Thai Journal of **Math**ematics Volume 18 Number 3 (2020) Pages 1185–1197

http://thaijmath.in.cmu.ac.th

Dedicated to Prof. Suthep Suantai on the occasion of his 60^{th} anniversary

The Fixed Point Property of a Non-Unital Abelian Banach Algebra Generated by an Element with Infinite Spectrum

Preeyaporn Thongin* and Worapong Fupinwong

Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : fai570551066@gmail.com (P. Thongin); g4865050@hotmail.com (W. Fupinwong)

Abstract A Banach space X is said to have the fixed point property if for each nonexpansive mapping $T: E \to E$ on a bounded closed convex subset E of X has a fixed point. Assume that X is an infinite dimensional non-unital Abelian Banach algebra satisfying: (i) condition (A) defined in [W. Fupinwong, S. Dhompongsa, The fixed point property of unital Abelian Banach algebras, Fixed Point Theory and Applications (2020)], (ii) $||x|| \leq ||y||$ for each $x, y \in X$ such that $|\tau(x)| \leq |\tau(y)|$ for each $\tau \in \Omega(X)$, (iii) $\inf\{r(x): x \in X, ||x|| = 1\} > 0$. We show that there is an element $(x_0, 0)$ in X such that

$$\langle x_0, 0 \rangle_{\mathbb{R}} = \overline{\left\{ \sum_{i=1}^k \alpha_i (x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\}}$$

does not have the fixed point property. This result is a generalization of Theorem 21 in [P. Thongin, W. Fupinwong, The fixed point property of a Banach algebra generated by an element with infinite spectrum, Journal of Function Spaces (2018)]. Moreover, as a consequence of the proof, for each element $(x_0, 0)$ in X with infinite spectrum and $\sigma(x_0, 0) \subset \mathbb{R}$, the Banach algebra $\langle x_0, 0 \rangle = \overline{\left\{\sum_{i=1}^k \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{C}\right\}}$ generated by $(x_0, 0)$ does not have the fixed point property.

MSC: 46B20; 46J99

Keywords: the fixed point property; nonexpansive mapping; non-unital Banach algebra; the Stone-Weierstrass approximation theorem

Submission date: 22.05.2020 / Acceptance date: 11.09.2020

1. INTRODUCTION

A Banach space X is said to have the fixed point property if for each nonexpansive mapping $T: E \to E$ on a bounded closed convex subset E of X has a fixed point, to have the weak fixed point property if for each nonexpansive mapping $T: E \to E$ on a weakly compact convex subset E of X has a fixed point.

*Corresponding author.

In 1981, D.E. Alspach [1] proved that there exists an isometry $T : E \to E$ on a weakly compact convex subset E of the Lebesgue space $L_1[0,1]$ without a fixed point. Consequently, $L_1[0,1]$ does not have the weak fixed point property.

In 1983, J. Elton, P.K. Lin, E. Odell, and S. Szarek [2] showed that $C(\alpha, \mathbb{R})$ has the weak fixed point property, if α is a compact ordinal with $\alpha < \omega^{\omega}$.

In 1997, A.T. Lau, P.F. Mah, and A. Ulger [3] proved the following theorem.

Theorem 1.1. Let X be a locally compact Haudorff space. If $C_0(X)$ has the weak fixed point propert, then X is dispersed.

Moreover, by applying Theorem 1.1, they proved the following results.

Corollary 1.2. [3] Let G be a locally compact group. Then the C^* -algebra $C_0(G)$ has the weak fixed point property if and only if G is discrete.

Corollary 1.3. [3] A von Neumann algebra M has the weak fixed point property if and only if M is finite dimensional.

In 2005, T.D. Benavides and M.A. Japon Pineda [4] studied the concept of ω -almost weak orthogonality in the Banach lattice C(K) and proved the following results.

Theorem 1.4. [4] Let X be a ω -almost weakly orthogonal closed subspace of C(K), where K is a metrizable compact space. Then X has the weak fixed point property.

Theorem 1.5. [4] Let K be a metrizable compact space. Then the following conditions are all equivalent:

C(K) is ω-almost weakly orthogonal.
C(K) is ω-weakly orthogonal.
K^(ω) = Ø.

Corollary 1.6. [4] Let K be a compact set with $K^{(\omega)} = \emptyset$. Then C(K) has the weak fixed point property.

In 2010, W. Fupinwong and S. Dhompongsa [5] showed that each infinite dimensional real unital Abelian Banach algebra X with $\Omega(X) \neq \emptyset$ satisfying: (i) if $x, y \in X$ is such that $|\tau(x)| \leq |\tau(y)|$, for each $\tau \in \Omega(X)$ then $||x|| \leq ||y||$, (ii) $\inf\{r(x) : x \in X, ||x|| = 1\} > 0$, does not have the fixed point property. Moreover, they proved the following theorem.

Theorem 1.7. [5] Let X be an infinite dimensional complex unital Abelian Banach algebra satisfying condition (A) and each of the following:

(i) if $x, y \in X$ is such that $|\tau(x)| \leq |\tau(y)|$, for each $\tau \in \Omega(X)$, then $||x|| \leq ||y||$. (ii) $\inf\{r(x) : x \in X, ||x|| = 1\} > 0$. Then X does not have the fixed point property.

In 2010, D. Alimohammadi and S. Moradi [6] used the above result to obtain sufficient conditions to show that some unital uniformly closed subalgebras of C(X), where X is a compact space, do not have the fixed point property.

