}$, recolor x_{3} with a color $b \in L\left(x_{3}\right) \backslash\left\{a, \phi\left(x_{2}\right), \phi\left(x_{4}\right), \phi\left(x_{4} x_{5}\right)\right\}$, and color $x_{2} x_{3}$ with a color
in $L\left(x_{2} x_{3}\right) \backslash\left\{a, b, \phi\left(x_{2}\right), \phi\left(x_{1} x_{2}\right)\right\}$.
Since $\phi\left(x_{2}\right) \notin\left\{a, b, \phi\left(x_{2} x_{3}\right)\right\}=C\left(x_{3}\right)$ but $\phi\left(x_{2}\right) \in C\left(x_{2}\right)$, we get $C\left(x_{2}\right) \neq C\left(x_{3}\right)$. Since $a \in C\left(x_{4}\right) \backslash C\left(x_{5}\right)$ and $b \in C\left(x_{3}\right) \backslash C\left(x_{4}\right)$, we get $C\left(x_{4}\right) \neq C\left(x_{5}\right)$ and $C\left(x_{3}\right) \neq C\left(x_{4}\right)$.

Claim 3. There does not exist a k-vertex $v, k \geq 4$, with neighbors $v_{1}, v_{2}, v_{3}, \ldots, v_{k}$ such that $d_{G}\left(v_{1}\right)=1, d_{G}\left(v_{i}\right) \leq 2$ for $2 \leq i \leq k-2$.

Proof. Suppose to the contrary that G contains such a vertex v. For $2 \leq i \leq k-2$, if v_{i} is a 2 -vertex, we let $u_{i} \neq v$ be the second neighbor of v_{i}. Note that u_{i} has degree at least 3 by Claim 2 if it exists. Let $G^{\prime}=G-v_{1}$. Without loss of generality, we may assume that $\phi(v)=1, \phi\left(v v_{i}\right)=i$ for $i=2,3, \ldots, k$. Let $a, b \in L\left(v v_{1}\right) \backslash$ $\{1,2,3, \ldots, k\}$. If $C\left(v_{k-1}\right) \neq\{1,2,3, \ldots, k, a\} \neq C\left(v_{k}\right)$, we color $v v_{1}$ with a. Thus $C(v)=\{1,2,3, \ldots, k, a\}$. If $C\left(v_{k-1}\right) \neq\{1,2,3, \ldots, k, b\} \neq C\left(v_{k}\right)$, we color $v v_{1}$ with b. Consequently, $C(v)=\{1,2,3, \ldots, k, b\}$. Hence $C(v) \neq C\left(v_{i}\right)$ for $i=k-1, k$. Assume that $C\left(v_{k-1}\right)=\{1,2,3, \ldots, k, a\}$ and $C\left(v_{k}\right)=\{1,2,3, \ldots, k, b\}$.
Case 1. $d\left(v_{2}\right)=1$.
We recolor $v v_{2}$ with $s \in L\left(v v_{2}\right) \backslash\{1,2, \ldots, k\}$ and choose $\phi\left(v v_{1}\right) \in L\left(v v_{1}\right) \backslash\{1,2, \ldots, k, s\}$. Thus $2 \in C\left(v_{k-1}\right) \backslash C(v)$ and $2 \in C\left(v_{k}\right) \backslash C(v)$. Hence $C(v) \neq C\left(v_{i}\right)$ for $i=k-1, k$.

Finally, we color v_{1} with a color in $L\left(v_{1}\right) \backslash\left\{\phi(v), \phi\left(v v_{1}\right)\right\}$ and we recolor v_{2} with a color in $L\left(v_{2}\right) \backslash\left\{\phi(v), \phi\left(v v_{2}\right)\right\}$.
Case 2. $d\left(v_{2}\right)=2$.
The proof is similar to Case 1 except we recolor $v v_{2}$ with $s \in L\left(v v_{2}\right) \backslash\left\{1,2, \ldots, k, \phi\left(v_{2} u_{2}\right)\right\}$ and recolor v_{2} with a color in $L\left(v_{2}\right) \backslash\left\{\phi(v), \phi\left(v v_{2}\right), \phi\left(u_{2}\right), \phi\left(v_{2} u_{2}\right)\right\}$.

Claim 4. A 2 -vertex v is not adjacent to a 3 -vertex u.
Proof. Suppose to the contrary that G contains a 2 -vertex v adjacent to a 3 -vertex u and another vertex w. Let $u_{1}, u_{2} \neq v$ be the other neighbors of u. By Claims 1 and 2, $d_{G}(w) \geq 3$. Let $G^{\prime}=G-u v$. Without loss of generality, we may assume that $\phi(u)=$ $1, \phi\left(u u_{1}\right)=2, \phi\left(u u_{2}\right)=3$. Since $|L(u v)| \geq 6$, we can choose $\phi(u v)=a \in L(u v) \backslash\{1,2,3\}$ such that $C\left(u_{1}\right) \neq\{1,2,3, a\} \neq C\left(u_{2}\right)$. Hence $C(u) \neq C\left(u_{i}\right)$ for $i=1,2$. Finally, we recolor v with a color in $L(v) \backslash\{1, a, \phi(w), \phi(v w)\}$.

