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1. Introduction

In 2008, Ceng and Yao [1] studied the mixed equilibrium problem on real Hilbert space
H. A subset C of H be a nonempty closed convex and mapping φ : C → R and bifunction
F : C × C → R such that F (x, x) = 0, for all x ∈ C. Then find x∗ ∈ C such that

F (x∗, y) + φ(y)− φ(x∗) ≥ 0, ∀y ∈ C, (MEP)

is called a mixed equilibrium problem on C. We denote by SOL(MEP), the solution set of
the mixed equilibrium (MEP) (For more details, one can see [1, 2] and related literature).

*Corresponding author. Published by The Mathematical Association of Thailand.
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The problem (MEP) is very general in the sense that it includes, as special cases,
minimization problems and equilibrium problems.

Spacial case:

(i) If F (x, y) = 0 for all x, y ∈ C, then problem (MEP) is reduced to the following
minimization problem. Find x∗ ∈ C such that

φ(y) ≥ φ(x∗), ∀y ∈ C. (1.1)

(ii) If φ = 0, then (MEP) is equivalent to the following equilibrium problem by
Blum and Oettli [3]. Find x∗ ∈ C such that

F (x∗, y) ≥ 0, ∀y ∈ C. (EP)

Defined

S = {x∗ ∈ C : F (x∗, y) ≥ 0, ∀y ∈ C},

we called S is the solution set of the problem. The theory of equilibrium prob-
lem plays a very important role in variational inequality problems, optimization
problems and fixed point problems (see, for instance [4, 5]).

The mixed equilibrium problem is very general in the sense that it includes, as special
cases, optimization problems, variational inequality problems, minimization problems,
fixed point problems, Nash equilibrium problems in noncooperative games, and others;
(see, for instance [6–15]).

Following from the bifunction F , sometimes it is very hard to deal with but it can be
seen as a sum of two simpler bifunctions F1 and F2. We see that the problem EP becomes
the following problem:

find x∗ ∈ C such that F1(x∗, y) + F2(x∗, y) ≥ 0, ∀y ∈ C. (1.2)

We will assume that the function F1 and F2 verify the following conditions:

(A1) F (x, x) = 0 for all x, y ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y) for any x, y, z ∈ C;
(A4) for each x ∈ C, y 7−→ F (x, y) is convex and lower-semicontinuous.

The following notion appears implicitly in [3].

Definition 1.1. [16] The resolvent of a bifunction F : C × C → R is the set-valued
operator

JF : H → 2C : x 7→ {z ∈ K|(∀y ∈ K)F (z, y) + 〈z − x, y − z〉 ≥ 0}. (1.3)

Under these assumptions, for each r > 0 and x ∈ H, the resolvent of F is single valued
(See, the paper [11]).

The extragradient method proposed by Antipin [17] and developed by Quoc et al. [18]
(see also [19, 20]) for solving the problem (EP) as follows.


x0 ∈ C
yn = arg min

t∈C
{λnF (xn, t) + 1

2‖t− xn‖
2},

xn+1 = arg min
t∈C

{λnF (yn, t) + 1
2‖t− yn‖

2}.
(1.4)
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Motivated and inspired by the definition 1.1 and algorithms 1.4, we will introduce a
new splitting algorithm for solving (MEP) on Hilbert space. We will prove a sequence
generated by our algorithm converges to a solution in non-ergodic sense.

In each part of the paper be divided into the following chapters. Section 2 introduce
some definitions, theorems, lemma and results for further investigation. In Section 3,
established a non-ergodic splitting algorithms for solving equilibrium problem (MEP)
under the privilege of the new assumptions considered for the component functions. In
the last Section 4, we give some numerical result.

2. Preliminaries

In this section, we present some properties, theorems and definition for using in our
results. Suppose H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We
recall that strong convergence and weak convergence of {xn} are defined by xn → x and
xn ⇀ x, respectively.