In 2011, S. Dhompongsa, W. Fupinwong, and W. Lawton [7] showed that a C^* -algebra has the fixed point property if and only if it is finite dimensional.

In 2012, W. Fupinwong [8] showed that the unitality in the results proved in [5] can be omitted.

In 2016, by using Urysohn's lemma and Schauder-Tychonoff fixed point theorem, D. Alimohammadi [9] proved the following result.

Theorem 1.8. [9] Let Ω be a locally compact Hausdorff space. Then the following statements are equivalent:

(i) Ω is infinite set.

(ii) $C_0(\Omega)$ is infinite dimensional.

(iii) $C_0(\Omega)$ does not have the fixed point property.

In 2017, J. Daengsaen and W. Fupinwong [10] proved that each infinite dimensional real Abelian Banach algebra X with $\Omega(X) \neq \emptyset$ and satisfying: (i) if $x, y \in X$ is such that $|\tau(x)| \leq |\tau(y)|$, for each $\tau \in \Omega(X)$, then $||x|| \leq ||y||$, (ii) $\inf\{r(x) : x \in X, ||x|| = 1\} > 0$, does not have the fixed point property.

Recently, in 2018, P. Thongin and W. Fupinwong [11] proved the following result.

Theorem 1.9. [11] Let X be an infinite dimensional complex unital Abelian Banach algebra satisfying: (i) condition (A), (ii) if $x, y \in X$ is such that $|\tau(x)| \leq |\tau(y)|$, for each $\tau \in \Omega(X)$ then $||x|| \leq ||y||$, (iii) $\inf\{r(x) : x \in X, ||x|| = 1\} > 0$. Then there exists an element x_0 in X such that

$$\langle x_0 \rangle_{\mathbb{R}} = \left\{ \sum_{i=1}^k \alpha_i x_0^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\}$$

does not have the fixed point property.

Furthermore, as a consequence of the proof, for each element x_0 in X with infinite spectrum and $\sigma(x_0) \subset \mathbb{R}$, the Banach algebra $\langle x_0 \rangle_{\mathbb{R}}$ generated by x_0 does not have the fixed point property.

In this paper, we show that the unitality in the result proved in [11] can be omitted.

2. Preliminaries and Lemmas

Let \mathbb{F} be the field \mathbb{R} or \mathbb{C} . Let X be a Banach algebra over \mathbb{F} . The unitization \widetilde{X} of X is the Banach algebra $X \bigoplus \mathbb{F}$, where the multiplication on \widetilde{X} is defined by

$$(x,\lambda)(y,\mu) = (xy + \lambda y + \mu x, \lambda \mu),$$

and the norm on \widetilde{X} is defined by

$$||(x, \lambda)|| = ||x|| + |\lambda|.$$

It can be seen that \widetilde{X} is a unital Banach algebra over \mathbb{F} with the unit (0,1). Denote by $\Omega(X)$ the set of all characters on X.

A complex Banach algebra X is said to satisfy condition (A) if, for each $x \in X$, there exists an element $y \in X$ such that $\tau(y) = \overline{\tau(x)}$, for each $\tau \in \Omega(X)$.

Note that

$$\Omega(X) = \{ \widetilde{\tau} : \tau \in \Omega(X) \} \cup \{ \tau_{\infty} \}$$

where $\tilde{\tau}$ is defined from $\tau \in \Omega(X)$ by

$$\widetilde{\tau}(x,\lambda) = \tau(x) + \lambda,$$

and τ_{∞} is the canonical homomorphism defined by

$$\tau_{\infty}(x,\lambda) = \lambda$$

It can be seen that, if X satisfies condition (A), then so does the unitization X. Moreover, if X is Abelian, then \widetilde{X} is also Abelian.

Let X be an Abelian Banach algebra over \mathbb{F} . The Gelfand representation $\varphi : X \to C(\Omega(X))$ is defined by $x \mapsto \hat{x}$, where \hat{x} is defined by

$$\widehat{x}(\tau) = \tau(x),$$

for each $\tau \in \Omega(X)$.

The Jacobson radical J(X) of a Banach algebra X over \mathbb{F} is the intersection of all regular maximal left ideals of X. Note that if X is a unital complex Banach algebra and $x \in J(X)$ then the spectral radius r(x) of x is equal to zero. A Banach algebra X over \mathbb{F} is said to be semi-simple if $J(X) = \{0\}$.

The following lemmas are all very useful for proving our main result.

Lemma 2.1. Let X be a complex non-unital Banach algebra satisfying

 $\inf\{\|\widehat{x}\|_{\infty} : x \in X, \|x\| = 1\} > 0.$

Then:

$$\begin{split} &(i) \inf\{r(x): x \in X, \|x\| = 1\} > 0. \\ &(ii) \inf\{\|\widehat{(x,\lambda)}\|_{\infty}: (x,\lambda) \in \widetilde{X}, \|(x,\lambda)\| = 1\} > 0. \end{split}$$

Proof. Let X be a complex non-unital Banach algebra satisfying

$$\inf\{\|\widehat{x}\|_{\infty} : x \in X, \|x\| = 1\} > 0.$$

(i) We first note that

$$\{\tau(x): \tau \in \Omega(X)\} \subset \sigma(x),$$

for each $x \in X$, thus it suffices to prove that $\|\widehat{x}\|_{\infty} \leq r(x)$, for each $x \in X$ and then

$$0 < \inf\{\|\widehat{x}\|_{\infty} : x \in X, \|x\| = 1\} \le \inf\{r(x) : x \in X, \|x\| = 1\}.$$