Claim 5. A 4 -vertex v is not adjacent to three 2 -vertices.
Proof. Suppose to the contrary that G contains a 4 -vertex v with neighbors $v_{1}, v_{2}, v_{3}, v_{4}$ such that $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=2$. Let $u_{1} \neq v$ be the second neighbor of v_{1}. By Claims 1 and 2 , we have $d_{G}\left(u_{1}\right) \geq 3$. Let $G^{\prime}=G-v v_{1}$. Without loss of generality, we may assume that $\phi(v)=1, \phi\left(v v_{i}\right)=i$ for $i=2,3,4$. Since $\left|L\left(v v_{1}\right) \backslash\{1,2,3,4\}\right| \geq 2$, we can choose $\phi\left(v v_{1}\right)=a \in L\left(v v_{1}\right) \backslash\{1,2,3,4\}$ such that $C\left(v_{4}\right) \neq\{1,2,3, a\}=C(v)$. Finally, we recolor v_{1} with a color in $L\left(v_{1}\right) \backslash\left\{1, a, \phi\left(u_{1}\right), \phi\left(v_{1} u_{1}\right)\right\}$. Since $d_{G}\left(u_{1}\right) \geq 3$ by Claim 2, we have $C\left(v_{1}\right) \neq C\left(u_{1}\right)$.

Claim 6. A 5 -vertex v is not adjacent to five 2 -vertices.
Proof. Suppose to the contrary that G contains a 5 -vertex v adjacent to five 2 -vertices $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. For $1 \leq i \leq 5$, let $u_{i} \neq v$ be the second neighbor of v_{i}. We note that $d_{G}\left(u_{i}\right) \geq 3$ by Claims 1 and 2 . Let $G^{\prime}=G-v v_{1}$. First, we uncolor $v, v_{1}, v_{2}, v_{3}, v_{4}$, and v_{5}. Since $L\left(v v_{1}\right) \geq 6$, we can color $v v_{1}$ with a color in $L\left(v v_{1}\right) \backslash\left\{\phi\left(v v_{2}\right), \phi\left(v v_{3}\right), \phi\left(v v_{4}\right), \phi\left(v v_{5}\right)\right.$, $\left.\phi\left(v_{1} u_{1}\right)\right\}$. Next, we color v with a color in $L(v) \backslash\left\{\phi\left(v v_{1}\right), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right), \phi\left(v v_{4}\right), \phi\left(v v_{5}\right)\right\}$. Finally, we color v_{i} with a color in $L\left(v_{i}\right) \backslash\left\{\phi(v), \phi\left(u_{i}\right), \phi\left(v v_{i}\right), \phi\left(v u_{i}\right)\right\}$ for $1 \leq i \leq 5$.

Observe that $C(v) \neq C\left(v_{i}\right) \neq C\left(u_{i}\right)$ because $d_{G}(v) \neq d_{G}\left(v_{i}\right) \neq d_{G}\left(u_{i}\right)$. Therefore, we have an avd-total- L_{G}-coloring ϕ of G.

Let H be a graph obtained by removing all leaves of G. The properties of the graph H are collected in the following Claim 7:

Claim 7.

(1) Each vertex in H has degree at least 2 .
(2) If $v \in V(G)$ with $2 \leq d_{G}(v) \leq 3$, then $d_{H}(v)=d_{G}(v)$.
(3) If $v \in V(H)$ with $d_{H}(v)=2$, then $d_{G}(v)=2$.
(4) If $v \in V(G)$ with $d_{G}(v) \geq 4$, then $d_{H}(v) \geq 3$.
(5) H cannot contain a 2 -vertex adjacent to a 2 -vertex or a 3 -vertex.

Proof. (1) Suppose to the contrary that a vertex v in H has $d_{H}(v) \leq 1$. One can easily see that H does not contain a vertex v with $d_{G}(v) \leq 1$.
If $d_{G}(v)=2$ or 3 , then the vertex v cannot be adjacent to a leaf in G by Claim 1 .
If $d_{G}(v) \geq 4$, then the vertex v is adjacent to at least $d_{G}(v)-1$ leaves in G. This contradicts Claim 3. Hence each vertex v in H has $d_{H}(v) \geq 2$.
(2) Since a vertex v with $d_{G}(v)=2$ or 3 is not adjacent to a leaf in G by Claim 1, we do not remove its neighbor in G. Hence $d_{H}(v)=d_{G}(v)$.
(3) Suppose to the contrary that $d_{G}(v) \geq 3$. If $d_{G}(v)=3$, then the vertex v is adjacent to a leaf in G. This contradicts Claim 1 .
If $d_{G}(v) \geq 4$, then the vertex v is adjacent to at least $d_{G}(v)-2$ leaves in G. This contradicts Claim 3. Hence $d_{G}(v)=2$.
(4) Assume that $v \in V(G)$ with $d_{G}(v) \geq 4$. Then we have that the vertex v is adjacent to at most $d_{G}(v)-3$ leaves in G by Claim 3 . Thus $d_{H}(v) \geq 3$.
(5) Suppose to the contrary that a 2 -vertex u in H is adjacent to a 2-vertex v. By Claim 7(3), we have $d_{G}(v)=d_{H}(v)=2=d_{H}(u)=d_{G}(u)$. This contradicts Claim 2.
Suppose to the contrary that a 2 -vertex u in H is adjacent to a 3 -vertex v.
The case $d_{G}(v)=3$ contradicts Claim 4 .
If $d_{G}(v) \geq 4$, then the vertex v is adjacent to $d_{G}(v)-3$ leaves in G. This contradicts Claim 3. Hence H cannot contain a 2 -vertex adjacent to a 2 -vertex or a 3 -vertex.

Next, we complete the proof by using the discharging method derived by Wang and Wang [17]. We present their method here for the convenience of readers. First of all, define an initial charge function $w(v)=d_{H}(v)$ for every $v \in V(H)$. Next, rearrange the weights according to the designed rule. When the discharging is finished, we have a new charge w^{\prime}. However, the sum of all charges is kept fixed. Finally, we want to show that $w^{\prime}(v) \geq 3$ for all $v \in V(H)$. This leads to the following contradiction:

$$
3=\frac{3|V(H)|}{|V(H)|} \leq \frac{\sum_{v \in V(H)} w^{\prime}(v)}{|V(H)|}=\frac{\sum_{v \in V(H)} w(v)}{|V(H)|}=\frac{2|E(H)|}{|V(H)|} \leq \operatorname{mad}(H)<3 .
$$

The discharging rule is defined as follows :
(R). Every vertex v of degree at least 4 gives $\frac{1}{2}$ to each adjacent 2-vertex.