Definition 2.1. Let C be a nonempty closed convex subset of H. By PC we denote the
projection operator on C with the norm ‖ · ‖, that is

PC(x) = argmin{‖y − x‖ : y ∈ C}, ∀x ∈ H.
We said that PC is the metric projection of H onto C. Since ‖ · −x‖2 is a strong convex
function, therefore PC(x) is singleton and well defined for every x ∈ H.

Lemma 2.2. [21] Let H be a real Hilbert space. Then, the following equation hold:

(i) ‖x− y‖2 = ‖x‖2 − ‖y‖2 − 2〈x− y, y〉,∀x, y ∈ H;
(ii) ‖x+ y‖2 = ‖x‖2 + 2〈y, x+ y〉,∀x, y ∈ H;
(iii) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2,∀λ ∈ (0, 1) and
x, y ∈ H.

Definition 2.3. Let C be a nonempty closed convex. A bifunction F is said to be

(i) monotone on C if F (x, y) + F (y, x) ≤ 0, ∀x, y ∈ C;
(ii) pseudomonotone on C if F (x, y) ≥ 0⇒ F (y, x) ≤ 0, ∀x, y ∈ C.

From the definition, it follows that (a)⇒ (b).

Definition 2.4. [22] A bifunction F : C × C → R is said to be τ−Hölder continuous
in the first argument (resp. the second argument) if there exists constants L > 0 and
τ ∈ (0, 1] such that

|F (x, y)− F (z, y)| ≤ L‖x− z‖τ , ∀x, y, z ∈ C
( resp. |F (x, y)− F (x, z)| ≤ L‖y − z‖τ , ∀x, y, z ∈ C).

Definition 2.5. [11] Let C be a nonempty closed convex subset of H and F : C×C → R.
For any λ > 0, the resolvent of F is the set-valued operator JFλ : H → 2C defined by

JFλ (x) = {z ∈ C|λF (z, t)− 〈z − x, t− z〉 ≥ 0, ∀t ∈ C}, ∀x ∈ H.

Definition 2.6. [23] Let C be a nonempty subset of H and {xn} be a sequence in H.
Then {xn} is quasi-Fejér monotone with respect to C, for all x ∈ C if

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + εn,

for each n ∈ N and {εn} be a sequence in (0,∞) satisfies
∑∞
n=1 εn < +∞.
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Theorem 2.7. [23] Let {xn} be a sequence in H and let C be a nonempty subset of H
such that {xn} is quasi-Fejér monotone with respect to C. Then the following hold:

(i) For every x ∈ C, ‖xn − x‖ converges.
(ii) {xn} is bounded.

(iii) Suppose that every weak cluster point of {xn} belongs to C.
Then {xn} converges weakly to a point in C.

Lemma 2.8. [24] Let C be a closed convex subset of a real Hilbert space H and g : C → R
be convex and subdifferentiable on C. Then, x∗ is a solution to the following convex
problem

min{g(x) : x ∈ C} ⇔ 0 ∈ ∂g(x∗) +NC(x∗).

3. Main Results

In this section, we introduce a splitting algorithm for solving the mixed equilibrium
problem. We give some assumptions and properties of function F (x, y). Let Lemma 3.2
for proving the main theorem.

The following assumptions will be used in the subsequent discussions.

(M1) For every x ∈ C, y 7→ F (x, y) is convex;
(M2) for every y ∈ C, x 7→ F (x, y) is upper semi-continuous;
(M3) F is monotone;
(M4) φ is convex, lower semi-continuous and increasing;
(M5) SOL(MEP) 6= ∅.

Proposition 3.1. Under assumptions (M1)–(M5), we have

(a) SOL(MEP) = {y ∈ C : F (x, y) + φ(y)− φ(x) ≤ 0, ∀x ∈ C},
(b) SOL(MEP) is closed and convex.