(ii) Assume to the contrary that

$$\inf\{\|\widehat{(x,\lambda)}\|_{\infty}: (x,\lambda) \in \widetilde{X}, \|(x,\lambda)\| = 1\} = 0.$$

So there is a sequence $\{(x_n, \lambda_n)\}$ such that $\lim \|(\widehat{x_n, \lambda_n})\|_{\infty} = 0$ and $\|(x_n, \lambda_n)\| = 1$, for each $n \in \mathbb{N}$. Since

$$|\lambda_n| \le \max\left\{\sup_{\tau \in \Omega(X)} |\tau(x_n) + \lambda_n|, \ |\lambda_n|\right\} = \sup_{\omega \in \Omega(\widetilde{X})} |\omega(x_n, \lambda_n)| = \|\widehat{(x_n, \lambda_n)}\|_{\infty},$$

for each $n \in \mathbb{N}$, so

$$\lim |\lambda_n| \le \lim \|(x_n, \lambda_n)\|_{\infty} = 0.$$

We can conclude only that $\lim |\lambda_n| = 0$. Since $\|\widehat{x_n}\|_{\infty} \leq \|\widehat{(x_n, \lambda_n)}\|_{\infty} + |\lambda_n|$, for each $n \in \mathbb{N}$, it follows that

$$\lim \|\widehat{x_n}\|_{\infty} \le \lim \|\widehat{(x_n,\lambda_n)}\|_{\infty} + \lim |\lambda_n| = 0.$$

We may assume by passing through a subsequence that $\{|\lambda_n|\}$ is a decreasing sequence converging to zero and $|\lambda_n| \leq 1/2$, for each $n \in \mathbb{N}$. From

$$1 = ||(x_n, \lambda_n)|| = ||x_n|| + |\lambda_n|,$$

we have $||x_n|| \ge 1/2$, for each $n \in \mathbb{N}$. Then

$$\lim \left\| \left(\widehat{\frac{x_n}{\|x_n\|}} \right) \right\|_{\infty} \le \lim \left\| \left(\widehat{\frac{x_n}{1/2}} \right) \right\|_{\infty} = 2 \lim \|\widehat{x_n}\|_{\infty} = 0.$$

Hence $\inf\{\|\hat{x}\|_{\infty} : x \in X, \|x\| = 1\} = 0$. This leads to a contradiction.

Lemma 2.2. Let X be a complex non-unital Banach algebra satisfying

 $\inf\{r(x): x \in X, \|x\| = 1\} > 0.$

Then: (i) $\inf\{r(x,\lambda): (x,\lambda) \in \widetilde{X}, ||(x,\lambda)|| = 1\} > 0.$ (ii) X and \widetilde{X} are semi-simple.

Proof. Let X be a complex non-unital Banach algebra satisfying

 $\inf\{r(x): x \in X, \|x\| = 1\} > 0.$

(i) Suppose, on the contrary that

$$\inf\{r(x,\lambda): (x,\lambda) \in \widetilde{X}, \|(x,\lambda)\| = 1\} = 0.$$

There is, of course, a sequence $\{(x_n, \lambda_n)\}$ such that $\lim r(x_n, \lambda_n) = 0$ and $||(x_n, \lambda_n)|| = 1$, for each $n \in \mathbb{N}$. Since $\lambda_n = \tau_{\infty}(x_n, \lambda_n) \in \sigma(x_n, \lambda_n)$, for each $n \in \mathbb{N}$, so

$$\lim |\lambda_n| \le \lim r(x_n, \lambda_n) = 0$$

We see that $r(x_n, 0) \leq r(x_n, \lambda_n) + |\lambda_n|$, for each $n \in \mathbb{N}$ It follows that

 $\lim r(x_n, 0) \le \lim r(x_n, \lambda_n) + \lim |\lambda_n| = 0.$

Thus we may as well assume by passing through a subsequence that $\{|\lambda_n|\}$ is a decreasing sequence converging to zero and $|\lambda_n| \leq 1/2$, for each $n \in \mathbb{N}$. From

$$1 = ||(x_n, \lambda_n)|| = ||(x_n, 0)|| + |\lambda_n|,$$

we obtain $||(x_n, 0)|| \ge 1/2$, for each $n \in \mathbb{N}$ and thus

$$\lim r\left(\frac{(x_n,0)}{\|(x_n,0)\|}\right) \le \lim r\left(\frac{(x_n,0)}{1/2}\right) = 2\lim r(x_n,0) = 0.$$

We deduce that $\inf\{r(x) : x \in X, |x| = 1\} = 0$. This contradiction shows that $\inf\{r(x, \lambda) : (x, \lambda) \in \widetilde{X}, ||(x, \lambda)|| = 1\} > 0$.

(ii) From (i), it follows that

$$\inf\{r(x,\lambda): (x,\lambda) \in X, \|(x,\lambda)\| = 1\} > 0.$$

Thus, it suffices to prove that, for each $(x, \lambda) \in \widetilde{X}$, $r(x, \lambda) = 0$ implies $(x, \lambda) = (0, 0)$. We note that $r(x, \lambda) = 0$, for each $(x, \lambda) \in J(\widetilde{X})$ and then $J(\widetilde{X}) = \{0\}$. Therefore, we can deduce that \widetilde{X} is semi-simple.