Let $v \in V(H)$. By Claim $7(1)$, we get $d_{H}(v) \geq 2$.
Case 1. $d_{H}(v)=2$. The vertex v is adjacent to two vertices of degree at least 4 by Claim 7(5). Thus each of vertices sends $\frac{1}{2}$ to v by (R). Hence $w^{\prime}(v)=d_{H}(v)+2\left(\frac{1}{2}\right)=$ $2+1=3$.

Case 2. $d_{H}(v)=3$. We have $w^{\prime}(v)=w(v)=3$.
Case 3. $d_{H}(v)=4$. Suppose to the contrary that v is adjacent to at least three

2 -vertices, say v_{1}, v_{2}, and v_{3}. By Claim 7(3), we get $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=2$.
Subcase 3.1 $d_{G}(v)=4$. Then we have that a 4 -vertex v is adjacent to three 2-vertices in G. This contradicts Claim 5.

Subcase $3.2 d_{G}(v)=k \geq 5$. Then there exist $k-4$ neighbors of v in G which are leaves. This contradicts Claim 3.

Thus v is adjacent to at most two 2-vertices in H. Hence $w^{\prime}(v) \geq 4-2\left(\frac{1}{2}\right)=3$.
Case 4. $d_{H}(v)=5$. Suppose to the contrary that v is adjacent to five 2 -vertices, say $v_{1}, v_{2}, v_{3}, v_{4}$, and v_{5}. By Claim 7(3), we get $d_{G}\left(v_{i}\right)=2$ for $1 \leq i \leq 5$.

Subcase $4.1 d_{G}(v)=5$. Then we have that a 5 -vertex v is adjacent to five 2 -vertices in G. This contradicts Claim 6 .

Subcase 4.2 $d_{G}(v)=k \geq 6$. Then there exist $k-5$ neighbors of v in G which are leaves. This contradicts Claim 3.

Thus v is adjacent to at most four 2 -vertices. Hence $w^{\prime}(v) \geq 5-4\left(\frac{1}{2}\right)=3$.
Case 5. $d_{H}(v) \geq 6$. The vertex v is adjacent to at most $d_{H}(v) 2$-vertices and hence $w^{\prime}(v) \geq d_{H}(v)-\frac{1}{2} d_{H}(v)=\frac{1}{2} d_{H}(v) \geq 3$ by (R).

Theorem 2.2. Let G be a graph with $\operatorname{mad}(G)<3$ and without adjacent vertices of maximum degree. Let $K^{\prime}(G)=\max \{\Delta(G)+1,6\}$. Then $C h_{a}^{\prime \prime}(G) \leq K^{\prime}(G)$.

Proof. The proof is proceeded by contradiction. Assume that G is a minimum counterexample. Let $|L(v)| \geq K^{\prime}(G)$ for each vertex v and $|L(e)| \geq K^{\prime}(G)$ for each edge e in G. With the same argument, we can prove that G satisfies Claims $1,2,4,5$, and 6 as in Theorem 2.1.

If G does not satisfy Claim 3 , we suppose that v is a k-vertex, $k \geq 4$, with neighbors $v_{1}, v_{2}, \ldots, v_{k}$ such that $d_{G}\left(v_{1}\right)=1, d_{G}\left(v_{i}\right) \leq 2$ for $2 \leq i \leq k-2$, we denote by $u_{i} \neq v$ the second neighbor of v_{i}. Let $G^{\prime}=G-v_{1}$. Without loss of generality, we may assume that $\phi(v)=1, \phi\left(v v_{i}\right)=i$ for $i=2,3, \ldots, k$.

If $d_{G}(v)=\Delta(G)$, then $d_{G}\left(v_{k-1}\right) \neq \Delta(G) \neq d_{G}\left(v_{k}\right)$ by assumption. We can proceed by coloring $v v_{1}$ and v_{1}. Next, we consider the case $d_{G}(v)=k<\Delta(G)$. Let $a, b \in L\left(v v_{1}\right) \backslash\{1,2,3, \ldots, k, a\}$.

If $C\left(v_{k-1}\right) \neq\{1,2,3, \ldots, k, a\} \neq C\left(v_{k}\right)$, we color $v v_{1}$ with a. Thus $C(v)=\{1,2,3, \ldots, k, a\}$.
If $C\left(v_{k-1}\right) \neq\{1,2,3, \ldots, k, b\} \neq C\left(v_{k}\right)$, we color $v v_{1}$ with b. Thus $C(v)=\{1,2,3, \ldots, k, b\}$. Hence $C(v) \neq C\left(v_{i}\right)$ for $i=k-1, k$. Assume that $C\left(v_{k-1}\right)=\{1,2,3, \ldots, k, a\}$ and $C\left(v_{k}\right)=\{1,2,3, \ldots, k, b\}$. The remaining proof is similar to that of Claim 3 in Theorem 2.1. Therefore, G satisfies Claim 3.

Similarly, let H be the graph obtained by removing all leaves of G. Then $\operatorname{mad}(H) \leq$ $\operatorname{mad}(G)<3$ by Lemma 1.2. Using the same initial charge function $w(v)=d_{H}(v)$ for every $v \in V(H)$ and the same discharging rule (R) as in Theorem 2.1, we can complete the proof by providing a contradiction.