Proof. (a) Let SOL(MEP)d := {y ∈ C : F (x, y) + φ(y)− φ(x) ≤ 0, ∀x ∈ C}.
(⇒) We prove that SOL(MEP) ⊂ SOL(MEP)d. Let x∗ ∈ SOL(MEP), we have

F (x∗, y) + φ(y)− φ(x∗) ≥ 0, ∀y ∈ C.

That is,

F (x∗, y) ≥ φ(x∗)− φ(y), ∀y ∈ C. (3.1)

Adding F (y, x∗) to both side (3.1), we get

F (x∗, y) + F (y, x∗) ≥ F (y, x∗) + φ(x∗)− φ(y). (3.2)

From F is monotone, i.e. F (y, x∗) + φ(x∗)− φ(y) ≤ 0. Therefore, x∗ ∈ SOL(MEP)d.

(⇐) We prove that SOL(MEP)d ⊂ SOL(MEP). Let x∗ ∈ SOL(MEP)d. Let λ ∈
(0, 1], y ∈ C, and set zλ = λy + (1− λ)x∗ , we have

F (zλ, x
∗) + φ(x∗)− φ(zλ) ≤ 0, ∀zλ ∈ C. (3.3)

And from φ is convex, we have

(1− λ)φ(zλ) + λφ(zλ) = φ(zλ) ≤ λφ(y) + (1− λ)φ(x∗).
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So, (1− λ)(φ(zλ)− φ(x∗)) ≤ λ(φ(y)− φ(zλ)).
Since y 7→ F (x, y) is convex, we get

0 = F (zλ, zλ) ≤ λF (zλ, y) + (1− λ)F (zλ, x
∗). (3.4)

Adding (1− λ)(φ(zλ)− φ(x∗)) to both sides of (3.4),

(1− λ)(φ(zλ)− φ(x∗)) ≤ λF (zλ, y) + (1− λ)F (zλ, x
∗) + (1− λ)(φ(zλ)− φ(x∗))

≤ λF (zλ, y) + (1− λ)F (zλ, x
∗) + λ(φ(y)− φ(zλ)).

Implies that,

−[(1− λ)(F (zλ, x
∗) + φ(x∗)− φ(zλ))] ≤ λ[F (zλ, y) + φ(y)− φ(zλ)].

From (3.3), hence F (F (γ(t), y) + φ(y)− φ(γ(t)) ≥ 0 as λ ≥ 0.
Since F is upper semi-continuous of F (·, y) and φ is lower semi-continuous, taking

zλ → 0+ we get,

0 ≤ lim sup
zλ→0+

F (zλ, y) + φ(y)− lim inf
zλ→0+

φ(x∗) ≤ F (x∗, y) + φ(y)− φ(x∗).

This implies that x∗ ∈ SOL(MEP).

(b) Consider the sequence satisfying {xn} ⊂ SOL(MEP) and xn → x∗. Since x 7→
F (x, y) is upper semi-continuous, we have

F (x∗, y) ≥ lim sup
n→∞

F (xn, y), ∀y ∈ C. (3.5)

Also, φ is lower semi-continuous, we have

lim inf
n→∞

φ(xn) ≥ φ(x∗). (3.6)

Combining (3.5) and (3.6), we obtain that

F (x∗, y)− φ(x∗) ≥ F (x∗, y) ≥ lim sup
n→∞

F (xn, y)− lim inf
n→∞

φ(xn).

Adding φ(y) for each y ∈ C to both sides of the last inequality,

F (x∗, y) + φ(y)− φ(x∗) ≥ lim sup
n→∞

F (xn, y) + φ(y)− lim inf
n→∞

φ(xn)

≥ 0.