Since every ideal in a semi-simple Banach algebra is also semi-simple, so X is semi-simple. This completes the proof.

The following lemma was proved in [12].

Lemma 2.3. [12] In any infinite dimensional semi-simple complex Banach algebra, there exists an element with an infinite spectrum.

Lemma 2.4. Let X be an infinite dimensional complex non-unital Banach algebra with condition (A) and satisfying

$$\inf\{r(x): x \in X, \|x\| = 1\} > 0.$$

Then there exists $x_0 \in X$ with infinite spectrum and $\omega(x_0, 0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$.

Proof. It follows from Lemma 2.2 that X is semi-simple. Applying Lemma 2.3, we see that there exists an element x in X which infinite spectrum. From condition (A), there exists $y \in X$ such that

$$\tau(y) = \overline{\tau(x)},$$

for each $\tau \in \Omega(X)$. Hence

$$\tau(xy) = \tau(x)\tau(y) = \tau(x)\tau(x) \in \mathbb{R}$$

Evidently, $\omega((x,0)(y,0)) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$.

The following lemma was proved in [11].

Lemma 2.5. [11] Let X be an infinite dimensional complex unital Banach algebra, and let x_0 be an element in X with infinite spectrum. Then $\{x_0^n : n \in \mathbb{N}\}$ is linearly independent.

Lemma 2.6. Let X be an infinite dimensional complex non-unital Banach algebra satisfying condition (A), and let $(x_0, 0)$ be an element in \widetilde{X} with infinite spectrum and $\omega(x_0, 0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$. Define

$$Z = \overline{\left\{\sum_{i=0}^{k} \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R}\right\}}.$$

Then Z is an infinite dimensional real unital Abelian Banach algebra with $\Omega(Z) \neq \emptyset$.

Proof. From Lemma 2.5, $\{x_0^n : n \in \mathbb{N}\}$ is linearly independent in X, so Z is infinite dimensional.

Let $\omega \in \Omega(X)$, and define $\tau : Z \to \mathbb{R}$ by

$$(x,\lambda) \mapsto \omega(x,\lambda).$$

 τ is real-valued since $\omega(x_0, 0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$. It can be seen that τ is a nonzero homomorphism on Z. So $\Omega(Z) \neq \emptyset$.

Lemma 2.7. Let X be an infinite dimensional complex non-unital Banach algebra satisfying condition (A), and let $(x_0, 0)$ be an element in \widetilde{X} with infinite spectrum and $\omega(x_0, 0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$. Define

$$Z = \left\{ \sum_{i=0}^{k} \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\}.$$

If X satisfies

$$\inf\{\|\widehat{x}\|_{\infty} : x \in X, \|x\| = 1\} > 0,$$

then Z is a real unital Abelian Banach algebra satisfying the following conditions: (i) The Gelfand representation φ from Z into $C_{\mathbb{R}}(\Omega(Z))$ is a bounded isomorphism. (ii) The inverse φ^{-1} is also a bounded isomorphism. *Proof.* (i) From Lemma 2.1, we have

$$\inf\{\|\widetilde{(x,\lambda)}\|_{\infty}: (x,\lambda) \in \widetilde{X}, \|(x,\lambda)\| = 1\} > 0,$$

it follows that $ker(\varphi) = \{0\}$. So φ is injective. We have $\varphi(Z)$ is a subalgebra of $C_{\mathbb{R}}(\Omega(Z))$. Next, we will now show that $\varphi(Z)$ is complete. We are now in a position to prove that $\{z_n\}$ is a Cauchy sequence. Suppose, on the contrary that $\{z_n\}$ is not Cauchy. Then, there exists, of course, $\varepsilon_0 > 0$ and subsequences $\{z'_n\}$ and $\{z''_n\}$ of $\{z_n\}$ such that

$$\|z_n'-z_n''\|\geq\varepsilon_0,$$

for each $n \in \mathbb{N}$. Letting $y_n = (z'_n - z''_n)/\varepsilon_0$. We have $||y_n|| \ge 1$, for each $n \in \mathbb{N}$. Since $\{\widehat{z_n}\}$ is Cauchy, it suffices to conclude that $\lim \widehat{y_n} = 0$. It follows that

$$0 < \inf\{\|\widehat{(x,\lambda)}\|_{\infty} : (x,\lambda) \in \widetilde{X}, \|(x,\lambda)\| = 1\}$$

$$\leq \inf_{n \in \mathbb{N}} r\left(\frac{y_n}{\|y_n\|}\right) = \inf_{n \in \mathbb{N}} \left\|\frac{\widehat{y_n}}{\|y_n\|}\right\|_{\infty} = 0,$$

which is a contradiction. So we conclude that $\{z_n\}$ is a Cauchy sequence. Then $\{z_n\}$ is a convergent sequence in Z, say $\lim z_n = z_0 \in Z$. Therefore,

$$\lim \|\widehat{z_n} - \widehat{z_0}\|_{\infty} = 0.$$

Indeed, for each $n \in \mathbb{N}$, $\|\widehat{z_n} - \widehat{z_0}\|_{\infty} = \|\varphi(z_n - z_0)\|_{\infty} \leq \|z_n - z_0\|$. So $\varphi(Z)$ is complete subalgebra of $C_{\mathbb{R}}(\Omega(Z))$ separating the points of $\Omega(Z)$, and annihilating no point of $\Omega(Z)$. It follows from the Stone-Weierstrass theorem that φ is surjective.