2.2. Graphs with Maximum Average Degree Less Than $\frac{8}{3}$

Theorem 2.3. If G is a graph with $\operatorname{mad}(G)<\frac{8}{3}$ and $\Delta(G) \leq 3$, then $C h_{a}^{\prime \prime}(G) \leq 5$.
Proof. The proof is proceeded by contradiction. Assume that G is a minimum counterexample. Let $|L(v)| \geq 5$ for each vertex v and $|L(e)| \geq 5$ for each edge e in G. For any proper subgraph G^{\prime} of G, we always assume that there is an avd-total- $L_{G^{\prime}}$-coloring ϕ of
G^{\prime} by minimality of G.
Claim 1. G satisfies the following properties
(a) No 2 -vertex is adjacent to a leaf.
(b) No 3 -vertex is adjacent to a leaf and another vertex with degree at most 2 .
(c) There are no adjacent 2 -vertices.

Proof. (a) Suppose to the contrary that G contains a 2 -vertex v with neighbors v_{1}, v_{2} such that v_{1} is a leaf and u_{2} is another neighbor of v_{2} if it exists. Let $G^{\prime}=G-v v_{1}$. Since $\left|L\left(v v_{1}\right)\right| \geq 5$, we can color $v v_{1}$ with a color in $L\left(v v_{1}\right) \backslash\left\{\phi(v), \phi\left(v v_{2}\right), \phi\left(v_{2}\right), \phi\left(v_{2} u_{2}\right)\right\}$. Thus $C(v) \neq C\left(v_{2}\right)$. Finally, we can color v_{1} from $L\left(v_{1}\right) \backslash\left\{\phi(v), \phi\left(v v_{1}\right)\right\}$.
(b) Suppose to the contrary that G contains 3 -vertex v with neighbors v_{1}, v_{2}, v_{3} such that $d_{G}\left(v_{1}\right)=1$ and $d_{G}\left(v_{2}\right) \leq 2$. Let $G^{\prime}=G-v_{1}$. Since $\left|L\left(v v_{1}\right)\right|=5$, we can color $v v_{1}$ with a color a in $L\left(v v_{1}\right) \backslash\left\{\phi(v), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right)\right\}$ to make $C(v) \neq C\left(v_{3}\right)$. Finally, we can color v_{1} from $L\left(v_{1}\right) \backslash\{\phi(v), a\}$.
(c) Suppose to the contrary that G contains two adjacent 2-vertices u and v. Let $u_{1} \neq v$ be the second neighbor of u, and v_{1} be the second neighbor of v. Note that $d_{G}\left(v_{1}\right)$ and $d_{G}\left(u_{1}\right)=2$ or 3 by (a). Then the proof is similar to that of Claim 2 in Theorem 2.1.

Claim 2. Suppose that v is a 3 -vertex adjacent to a leaf v_{1} and two other vertices v_{2} and v_{3}. Let ϕ be an avd-total $-L_{G-v_{1}}$-coloring of the subgraph $G-v_{1}$. Then
(1) $L\left(v v_{1}\right)=\left\{\phi(v), \phi\left(v_{2}\right), \phi\left(v_{3}\right), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right)\right\}, C\left(v_{2}\right)=\left\{\phi(v), \phi\left(v_{2}\right), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right)\right\}$, and $C\left(v_{3}\right)=\left\{\phi(v), \phi\left(v_{3}\right), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right)\right\}$,
(2) $\left|L(v) \backslash\left\{\phi\left(v_{2}\right), \phi\left(v_{3}\right), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right)\right\}\right|=1$.

Proof. (1) Without loss of generality, we may assume that $\phi(v)=1$ and $\phi\left(v v_{i}\right)=i$ for $i=$ 2,3 . Let $\{a, b\} \subseteq L\left(v v_{1}\right) \backslash\{1,2,3\}$. Note that we cannot extend an avd-total- L-coloring ϕ to a counterexample G. If $C\left(v_{2}\right) \neq\{1,2,3, a\} \neq C\left(v_{3}\right)$, we color $v v_{1}$ with a. If $C\left(v_{2}\right) \neq$ $\{1,2,3, b\} \neq C\left(v_{3}\right)$, we color $v v_{1}$ with b. Hence $C(v) \neq C\left(v_{i}\right)$ for $i=2,3$. Assume that $C\left(v_{2}\right)=\{1,2,3, a\}$ and $C\left(v_{3}\right)=\{1,2,3, b\}$. Since $\phi\left(v_{2}\right) \neq 1,2$, we have $\phi\left(v_{2}\right)=3$ or a. If $\phi\left(v_{2}\right)=3$, then we recolor $\phi(v)$ with $t \in L(v) \backslash\left\{1,2,3, \phi\left(v_{3}\right)\right\}$ and color $v v_{1}$ with a color in $L\left(v v_{1}\right) \backslash\{1,2,3, t\}$. Thus $1 \in C\left(v_{2}\right) \backslash C(v)$ and $1 \in C\left(v_{3}\right) \backslash C(v)$. Hence $C(v) \neq C\left(v_{i}\right)$ for $i=2,3$. Moreover, $\phi\left(v_{2}\right)=a$. Similarly, $\phi\left(v_{3}\right)=b$. Therefore, $L\left(v v_{1}\right)=\{1,2,3, a, b\}=$ $\left\{\phi(v), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right), \phi\left(v_{2}\right), \phi\left(v_{3}\right)\right\}, C\left(v_{2}\right)=\{1,2,3, a\}=\left\{\phi(v), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right), \phi\left(v_{2}\right)\right\}$, and $C\left(v_{3}\right)=\{1,2,3, b\}=\left\{\phi(v), \phi\left(v v_{2}\right), \phi\left(v v_{3}\right), \phi\left(v_{3}\right)\right\}$.
(2) Claim 2(2) follows Claim 2(1) immediately.