Therefore, x∗ ∈ SOL(MEP), i.e. SOL(MEP) is closed. Next, let x∗1, x
∗
2 ∈ SOL(MEP),

then

F (y, x∗i ) + φ(x∗i )− φ(y) ≤ 0, ∀i = 1, 2. (3.7)

Consider

F (y, λx∗1 + (1− λ)x∗2) + φ(λx∗1 + (1− λ)x∗2)− φ(y) ≤ λF (y, x∗1) + (1− λ)(y, x∗2)

+λφ(x∗1) + (1− λ)φ(x∗2)− φ(y)

≤ λ[F (y, x∗1) + φ(x∗1)− φ(y)]

+(1− λ)[F (y, x∗2) + φ(x∗2)− φ(y)].

From (3.7), we conclude that

F (y, λx∗1 + (1− λ)x∗2) + φ(λx∗1 + (1− λ)x∗2)− φ(y) ≤ 0.

Therefore SOL(MEP)d is convex, implies that SOL(MEP) is convex.
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Algorithm 1

Initialization: Choose x0 ∈ C and a sequence {λn} ⊂ (0,∞).
Iterative Step: Given xn, compute yn and xn+1 by
Step 1. Compute

yn = JFλn(xn).

Step 2. Compute

xn+1 = arg min
t∈C

{
λnφ(t) +

1

2
‖t− yn‖2

}
.

Update n =: n+ 1 and go back to Step 1.

Lemma 3.2. Let C be a nonempty closed convex subset of H and the condition (i)-
(v) hold. Moreover, suppose F is τ -Hölder continuous in the first argument or second
argument. Then the sequences {xn}, {yn} generated by Algorithm 1 satisfy the following
properties.

(a) There exists M > 0 such that

‖xn − yn‖ ≤Mλ
1

2−τ
n , ∀n ≥ 1.

(b) There exists L > 0 such that

‖xn+1−x‖2 ≤ ‖xn−x‖2+2λn(F (xn, x)+φ(x)−φ(xn))+Lλ
2

2−τ
n , ∀x ∈ C. (3.8)

Proof. (a) From yn = JFλn(xn), by the Definition 2.5, we have yn ∈ C such that

λnF (yn, t)− 〈yn − xn, t− yn〉 ≥ 0, ∀t ∈ C.
That is,

λnF (yn, t) ≥ 〈yn − xn, t− yn〉, ∀t ∈ C. (3.9)

Put t = xn ∈ C into (3.9), we get

‖xn − yn‖2 ≤ λnF (yn, xn)

≤ λn| − F (yn − xn)|.
Since xn ∈ C, then F (xn, xn) = 0, we get

‖xn − yn‖2 ≤ λn|F (xn, xn)− F (yn, xn)|. (3.10)

Besides, from F is Hölder continuous in the first argument, then there exist Q > 0 and
τ ∈ (0, 1] such that

|F (xn, xn)− F (yn, xn)| ≤ Q‖xn − yn‖τ . (3.11)

From (3.10) and (3.11), we have

1

λn
‖xn − yn‖2 ≤ Q‖xn − yn‖τ

‖xn − yn‖2−τ ≤ λnQ

‖xn − yn‖ ≤ (λnQ)
1

2−τ .

Hence, ‖xn − yn‖ ≤Mλ
1

2−τ
n , where M = Q

1
2−τ .
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(b) Since xn+1 solves the convex program

arg min
t∈C

{
λnφ(t) +

1

2
‖t− yn‖2

}
.

if and only if

0 ∈ ∂(λnφ(·) +
1

2
‖ · −yn‖2)(xn+1) +NC(xn+1),

where NC(xn+1) is normal cone of C at xn+1. So, there exist w ∈ ∂φ(xn+1) and v ∈
NC(xn+1) := {z ∈ H : 〈z, x− xn+1〉 ≤ 0, ∀x ∈ C} such that

0 = λnw + xn+1 − yn + v.