(ii) is a consequence of the open mapping theorem.

Lemma 2.8. [11] Let X be a unital Abelian Banach algebra. If there exists an element x in X with infinite spectrum $\sigma(x)$ and $\sigma(x) \subset \mathbb{R}$, then there exists $y \in X$ satisfying the following conditions:

(i) $1 \in \sigma(y) \subset [0,1]$.

(ii) There exists a strictly decreasing sequence in $\sigma(y)$.

Lemma 2.9. Let X be an infinite dimensional complex non-unital Banach algebra satisfying condition (A) and

$$\inf\{\|\widehat{x}\|_{\infty} : x \in X, \|x\| = 1\} > 0,$$

and let $(x_0, 0)$ be an element in \widetilde{X} with infinite spectrum and $\omega(x_0, 0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$. Define

$$Z = \left\{ \sum_{i=0}^{k} \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\}.$$

Assume that there exists a bounded sequence $\{(y_n, 0)\}$ in Z which contains no convergent subsequences and such that $\{\omega(y_n, 0) : \omega \in \Omega(Z)\}$ is finite for each $n \in \mathbb{N}$. Then there exists an element $(z_0, 0) \in Z$ such that $\{\omega(z_0, 0) : \omega \in \Omega(Z)\}$ is equal to $\{0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...\}$ or $\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}$.

Proof. It follows form Lemma 2.6 and Lemma 2.7 that Z is an infinite dimensional real unital Abelian Banach algebra with $\Omega(Z) \neq \emptyset$ and homeomorphic to $C_{\mathbb{R}}\Omega(Z)$. Suppose

that there exists a bounded sequence $\{(y_n, 0)\}$ in Z which contains no convergent subsequences and such that $\{\omega(y_n, 0) : \omega \in \Omega(Z)\}$ is finite, for each $n \in \mathbb{N}$. From the proof of Lemma 2.10 (ii) in [?], we obtain that

$$\Omega(Z) = (\bigcup_{n \in \mathbb{N}} G_n) \cup F,$$

where F is a closed set in $\Omega(Z)$, G_n is closed and open, for each $n \in \mathbb{N}$, and $\{F, G_1, G_2, ...\}$ is a partition of $\Omega(Z)$. We first note that the restriction $\tau_{\infty}|_Z$ of the canonical homomorphism $\tau_{\infty} \in \Omega(\widetilde{X})$ on Z is a character on Z. There are two cases to be considered. If $\tau_{\infty}|_Z$ is in F, define $\psi : \Omega(Z) \to \mathbb{R}$ by

$$\psi(\tau) = \begin{cases} 1, & \text{if } \tau \in G_1, \\ \frac{1}{n}, & \text{if } \tau \in G_n, n \ge 2, \\ 0, & \text{if } \tau \in F. \end{cases}$$

If $\tau_{\infty}|_Z$ is in G_{n_0} , for some $n_0 \in \mathbb{N}$, we may assume without loss of generality that $n_0 = 1$, define $\psi : \Omega(Z) \to \mathbb{R}$ by

$$\psi(\tau) = \begin{cases} 0, & \text{if } \tau \in G_1, \\ \frac{n-1}{n}, & \text{if } \tau \in G_n, n \ge 2, \\ 1, & \text{if } \tau \in F. \end{cases}$$

For each case, the inverse image of each closed set in $\psi(\Omega(Z))$ is closed, so $\psi \in C(\Omega(Z))$. Let $\varphi : Z \to C(\Omega(Z))$ be the Gelfand representation. Therefore, $\varphi^{-1}(\psi)$ is an element in Z, say (z_0, λ) , such that $\{\omega(z_0, \lambda) : \omega \in \Omega(\widetilde{X})\}$ is equal to $\{0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...\}$ or $\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}$. Moreover, $\lambda = 0$ since $\tau_{\infty}|_{Z}(z_0, \lambda) = \psi(\tau_{\infty}|_{Z}) = 0$.

Lemma 2.10. Let X be an infinite dimensional complex non-unital Banach algebra satisfying (A) and

$$\inf\{\|\widehat{x}\|_{\infty} : x \in X, \|x\| = 1\} > 0,$$

and let $(x_0,0)$ be an element in \widetilde{X} with infinite spectrum and $\omega(x_0,0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$. Define

$$Z = \overline{\left\{\sum_{i=0}^{k} \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R}\right\}}.$$

Then there exists a sequence $\{(z_n, 0)\}$ in Z such that $\{\tau(z_n, 0) : \tau \in \Omega(Z)\} \subset [0, 1]$, for each $n \in \mathbb{N}$, and $\{(\widehat{z_n, 0})^{-1}\{1\}\}$ is a sequence of nonempty pairwise disjoint subsets of $\Omega(\widetilde{Z})$.

Proof. From Lemma 2.7 and the proof of Lemma 2.10 (iii) in [5], there exists $(z_1, \lambda_1) \in Z$ such that $\{\omega(z_1, \lambda_1) : \omega \in \Omega(Z)\}$ is infinite. So $\sigma(z_1, \lambda_1)$ is infinite. Using Lemma 2.8, we may assume without generality that (z_1, λ_1) satisfies

$$1 \in \sigma(z_1, \lambda_1) \subset [0, 1]$$

and there exists a strictly decreasing sequence of real number in $\sigma(z_1, \lambda_1)$, say $\{a_n\}$. Moreover, we may as well assume that $a_1 < 1$.