Claim 3. There do not exist two adjacent 3 -vertices each of which is adjacent to a leaf.
Proof. Suppose to the contrary that G contains two adjacent 3 -vertices u and v such that u is adjacent to a leaf u_{1} and v is adjacent to a leaf v_{1}. Let u_{2} and v_{2} be the third neighbor of u and v respectively. Let $G^{\prime}=G-u_{1}$. By Claim 2(1), we may assume that $\phi(u)=1$, $\phi\left(u u_{2}\right)=2, \phi(u v)=3, \phi\left(u_{2}\right)=4, \phi(v)=5, C\left(u_{2}\right)=\{1,2,3,4\}, C(v)=\{1,2,3,5\}$, and $L\left(u u_{1}\right) \backslash\{1,2,3\}=\{4,5\}$. By Claim 2(2), $L(u)=\{1,2,3,4,5\}$.
Case 1. If $4 \in L(u v)$ and $C\left(v_{2}\right) \neq\{1,2,4,5\}$, then we recolor $u v$ by 4 . Now we have $C(v)=\{1,2,4,5\}$. Thus $C(v) \neq C\left(v_{2}\right)$. Since $\left\{\phi\left(u u_{2}\right), \phi\left(u_{2}\right), \phi(u v), \phi(v)\right\}=\{2,4,5\}$, we have $\left|L(u) \backslash\left\{\phi\left(u u_{2}\right), \phi\left(u_{2}\right), \phi(u v), \phi(v)\right\}\right| \geq 2$. This contradicts Claim 2(2).
Case 2. If $4 \in L(u v)$ and $C\left(v_{2}\right)=\{1,2,4,5\}$, then we recolor $u v$ by 4 and $v v_{1}$ by
$b \in L\left(v v_{1}\right) \backslash\{1,2,4,5\}$. Since $b \in C(v) \backslash C\left(v_{2}\right), C(v) \neq C\left(v_{2}\right)$. Now, ϕ is an avd-total- $L_{G^{\prime}}$-coloring of G^{\prime}. Since $\left\{\phi\left(u u_{2}\right), \phi\left(u_{2}\right), \phi(u v), \phi(v)\right\}=\{2,4,5\}$, we have $\mid L(u) \backslash$ $\left\{\phi\left(u u_{2}\right), \phi\left(u_{2}\right), \phi(u v), \phi(v)\right\} \mid \geq 2$. This contradicts Claim 2(2).
Case 3. If $4 \notin L(u v)$, then we color $u u_{1}$ by 4 and recolor $u v$ by $c \in L(u v) \backslash\{1,2,3,4,5\}$. Since $\left|L\left(v v_{1}\right)\right| \geq 5$, we can choose a color that is not 4 to recolor $v v_{1}$ such that $C(v) \neq$ $C\left(v_{2}\right)$. Since $c \in C(u) \backslash C\left(u_{2}\right)$, we get $C(u) \neq C\left(u_{2}\right)$. Since $4 \in C(u) \backslash C(v)$, we get $C(u) \neq C(v)$. Recolor v_{1} as needs to complete an avd-total- L-coloring of G.

Claim 4. There is no 3 -vertex is adjacent to two 3 -vertices each of which is adjacent to a leaf.

Proof. Assume that G contains a 3 -vertex u with neighbors x, y, z such that y is adjacent to a leaf y_{1}, and z is adjacent to a leaf z_{1}. Let y_{2} be the remaining neighbor of y and z_{2} be the remaining neighbor of z. Let $G^{\prime}=G \backslash\left\{y_{1}, z_{1}\right\}$. Let ϕ_{1} be an avd-total- $L_{G^{\prime}}$-coloring of G^{\prime}. Let a partial total- L-coloring ϕ of G obtained from a coloring ϕ_{1} except that we uncolor $u, y, z, u y$, and $u z$.

Choose $L^{\prime}(u) \subseteq L(u) \backslash\{\phi(u x), \phi(x)\}, L^{\prime}(u y) \subseteq L(u y) \backslash\left\{\phi(u x), \phi\left(y y_{2}\right)\right\}$, and $L^{\prime}(u z) \subseteq$ $L(u z) \backslash\left\{\phi(u x), \phi\left(z z_{2}\right)\right\}$ such that $\left|L^{\prime}(u)\right|=\left|L^{\prime}(u y)\right|=\left|L^{\prime}(u z)\right|=3$ with $\phi_{1}(u) \in$ $L^{\prime}(u), \phi_{1}(u y) \in L^{\prime}(u y)$, and $\phi_{1}(u z) \in L^{\prime}(u z)$. Let $A=\left\{\left(c_{1}, c_{2}, c_{3}\right): c_{1} \in L^{\prime}(u y), c_{2} \in\right.$ $\left.L^{\prime}(u), c_{3} \in L^{\prime}(u z), c_{1} \neq c_{2} \neq c_{3} \neq c_{1}\right\}$.

Note that if we extend ϕ to $u y, u, u z$ with $(\phi(u y), \phi(u), \phi(u z)) \in A$, then we have a proper partial total-L-coloring of G. One can see that we can continue extending ϕ to $y, y y_{1}, y_{1}, z, z z_{1}, z_{1}$ to have a proper total- L-coloring of G. However, the resulting coloring is an avd-total- L-coloring of G if and only if $C(u) \neq C(y) \neq C\left(y_{2}\right)$, and $C(u) \neq C(z) \neq$ $C\left(z_{2}\right)$, and $C(u) \neq C(x)$. Now we attempt to show that there is $\left(c_{1}, c_{2}, c_{3}\right)$ in A such that extending ϕ to $u y, u, u z$ with c_{1}, c_{2}, c_{3}, respectively, can lead to an avd-total- L-coloring of G. Let A_{x} be a set of $\left(c_{1}, c_{2}, c_{3}\right)$ in A such that using $(\phi(u y), \phi(u), \phi(u z))=\left(c_{1}, c_{2}, c_{3}\right)$ cannot lead to an avd-total-L-coloring of G in which $C(u) \neq C(x)$. Let A_{y} be a set of $\left(c_{1}, c_{2}, c_{3}\right)$ in A such that using $(\phi(u y), \phi(u), \phi(u z))=\left(c_{1}, c_{2}, c_{3}\right)$ cannot lead to an avd-total- L-coloring of G in which $C(u) \neq C(y) \neq C\left(y_{2}\right)$. The definition of A_{z} is defined similarly to A_{y}.
Observation 1. $\left|A_{y}\right| \leq 2$. Assume $(1,2,3) \in A_{y}$. Without loss of generality, let $\phi(u x)=$ 4. Let $\phi\left(y y_{2}\right)=a$ and $\phi\left(y_{2}\right)=b$. By the definition of A_{y} and Claim 2(2), we have 1, 2, a, b are four distinct elements in $L(y)$.