Therefore v = yn − λnw − xn+1. By definition of NC(xn+1), we have

〈yn − λnw − xn+1, x− xn+1〉 ≤ 0

we get

〈yn − xn+1, x− xn+1〉 − 〈λnw, x− xn+1〉 ≤ 0

and

〈yn − xn+1, x− xn+1〉 ≤ 〈λnw, x− xn+1〉, ∀x ∈ C.
From w ∈ ∂φ(xn+1), we have

φ(x)− φ(xn+1) ≥ 〈w, x− xn+1〉, ∀x ∈ C.
Combining the two last inequalities, we obtain

λn(φ(x)− φ(xn+1)) ≥ λn〈w, x− xn+1〉
≥ 〈yn − xn+1, x− xn+1〉, ∀x ∈ C. (3.12)

Consider, using properties of Hilbert spaces, we have

‖yn − x‖2 = ‖(xn − x) + (yn − xn)‖2

≤ ‖xn − x‖2 + 2〈yn − xn, yn − x〉, (3.13)

and

‖xn+1 − x‖2 ≤ ‖yn − x‖2 + 2〈xn+1 − yn, xn+1 − x〉. (3.14)

By (3.13) with (3.14), and using (3.9) and (3.12), we have

‖xn+1 − x‖2 ≤ ‖xn − x‖2 + 2〈xn+1 − yn, xn+1 − x〉+ 2〈yn − xn, yn − x〉
≤ ‖xn − x‖2 + 2λnF (yn, x) + 2λn(φ(x)− φ(xn+1))

≤ ‖xn − x‖2 + 2λn(F (yn, x) + φ(x)− φ(xn+1)).

Since φ is increasing, we have −φ(xn+1) ≤ −φ(xn). It implies that

‖xn+1 − x‖2 ≤ ‖xn − x‖2 + 2λn(F (yn, x) + φ(x)− φ(xn)). (3.15)

Following (3.15) and using τ - Hödler continuity of F, we obtain

‖xn+1 − x‖2 ≤ ‖xn − x‖2 + 2λn(F (yn, x) + F (xn, x)− F (xn, x) + φ(x)− φ(xn))

≤ ‖xn − x‖2 + 2λn(F (xn, x) + φ(x)− φ(xn)) + 2λn|F (xn, x)− F (yn, x)|
≤ ‖xn − x‖2 + 2λn(F (xn, x) + φ(x)− φ(xn)) + 2λnQ‖xn − yn‖τ

≤ ‖xn − x‖2 + 2λn(F (xn, x) + φ(x)− φ(xn)) + 2λnQ((Qλn)
1

2−τ )τ

≤ ‖xn − x‖2 + 2λn(F (xn, x) + φ(x)− φ(xn)) + Lλ
2

2−τ
n , (3.16)
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where L = 2Q
2

2−τ > 0.

Theorem 3.3. Let C be a nonempty closed convex subset of H and assume that all the
hypothesis of Lemma 3.2. Suppose that the sequence {λn} satisfies

(i) lim infn→∞ λn ≥ 0,

(ii)
∑∞
n=1 λ

2
2−τ
n < +∞.

Then the sequence {xn} generated by Algorithm 1 converges weakly to a solution of
(MEP).

Proof. Firstly, we prove that the sequence {xn} is bounded. Let x = x∗ ∈ SOL(MEP).
By Proposition 3.1, we have F (xn, x

∗) + φ(x∗)− φ(xn) ≤ 0 for n ≥ 1. Hence, we get

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + Lλ
2

2−τ
n , ∀n ∈ N.

That is {xn} is quasi Fejér monotone with respect to SOL(MEP). From Theorem 2.7,
we conclude that {xn} is bounded. So {xn} is bounded and there exists a subsequence
{xnk} ⊂ {xn} such that xnk ⇀ x∗ ∈ C.

Next, we prove that x∗ ∈ SOL(MEP). Follows from (3.8), implies that

1

2λnk
[‖xnk+1−x‖2−‖xnk−x‖2] ≤ F (xnk , x)+φ(x)−φ(xnk)+Lλ

τ
2−τ
nk , ∀x ∈ C.