Define a continuous function $g_1: [0,1] \rightarrow [0,1]$ by

$$g_1(t) = \begin{cases} \frac{t}{a_1}, & \text{if } t \in [0, a_1], \\ 1 + \frac{(g_1(a_2) - 1)(t - a_1)}{2(1 - a_1)}, & \text{if } t \in [a_1, 1]. \end{cases}$$

So g_1 is joining the points (0,0) and $(a_1, 1)$, and $g_1(1) \in (g_1(a_2), 1)$.

Let
$$(z_2, \lambda_2) = g_1 \circ (z_1, \lambda_1)$$
, and define a continuous function $g_2 : [0, 1] \to [0, 1]$ by

$$g_2(t) = \begin{cases} \frac{t}{g_1(a_2)}, & \text{if } t \in [0, g_1(a_2)], \\ 1 + \frac{(g_2(g_1(a_3)) - 1)(t - g_1(a_2))}{2(1 - g_1(a_2))}, & \text{if } t \in [g_1(a_2), 1]. \end{cases}$$

So g_2 is joining the point (0,0) and $(g_1(a_2),1)$ and $g_2(1) \in (g_2(g_1(a_3)),1)$.

Let $(\widehat{z_3, \lambda_3}) = g_2 \circ (\widehat{z_2, \lambda_2})$. Continuing in this manner, we get a sequence of points $\{(z_n, \lambda_n)\}$ in Z with $1 \in \{\omega(z_n, \lambda_n) : \omega \in \Omega(Z)\} \subset [0, 1]$, for each $n \in \mathbb{N}$, and $\{(\widehat{z_n, \lambda_n})^{-1}\{1\}\}$ is a sequence of nonempty pairwise disjoint subsets of $\Omega(Z)$.

Let $\{(z_{n_k}, \lambda_{n_k})\}$ be a subsequence of $\{(z_n, \lambda_n)\}$ such that $\lambda_{n_k} \neq 1$, for each $n_k \in \mathbb{N}$. It can be seen that $\{(z_{n_k}, 0)\}$ is the sequence in Z such that

$$\{\omega(z_{n_k}, 0) : \tau \in \Omega(Z)\} \subset [0, 1],$$

for each $n_k \in \mathbb{N}$, and $\{(\widehat{z_{n_k}, 0})^{-1}\{1\}\}$ is a sequence of nonempty pairwise disjoint subsets of $\Omega(Z)$. Indeed, $\lambda_n = 1$ and $\{(\widehat{z_n, \lambda_n})^{-1}\{1\}\}$ is singleton implies $\{(\widehat{z_n, \lambda_n})^{-1}\{1\}\} = \emptyset$.

Lemma 2.11. Let X be an infinite dimensional complex non-unital Abelian Banach algebra, let

$$Z = \left\{ \sum_{i=0}^{k} \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\},\$$

and let $(x,0) \in Z \cap X$ with $(\widehat{x,0})^{-1}\{1\} \neq \emptyset$, and $0 \leq \omega(x,0) \leq 1$, for each $\omega \in \Omega(Z)$. Define

 $E = \{(z,0) \in Z : 0 \le \omega(z,0) \le 1, \text{ for each } \omega \in \Omega(Z), \text{ and } \omega(z,0) = 1 \text{ if } \omega \in A\},\$

where $A = (\widehat{x, 0})^{-1} \{1\}$, and define $T : E \to E$ by

$$(z,0)\mapsto(xz,0).$$

Assume that X satisfies the following condition:

If $x, y \in X$ is such that $|\tau(x)| \le |\tau(y)|$, for each $\tau \in \Omega(X)$, then $||x|| \le ||y||$.

Then E is a nonempty bounded closed convex subset of $Z \cap X$ and $T : E \to E$ is a nonexpansive mapping.

Proof. It is easy to see that E is closed and convex. We can deduce that E is nonempty since $(x, 0) \in E$.

Let $(z, 0) \in E$. It follows that

$$|\omega(z,0)| \le 1 = |\omega(0,1)|,$$

for each $\omega \in \Omega(Z)$. Therefore,

$$||(z,0)|| \le ||(0,1)|| = 1$$

Thus, it suffices to conclude that E is bounded.

Let $\omega \in \Omega(X)$ and let $(z, 0), (z', 0) \in E$. We have

$$\begin{aligned} |\omega(T(z,0) - T(z',0))| &= |\omega((x,0)(z,0) - (x,0)(z',0))|, \\ &= |\omega(x,0)||\omega((z,0) - (z',0))|, \\ &\le |\omega((z,0) - (z',0))|. \end{aligned}$$

Then

$$||T(z,0) - T(z',0)|| \le ||(z,0) - (z',0)||$$

So T is nonexpansive.

3. Main Result

Now, we prove the main result in this paper.

Theorem 3.1. Let X be an infinite dimensional complex non-unital Abelian Banach algebra satisfying condition (A) and the following conditions: (i) If $x, y \in X$ is such that $|\tau(x)| \leq |\tau(y)|$, for each $\tau \in \Omega(X)$, then $||x|| \leq ||y||$,

(ii) $\inf\{\|\hat{x}\|_{\infty} : x \in X, \|x\| = 1\} > 0$. Then there exists an element $(x_0, 0)$ in X such that

$$\langle x_0, 0 \rangle_{\mathbb{R}} = \left\{ \sum_{i=1}^k \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\}$$

does not have the fixed point property.