Suppose to the contrary that a is neither 3 nor 4 . Choose $\phi(y) \in L(y) \backslash\{1,2, a, b\}$. Since $L\left(y y_{1}\right) \backslash\{1, a, \phi(y)\}$ has at least two elements, we can choose $\phi\left(y y_{1}\right)$ such that $C(y) \neq C\left(y_{2}\right)$. Since $a \in C(y) \backslash C(u)$, we also have $C(y) \neq C(u)$. This contradicts the definition of A_{y}. Thus $a=3$ or 4 .

Fig. 1 Case 1. $a=3$

Case 1. $a=3$. Let $d \in L(y) \backslash\{1,2,3, b\}$. Choose $\phi(y)=d$. Suppose to the contrary that d is not 4. Since $L\left(y y_{1}\right) \backslash\{1,3, d\}$ has at least two elements, we can choose $\phi\left(y y_{1}\right)$ such that $C(y) \neq C\left(y_{2}\right)$. Since $d \in C(y) \backslash C(u)$, we have $C(y) \neq C(u)$. This contradicts the definition of A_{y}. Thus $\phi(y)=d=4$ and $L(y)=\{1,2,3,4, b\}$. By Claim 2(1), $L\left(y y_{1}\right)=$ $\{1,2,3,4, b\}$. Moreover, $C\left(y_{2}\right)=\{1,3,4, b\}$ otherwise we can choose $\phi\left(y y_{2}\right)=b$ to make $C\left(y_{2}\right) \neq C(y) \neq C(u)$.

Now we claim that $(2,1,3)$ is the only other possible element in A_{y}. Let $\left(c_{1}, c_{2}, c_{3}\right) \in$ A_{y}. Claim 2(2) implies that $\left\{c_{1}, c_{2}\right\}=\{1,2\}$. Consequently, we must choose $\phi(y)=4$. Suppose to the contrary that $c_{3} \neq 3$. We can extend $\phi\left(y y_{1}\right)$ to obtain $C(y) \neq C\left(y_{2}\right)$. Since $3 \in C(y) \backslash C(u)$, we also have $C(y) \neq C(u)$ which contradicts the definition of A_{y}. Thus $c_{3}=3$. Hence $\left(c_{1}, c_{2}, c_{3}\right)=(1,2,3)$ or $(2,1,3)$.

Fig. 2 Case 2. $a=4$
Case 2. $a=4$.
Similar to the previous case, one can show that $\phi(y)=3, L(y)=L\left(y y_{1}\right)=\{1,2,3,4, b\}$, and $C\left(y_{2}\right)=\{1,3,4, b\}$. Now we claim that $(3,2,1)$ is the only other possible element in A_{y}. Let $\left(c_{1}, c_{2}, c_{3}\right) \in A_{y}$. Claim 2(2) implies that $\left\{c_{1}, c_{2}\right\} \subseteq\{1,2,3\}$.

Suppose to the contrary that $\left\{c_{1}, c_{2}\right\}=\{1,3\}$. Choose $\phi(y)=2$ for $\left\{c_{1}, c_{2}\right\}=\{1,3\}$ and $\phi\left(y y_{1}\right)=b$. Since $2 \in C(y) \backslash C\left(y_{2}\right)$ and $b \in C(y) \backslash C(u)$, we also have $C(y) \neq C\left(y_{2}\right)$ and $C(y) \neq C(u)$ which contradicts the definition of A_{y}. Thus $\left\{c_{1}, c_{2}\right\} \neq\{1,3\}$.

If $\left(c_{1}, c_{2}\right)=(2,1)$, then we can choose $\phi(y)=3$ and $\phi\left(y y_{1}\right)=b$ to obtain $C(u) \neq$ $C(y) \neq C\left(y_{2}\right)$. If $\left(c_{1}, c_{2}\right)=(2,3)$, then we can choose $\phi(y)=1$ and $\phi\left(y y_{1}\right)=b$ to obtain $C(u) \neq C(y) \neq C\left(y_{2}\right)$. Combining with $\left\{c_{1}, c_{2}\right\} \neq\{1,3\}$, we have $\left(c_{1}, c_{2}\right)=(1,2)$ or $(3,2)$.

We show that $c_{3} \in\{1,2,3\}$. If $c_{3}=d \notin\{1,2,3,4, b\}$, then we can choose $\phi\left(y y_{1}\right)$ after choosing $\phi(y)$ to obtain $C(y) \neq C\left(y_{2}\right)$. Since $d \in C(u) \backslash C(y)$, we also have $C(y) \neq C(u)$. Thus $c_{3} \in\{1,2,3,4, b\}$. Since $\phi(u x)=4$, we have $c_{3} \neq 4$. If $c_{3}=b$, we can choose $\phi(y) \neq b \neq \phi\left(y y_{1}\right)$ to obtain $C(u) \neq C(y) \neq C\left(y_{2}\right)$. Thus $c_{3} \in\{1,2,3\}$. Consequently $\left(c_{1}, c_{2}, c_{3}\right)$ is $(1,2,3)$ or $(3,2,1)$. This completes the proof of the observation.