Taking the upper limit as k → ∞, since lim infn→∞ λn ≥ 0, limn→∞ λ
2

2−τ
n = 0 and

xnk ⇀ x∗, we obtain that

0 ≤ lim sup
k→∞

F (xnk , x) + φ(x)− lim sup
k→∞

φ(xnk)

≤ lim sup
k→∞

F (xnk , x) + φ(x)− lim inf
k→∞

φ(xnk)

≤ F (x∗, x) + φ(x)− φ(x∗)

for all x ∈ C, therefore x∗ ∈ SOL(MEP).
Finally, From Theorem 2.7, hence the sequence {xn} generated by Algorithm 1 converges
weakly to SOL(MEP).

4. Numerical Results

In this section, we give some example for support our results. All the numerical
examples are implemented in MATLAB R2018b running on a laptop with Intel R©Core
3TM − 6006U 2.0 Ghz 4 GB Ram.

Example 4.1. Given H be a real Hilbert space and let a bifunction F : R2 × R2 → R
defined by F (x, y) = 〈Ax, y − x〉, for all x, y ∈ R2. where

A =

[
0 −1
1 0

]
.

Let a function φ : R2 → R defined by φ(x) = φ(x1, x2) = 2‖x1‖ for all x ∈ R2.
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We verify (M1)− (M5) satisfies the assumption.

(M1) For each x ∈ R2 we have

F (x, λx+ (1− λ)y) = 〈Ax, (λx+ (1− λ)y)− ((1− λ)x− λx)〉
= λ〈Ax, x− x〉+ (1− λ)〈Ax, y − x〉
= λF (x, x) + (1− λ)F (x, y), ∀x, y ∈ R2.

That is F (·, y) is convex.

(M2) From continuously of F (x, y) = 〈Ax, y − x〉, we deduce that its upper semi-
continuous.

(M3) For each x, y ∈ R2 and F (x, y) = 〈Ax, y − x〉 we have,

F (x, y) + F (y, x) = 〈Ax, y − x〉+ 〈Ay, x− y〉
= (−x2(y1 − x1) + x1(y2 − x2)) + (−y2(x1 − y1) + y1(x2 − y2))

= 0.

That is F (x, y) + F (y, x) ≤ 0, therefore, F is monotone.

(M4) φ is convex, lower semi-continuous and increasing. Since φ(x1, x2) = 2‖x1‖,
easy to see.

(M5) Consider,

F (x∗, y) + φ(y)− φ(x∗) = 〈Ax∗, y − x∗〉+ 2‖y1‖ − 2‖x∗1‖, ∀x, y ∈ R2

= 〈Ax∗, y〉+ 〈Ax∗,−x∗〉+ 2‖y1‖ − 2‖x∗1‖, ∀x, y ∈ R2.

Therefore, if x∗ = 0 then SOL(MEP) 6= ∅.

Choosing λn =
1

n
, where n ∈ N. Hence, all of assumptions are satisfied and our algorithm

converge to a solution x∗ ∈ [0, 1].

Example 4.2. Given H be a real Hilbert space and let a bifunction F : R5 × R5 → R
defined by F (x, y) = 〈Ax+By + q, y − x〉 for all x, y ∈ R5, where

q =


1
−2
−1

2
−1

 , A =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 , B =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 .

Let a function φ : R5 → R defined by φ(x) = φ(x1, x2, x3, x4, x5) = ‖x1‖ = |x1| for all
x ∈ R5.

As the matrices A and B are positive definite with F (x, x) = 0 for all x ∈ R5, the
assumptions (M1)–(M5) considered are all satisfied. We now use Algorithms 1 to solve
MEP, see the table:
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Table 1. Iterations of Algorithm 1 in Example 4.2 with starting point

x0 = (1, 2, 3, 4, 5)T , choosing λn =
1

n+ 1
.