Proof. Let X be an infinite dimensional complex non-unital Abelian Banach algebra satisfying (i), (ii), and condition (A). It follows from Lemma 2.1 and 2.4 that there is an element $(x_0, 0)$ in \widetilde{X} with infinite spectrum and $\omega(x_0, 0) \in \mathbb{R}$, for each $\omega \in \Omega(\widetilde{X})$. Let

$$Z = \left\{ \sum_{i=0}^{k} \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{R} \right\}.$$

Applying Lemma 2.6, Z is an infinite dimensional real unital Abelian Banach algebra with $\Omega(Z) \neq \emptyset$. From Lemma 2.10, it follows that there exists a sequence $\{(z_n, 0)\}$ in Z such that $\{\omega(z_n, 0) : \omega \in \Omega(Z)\} \subset [0, 1]$, for each $n \in \mathbb{N}$, and $(\widehat{z_1, 0})^{-1}\{1\}, (\widehat{z_2, 0})^{-1}\{1\}, (\widehat{z_3, 0})^{-1}\{1\}, \ldots$ are pairwise disjoint.

Write $A_n = (\tilde{z_n}, 0)^{-1} \{1\}$, define

 $E_n = \{(z,0) \in Z : 0 \le \omega(z,0) \le 1, \text{ for each } \omega \in \Omega(Z), \text{ and } \omega(z,0) = 1 \text{ if } \omega \in A_n\},\$ and define $T_n : E_n \to E_n$ by

$$(z,0)\mapsto(z_nz,0).$$

Using Lemma 2.11, E_n is a bounded closed convex subset in Z and T_n is nonexpansive, for each $n \in \mathbb{N}$.

Suppose, on the contrary that $\langle x_0, 0 \rangle_{\mathbb{R}}$ has fixed point property. For each $n \in \mathbb{N}$, since E_n is also a bounded closed convex subset in X, so T_n has a fixed point in E_n , say $(y_n, 0)$. Since $(y_n, 0)$ is a fixed point of T_n , so $(y_n, 0) = (z_n y_n, 0)$. Then $(y_n, 0) = (z_n, 0)(y_n, 0)$, and then

$$\widehat{(y_n, 0)}(\omega) = \begin{cases} 0, & \text{if } \omega \text{ is not in } A_n, \\ 1, & \text{if } \omega \text{ is in } A_n, \end{cases}$$

for each $n \in \mathbb{N}$. Since A_1, A_2, A_3, \ldots are pairwise disjoint, so $\|(\widehat{y_m, 0}) - (\widehat{y_n, 0})\| = 1$, if $m \neq n$. Thus $\{(\widehat{y_n, 0})\}$ has no convergent subsequences. Since Z and $C_{\mathbb{R}}(\Omega(Z))$ are homeomorphic, so $\{(y_n, 0)\}$ has no convergent subsequences. From Lemma 2.9, there is an element $(z_0, 0)$ in Z such that $\{\omega(z_0, 0) : \omega \in \Omega(Z)\}$ is equal to $\{0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\}$ or $\{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$.

Write $A_0 = (\widehat{z_0, 0})^{-1} \{1\}$, define

$$E_0 = \{(z,0) \in Z : 0 \le \omega(z,0) \le 1, \text{ for each } \omega \in \Omega(Z), \text{ and } \omega(z,0) = 1 \text{ if } \omega \in A_0\},\$$

and define $T_0: E_0 \to E_0$ by

$$(z,0)\mapsto(z_0z,0).$$

It follows from Lemma 2.11 that T_0 is a nonexpansive mapping on a bounded closed convex subset E_0 in X. So T_0 has a fixed point in E_0 , say $(y_0, 0)$. There are two cases to be considered.

Case(1) {
$$\omega(z_0, 0) : \omega \in \Omega(Z)$$
} = { $0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...$ } :

Hence $\widehat{(y_0,0)} = \widehat{(z_0,0)}\widehat{(y_0,0)}$. Then $\widehat{(y_0,0)}(\omega) = \begin{cases} 0, & \text{if } \omega \text{ is not in } A_0, \\ 1, & \text{if } \omega \text{ is in } A_0. \end{cases}$

So

$$A_0 = (\widehat{y_0, 0})^{-1} \{1\} = (\widehat{z_0, 0})^{-1} \{1\}$$

and

$$\Omega(Z) \setminus A_0 = (\widehat{y_0, 0})^{-1} \{0\} = \bigcup_{n=0}^{\infty} \left((\widehat{z_0, 0})^{-1} \{\frac{n}{n+1}\} \right).$$

It follows from

$$\{\omega(z_0,0):\omega\in\Omega(Z)\}=\{0,1,\frac{1}{2},\frac{2}{3},\frac{3}{4},\ldots\}$$

that $\left\{ (\widehat{z_0, 0})^{-1} \{ \frac{n}{n+1} \} : n \in \mathbb{N} \right\} \bigcup \left\{ (\widehat{z_0, 0})^{-1} \{ 0 \} \right\}$ is a pairwise disjoint open covering of the compact set $\Omega(Z) \setminus A_0$, which is a contradiction.

Case(2) $\{\omega(z_0, 0) : \omega \in \Omega(Z)\} = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}$:

$$E = \{(z,1) \in Z : 0 \le \omega(z,1) \le 1, \text{ for each } \omega \in \Omega(Z), \text{ and } \omega(z,1) = 1 \text{ if } \omega \in A\},\$$

where $A = (\widehat{-z_0,1})^{-1}\{1\}.$

It can be seen that E is a bounded closed convex subset of Z.