Next, we consider $|A|$ and $\left|A_{x}\right|$ to complete the proof. Assume $\phi_{1}(u y)=1, \phi_{1}(u)=$ $2, \phi_{1}(u z)=3$. Consider the case that $L^{\prime}(u y)=L^{\prime}(u)=L^{\prime}(u z)$. By the definition of $L^{\prime}(u y), L^{\prime}(u)$, and $L^{\prime}(u z)$, we have $L^{\prime}(u y)=L^{\prime}(u)=L^{\prime}(u z)=\{1,2,3\}$. Thus $|A|=6$. Extending ϕ to $u y, u, u z$ where ($\phi(u y), \phi(u), \phi(u z))$ is in A always results in $\{\phi(u y), \phi(u), \phi(u z)\}$ $=\{1,2,3\}$. Thus $C(u)=\{1,2,3,4\}$ which is not equal to $C(x)$ from the beginning. Hence $\left|A_{x}\right|=0$. Therefore $\left|A \backslash\left(A_{x} \cup A_{y} \cup A_{z}\right)\right| \geq 6-(0+2+2) \geq 2$.

Now assume that at least two of $L^{\prime}(u y), L^{\prime}(u), L^{\prime}(u z)$ are not equal. Recall that each of $L^{\prime}(u y), L^{\prime}(u), L^{\prime}(u z)$ has 3 elements. We show that $|A| \geq 10$. First, consider the case $d \in L^{\prime}(u y) \cup L^{\prime}(u) \cup L^{\prime}(u z)$ is in one set, say $L^{\prime}(u y)$, but not in other two sets. There are at least 6 sets of $\left(c_{1}=d, c_{2}, c_{3}\right)$ and at least 4 sets of $\left(c_{1} \neq d, c_{2}, c_{3}\right)$ in A. Thus $|A| \geq 10$
in this case. Next, consider the case that each $d \in L^{\prime}(u y) \cup L^{\prime}(u) \cup L^{\prime}(u z)$ is in at least two of $L^{\prime}(u y), L^{\prime}(u), L^{\prime}(u z)$. This happens only if $\left|L^{\prime}(u y) \cup L^{\prime}(u) \cup L^{\prime}(u z)\right|=4$ and only one element appears in $L^{\prime}(u y) \cap L^{\prime}(u) \cap L^{\prime}(u z)$. One can enumerate that $|A|=11$.

Let $\left(c_{1}, c_{2}, c_{3}\right) \in A_{x}$. Thus $C(x)=\left\{c_{1}, c_{2}, c_{3}, 4\right\}$. By the aforementioned property of $L^{\prime}(u y), L^{\prime}(u)$, and $L^{\prime}(u z)$, we may assume $c_{3} \notin L^{\prime}(u y)$. Thus $\left(c_{3}, c_{1}, c_{2}\right)$ and $\left(c_{3}, c_{2}, c_{1}\right)$ is not in A_{x}. Hence $\left|A_{x}\right| \leq 4$. Therefore $\left|A \backslash\left(A_{x} \cup A_{y} \cup A_{z}\right)\right| \geq 10-(4+2+2) \geq 2$.

This means we can extend ϕ to $u y, u, u z$ with $(\phi(u y), \phi(u), \phi(u z)) \in A \backslash\left(A_{x} \cup A_{y} \cup A_{z}\right)$. By definitions of A_{x}, A_{y}, and A_{z}, we can extend ϕ further to be an avd-total- L-coloring of G

With a similar proof, one can obtain the followings:
Claim 5. There is no 3 -vertex v is adjacent to a 2 -vertex and a 3 -vertex u such that u is adjacent to a leaf.
Claim 6. There is no 3 -vertex v is adjacent to two 2 -vertices.
Proof. Suppose to the contrary that G contains a 3 -vertex v adjacent to two 2-vertices v_{1}, v_{2}, and the third vertex v_{3}. Let $G^{\prime}=G-\left\{v v_{1}, v v_{2}\right\}$. Without loss of generality, we may assume that $\phi\left(v_{3}\right)=1, \phi\left(v v_{3}\right)=2$, and $C\left(v_{3}\right) \subseteq\{1,2,3,4\}$. Since $|L(v)|=5$, we can choose $a \in L(v) \backslash\{1,2,3,4\}$ to recolor v and then properly color $v v_{1}, v v_{2}$, and recolor v_{1}, v_{2} (if needed). Since $a \in C(v) \backslash C\left(v_{3}\right)$, we get $C(v) \neq C\left(v_{3}\right)$. Moreover, Claim 1(c) yields that v_{i} is not adjacent to a 2 -vertex for each $i=1,2$. Consequently, if u_{i} is the second neighbor of v_{i} where $i=1$ or 2 , then $C\left(v_{i}\right) \neq C\left(u_{i}\right)$. Thus we obtain a desired coloring.

Let H be the graph obtained by removing all leaves of G. The properties of the graph H are collected in the following Claim 7:
Claim 7.
(1) Each vertex in H has degree at least 2.
(2) There are no adjacent 2 -vertices.
(3) Every 3 -vertex is adjacent to at most one 2 -vertex.

Proof. (1) Suppose to the contrary that a vertex v has $d_{H}(v) \leq 1$.
If $d_{G}(v)=2$, then v is adjacent to a leaf in G which contradicts Claim 1(a).
If $d_{G}(v)=3$, then v is adjacent to at least two leaves in G which contradicts Claim 1(b).
(2) Suppose to the contrary that H contains a 2 -vertex u adjacent to a 2 -vertex v.