Iter(n) xn1 xn2 xn3 xn4 xn5 ‖xn−1 − xn‖

0 1 2 3 4 5

1 8.0001 ×10−7 1.3056 1.0432 0.8355 0.9825 2.1106

2 4.8000 ×10−8 1.5458 ×10−4 1.5457 ×10−4 1.5458 ×10−4 1.5456 ×10−4 5.0001

3 8.0000 ×10−6 2.5436 2.4800 2.5184 2.4580 4.8178 ×10−5

4 2.0000 ×10−6 2.5436 2.4800 2.5184 2.4580 4.6463 ×10−5

5 2.4000 ×10−6 2.5436 2.4800 2.5184 2.4580 3.4521 ×10−5

6 2.8000 ×10−6 2.5435 2.4800 2.5184 2.4581 4.1269 ×10−5

Table 2. Iterations of Algorithm 1 in Example 4.2 with starting point

x0 = (0, 0, 0, 0, 0)T , choosing λn =
1

n+ 1
.

Iter(n) xn1 xn2 xn3 xn4 xn5 ‖xn−1 − xn‖

0 0 0 0 0 0

1 8.0000 ×10−7 1.8542 1.8542 1.8542 1.8542 3.7078

2 1.2000 ×10−6 2.8291×10−4 2.8297×10−4 2.8290×10−4 2.8294×10−4 5.0000

3 1.6000 ×10−6 2.4721 2.5544 2.4560 2.5175 1.2226 ×10−4

4 1.0000 ×10−5 2.4722 2.5543 2.4561 2.5174 3.9269 ×10−5

5 2.4000 ×10−6 2.4722 2.5543 2.4561 2.5174 4.5353 ×10−5

6 1.4000 ×10−5 2.4722 2.5543 2.4561 2.5174 4.7255 ×10−5

Table 3. Iterations of Algorithm 1 in Example 4.2 with starting point

x0 = (1, 2, 3, 4, 5)T , choosing λn =
1

2n
.

Iter(n) xn1 xn2 xn3 xn4 xn5 ‖xn−1 − xn‖

0 1 2 3 4 5

1 8.0001 ×10−7 1.3056 1.0432 0.8355 0.9825 2.9191

2 1.6000 ×10−6 2.6669 2.5072 2.3579 2.4679 1.2652 ×10−4

3 2.3999 ×10−6 2.6668 2.5072 2.3580 2.4679 1.1032 ×10−4

4 1.6000 ×10−5 2.6667 2.5072 2.3581 2.4680 1.4540 ×10−4

5 4.0006 ×10−6 2.6666 2.5072 2.3582 2.4680 1.0148 ×10−4

6 2.3999 ×10−5 2.6666 2.5072 2.3582 2.4680 1.0318 ×10−4
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Table 4. Iterations of Algorithm 1 in Example 4.2 with starting point

x0 = (0, 0, 0, 0, 0)T , choosing λn =
1

2n
.

Iter(n) xn1 xn2 xn3 xn4 xn5 ‖xn−1 − xn‖

0 0 0 0 0 0

1 8.0000 ×10−7 1.8542 1.8542 1.8542 1.8542 3.7078

2 1.2800 ×10−6 2.6401×10−4 2.6400×10−4 2.6401×10−4 2.6402×10−4 9.9996

3 2.4000 ×10−6 4.9921 4.9660 5.0094 5.0326 5.0009

4 6.3998 ×10−7 2.4725 2.4015 2.5250 2.6011 6.7972 ×10−5

5 4.0002 ×10−6 2.4725 2.4015 2.5249 2.6010 7.2525 ×10−5

6 4.7998 ×10−6 2.4725 2.4016 2.5249 2.6011 7.1630 ×10−5

From Table 1, Table 2, we consider at two starting point x0 = (1, 2, 3, 4, 5)T , x0 =

(0, 0, 0, 0, 0)T and choosing λn =
1

n+ 1
. Table 3, Table 4, choosing two starting point

x0 = (1, 2, 3, 4, 5)T , x0 = (0, 0, 0, 0, 0)T with λn =
1

2n
.
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