Define $T: E \to E$ by

$$(z,1) \mapsto (-z_0,1)(z,1),$$

for each $(z, 1) \in E$. We have

$$\{\omega(-z_0,1): \omega \in \Omega(Z)\} = \{0,1,\frac{1}{2},\frac{2}{3},\frac{3}{4},\ldots\}.$$

Define $S: Z \to Z$ by

$$(z,\lambda) \mapsto (-z,1-\lambda).$$

It follows from (i) that $STS : S(E) \to S(E)$ is a nonexpansive mapping on a bounded closed convex subset S(E) of $\langle x_0, 0 \rangle_{\mathbb{R}}$. So then T = S(STS)S is a nonexpansive mapping on E.

STS has a fixed point, since $\langle x_0, 0 \rangle_{\mathbb{R}}$ has the fixed point property. It follows that T has a fixed point, say $(y_0, 1)$. Then

$$\widehat{(y_0,1)}(\omega) = \begin{cases} 0, & \text{if } \omega \text{ is not in } A, \\ 1, & \text{if } \omega \text{ is in } A, \end{cases}$$

and

$$(\widehat{y_0,1})^{-1}\{1\} = (\widehat{-z_0,1})^{-1}\{1\} = A$$

So

$$\Omega(Z) \setminus A = (\widehat{y_0, \lambda_0})^{-1} \{0\} = \bigcup_{n=0}^{\infty} \left((\widehat{-z_0, 1})^{-1} \{\frac{n}{n+1}\} \right).$$

It follows from

$$\{\omega(-z_0,1): \omega \in \Omega(Z)\} = \{0, 1, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots\}$$

that $\left\{ (\widehat{-z_0,1})^{-1} \{ \frac{n}{n+1} \} : n \in \mathbb{N} \right\} \bigcup \left\{ (\widehat{-z_0,1})^{-1} \{ 0 \} \right\}$ is a pairwise disjoint open covering of the compact set $\Omega(Z) \setminus A$, which is a contradiction. So we can dedude that $\langle x_0, 0 \rangle_{\mathbb{R}}$ does not have the fixed point property.

From the proof of the above theorem, we can show the following corollary.

Corollary 3.2. Let X be an infinite dimensional complex non-unital Abelian Banach algebra satisfying condition (A) and the following conditions:

(i) If $x, y \in X$ is such that $|\tau(x)| \le |\tau(y)|$, for each $\tau \in \Omega(X)$, then $||x|| \le ||y||$, (ii) $\inf\{r(x) : x \in X, ||x|| = 1\} > 0$.

If $(x_0, 0)$ is an element in X with infinite spectrum and $\sigma(x_0, 0) \subset \mathbb{R}$, then the Banach algebra

$$\langle x_0, 0 \rangle = \left\{ \sum_{i=1}^k \alpha_i(x_0, 0)^i : k \in \mathbb{N}, \alpha_i \in \mathbb{C} \right\}$$

generated by $(x_0, 0)$ does not have the fixed point property.

Acknowledgements

We would like to thank the referees for their comments and suggestions on the manuscript. This work was supported by Chiang Mai University.

References

- [1] D.E. Alspach, A fixed point free nonexpansive map, Fixed Point Theory and Applications, Proceedings of the American Mathematical Society 82 (3) (1981) 423–424.
- [2] J. Elton, P.K. Lin, E. Odell, S. Szarek, Remarks on the fixed point problem for nonexpansive maps, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemporary Mathematics, American Mathematical Society, Providence, RI 18 (1983) 87–120.
- [3] A.T. Lau, P.F. Mah, A. Ulger, Fixed point property and normal structure for Banach spaces associted to locally compact groups, Proceedings of the American Mathematical Society 125 (7) (1997) 2021–2027.
- [4] T.D. Benavides, M.A. Japon Pineda, Fixed points of nonexpansive mappings in spaces of continuous functions, Proceedings of the American Mathematical Society 133 (10) (2005) 3037–3046.

- [5] W. Fupinwong, S. Dhompongsa, The fixed point property of unital Abelian Banach algebras, Fixed Point Theory and Applications (2010) Article ID 362829.
- [6] D. Alimohammadi, S. Moradi, On the fixed point property of unital uniformly closed subalgebras of C(X), Fixed Point Theory and Applications (2010) Article ID 268450.
- [7] S. Dhompongsa, W. Fupinwong, W. Lawton, Fixed point properties of C*-algebra, Journal of Mathematical Analysis and Applications 374 (1) (2011) 22–28.
- [8] W. Fupinwong, Nonexpansive mappings on Abelian Banach algebras and their fixed points, Fixed Point Theory and Applications (2012) Article no. 150.
- [9] D. Alimohammadi, Nonexpansive mappings on complex C*-algebras and their fixed points, International Journal of Nonlinear Analysis and Applications 7 (2016) 21–29.
- [10] J. Daengsaen, W. Fupinwong, Fixed points of nonexpansive mappings on real Abelian Banach algebras, Proceedings of the 22nd Annual Meeting in Mathematics (AMM) (2017), Thailand, 6 pages.
- [11] P. Thongin, W. Fupinwong, The fixed point property of a Banach algebra generated by an element with infinite spectrum, Journal of Function Spaces (2018) Article ID 9045790.
- [12] I. Kaplansky, Ring isomorphisms of Banach algebras, Canadian Journal of Mathematics 6 (1954) 374–381.