The case $d_{G}(u)=d_{G}(v)=2$ contradicts Claim 1(c).
The case $d_{G}(u)=3$ and $d_{G}(v)=2$ or $d_{G}(u)=2$ and $d_{G}(v)=3$ contradicts Claim 1(b).
The case $d_{G}(u)=d_{G}(v)=3$, implies there exist two adjacent 3 -vertices each of which is adjacent to a leaf. This contradicts Claim 3.
(3) Suppose to the contrary that H contains a 3 -vertex u adjacent to two 2-vertices, say x and y.
The case $d_{G}(x)=d_{G}(y)=2$ contradicts Claim 6 .
The case $d_{G}(x)=3$ and $d_{G}(y)=2$ or $d_{G}(x)=2$ and $d_{G}(y)=3$ contradicts Claim 5 .
The case $d_{G}(x)=d_{G}(y)=3$ contradicts Claim 4 .
Next, we complete the proof by using the discharging method derived by Wang and Wang [17]. We present their method here for the convenience of readers. We use the same initial charge function $w(v)=d_{H}(v)$ for all $v \in V(H)$ and define the discharging rule as follows :
$\left(\mathbf{R}^{\prime}\right)$. Every 3 -vertex gives $\frac{1}{3}$ to its adjacent 2-vertex.

Let $w^{\prime}(v)$ denote the new charge of a vertex v after the discharging process is finished on H. If v is a 3 -vertex, then v is adjacent to at most one 2 -vertex by Claim 7(3). Hence we have $w^{\prime}(v) \geq 3-\frac{1}{3}=\frac{8}{3}$ by ($\left.\mathrm{R}^{\prime}\right)$. If v is a 2 -vertex, then v is not adjacent to any 2 -vertex by Claim $7(2)$. It follows that v is adjacent to two 3 -vertices. Hence we have $w^{\prime}(v)=2+\frac{1}{3}+\frac{1}{3}=\frac{8}{3}$ by $\left(\mathrm{R}^{\prime}\right)$. Therefore, $w^{\prime}(v) \geq \frac{8}{3}$ for any $v \in V(H)$. However, this leads to the following contradiction :

$$
\frac{8}{3}=\frac{\frac{8}{3}|V(H)|}{|V(H)|} \leq \frac{\sum_{v \in V(H)} w^{\prime}(v)}{|V(H)|}=\frac{\sum_{v \in V(H)} w(v)}{|V(H)|}=\frac{2|E(H)|}{|V(H)|} \leq \operatorname{mad}(H)<\frac{8}{3}
$$

Acknowledgements

The first author is supported by University of Phayao, Thailand. The second author was supported by the Commission on Higher Education and the Thailand Research Fund under grant RSA5780014 and Khon Kaen University, Thailand. In addition, we would like to thank Dr. Keaitsuda Nakprasit for her helpful comments and we would like to thank the referees for their comments and suggestions on the manuscript.

References

[1] P.N. Balister, B. Bollobás, R.H. Schelp, Vertex distinguishing coloring of graphs with $\Delta(G)=2$, Discrete Math. 252 (2) (2002) 17-29.
[2] C. Bazgan, A. Harkat-Benhamdine, H. Li, On the adjacent vertex-distinguishing proper edge-coloring of graphs, J. Combin. Theory, Ser. B. 75 (1999) 288-301.
[3] A.C. Burris, R.H. Schelp, Vertex-distinguishing proper edge-colorings, J. of Graph Theory 26 (2) (1997) 73-82.
[4] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626.
[5] Z. Zhang, X. Chen, J. Li, B. Yao, X. Lu, J. Wang, On adjacent-vertex-distinguishing total coloring of graphs, Sci. China Ser. A. 48 (3) (2005) 289-299.
[6] H. Wang, On the adjacent vertex-distinguishing total chromatic numbers of the graphs with $\Delta(G)=3$, J. Comb. Optim. 14 (2007) 87-109.
[7] X. Chen, On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta=3$, Discrete Math. 308 (2008) 4003-4007.
[8] J. Hulgan, Concise proofs for adjacent vertex-distinguishing total colorings, Discrete Math. 309 (2009) 2548-2550.
[9] W. Wang, Y. Wang, Adjacent vertex distinguishing total colorings of outerplanar graphs, J. Comb. Optim. 19 (2010) 123-133.
[10] W. Wang, D. Huang, The adjacent vertex distinguishing total coloring of planar graphs, J. Comb. Optim. 27 (2014) 379-396.
[11] A.G. Luiz, C.N. Campos, C.P. de Mello, AVD-total-colouring of complete equipartite graphs, Discrete Appl. Math. 184 (2015) 189-195.
[12] T. Coker, K. Johannson, The adjacent vertex distinguishing total chromatic number, Discrete Math. 312 (2012) 2741-2750.
[13] V. Pedrotti, C.P. de Mello, Adjacent-vertex-distinguishing total coloring of indifference graphs, Mat. Contemp. 39 (2010) 101-110.
[14] X. Chen, Z. Zhang, Y. Sun, Adjacent-vertex-distinguishing total chromatic numbers on mono-cycle graphs and the square of cycles, International Journal of Pure and Applied Mathematics 18 (4) (2005) 481-490.
[15] D. Huang, W. Wang, C. Yan, A note on the adjacent vertex distinguishing total chromatic number of graphs, Discrete Math. 312 (2012) 3544-3546.
[16] A. Papaioannou, C. Raftopoulou, On the AVDTC of 4-regular graphs, Discrete Math. 330 (2014) 20-40.
[17] W. Wang, Y. Wang, Adjacent vertex distinguishing total coloring of graphs with lower average degree, Taiwanese J. Math. 12 (4) (2008) 979-990.
[18] V.G. Vizing, Vertex colorings with given colors, Metody Diskret. Analiz. (in Russian) 29 (1976) 3-10.
[19] P. Erdős, A.L. Rubin, H. Taylor, Choosability in graphs, In Proc. West Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, Congr. Num. 26 (1979) 125-157.

[^0]: *Corresponding author.

