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Abstract A Banach space X is said to have the fixed point property if for each nonexpansive mapping

T : E → E on a bounded closed convex subset E of X has a fixed point. Assume that X is an infinite
dimensional non-unital Abelian Banach algebra satisfying: (i) condition (A) defined in [W. Fupinwong,

S. Dhompongsa, The fixed point property of unital Abelian Banach algebras, Fixed Point Theory and
Applications (2020)], (ii) ‖x‖ ≤ ‖y‖ for each x, y ∈ X such that |τ(x)| ≤ |τ(y)| for each τ ∈ Ω(X), (iii)

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. We show that there is an element (x0, 0) in X such that

〈x0, 0〉R =

{
k∑

i=1

αi(x0, 0)i : k ∈ N, αi ∈ R

}
does not have the fixed point property. This result is a generalization of Theorem 21 in [P. Thongin, W.

Fupinwong, The fixed point property of a Banach algebra generated by an element with infinite spectrum,

Journal of Function Spaces (2018)]. Moreover, as a consequence of the proof, for each element (x0, 0) in X

with infinite spectrum and σ(x0, 0) ⊂ R, the Banach algebra 〈x0, 0〉 =
{∑k

i=1 αi(x0, 0)i : k ∈ N, αi ∈ C
}

generated by (x0, 0) does not have the fixed point property.
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1. Introduction

A Banach space X is said to have the fixed point property if for each nonexpansive
mapping T : E → E on a bounded closed convex subset E of X has a fixed point, to have
the weak fixed point property if for each nonexpansive mapping T : E → E on a weakly
compact convex subset E of X has a fixed point.
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In 1981, D.E. Alspach [1] proved that there exists an isometry T : E → E on a
weakly compact convex subset E of the Lebesgue space L1[0, 1] without a fixed point.
Consequently, L1[0, 1] does not have the weak fixed point property.

In 1983, J. Elton, P.K. Lin, E. Odell, and S. Szarek [2] showed that C(α,R) has the
weak fixed point property, if α is a compact ordinal with α < ωω.

In 1997, A.T. Lau, P.F. Mah, and A. Ulger [3] proved the following theorem.

Theorem 1.1. Let X be a locally compact Haudorff space. If C0(X) has the weak fixed
point propert, then X is dispersed.

Moreover, by applying Theorem 1.1, they proved the following results.

Corollary 1.2. [3] Let G be a locally compact group. Then the C∗-algebra C0(G) has the
weak fixed point property if and only if G is discrete.

Corollary 1.3. [3] A von Neumann algebra M has the weak fixed point property if and
only if M is finite dimensional.

In 2005, T.D. Benavides and M.A. Japon Pineda [4] studied the concept of ω-almost
weak orthogonality in the Banach lattice C(K) and proved the following results.

Theorem 1.4. [4] Let X be a ω-almost weakly orthogonal closed subspace of C(K), where
K is a metrizable compact space. Then X has the weak fixed point property.

Theorem 1.5. [4] Let K be a metrizable compact space. Then the following conditions
are all equivalent:
1) C(K) is ω-almost weakly orthogonal.
2) C(K) is ω-weakly orthogonal.
3) K(ω) = ∅.

Corollary 1.6. [4] Let K be a compact set with K(ω) = ∅. Then C(K) has the weak fixed
point property.

In 2010, W. Fupinwong and S. Dhompongsa [5] showed that each infinite dimensional
real unital Abelian Banach algebraX with Ω(X) 6= ∅ satisfying: (i) if x, y ∈ X is such that
|τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X) then ‖x‖ ≤ ‖y‖, (ii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0,
does not have the fixed point property. Moreover, they proved the following theorem.

Theorem 1.7. [5] Let X be an infinite dimensional complex unital Abelian Banach al-
gebra satisfying condition (A) and each of the following:
(i) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖.
(ii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.
Then X does not have the fixed point property.

In 2010, D. Alimohammadi and S. Moradi [6] used the above result to obtain sufficient
conditions to show that some unital unifromly closed subalgebras of C(X), where X is a
compact space, do not have the fixed point property.

In 2011, S. Dhompongsa, W. Fupinwong, and W. Lawton [7] showed that a C∗-algebra
has the fixed point property if and only if it is finite dimensional.

In 2012, W. Fupinwong [8] showed that the unitality in the results proved in [5] can
be omitted.

In 2016, by using Urysohn’s lemma and Schauder-Tychonoff fixed point theorem, D.
Alimohammadi [9] proved the following result.
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Theorem 1.8. [9] Let Ω be a locally compact Hausdorff space. Then the following state-
ments are equivalent:
(i) Ω is infinite set.
(ii) C0(Ω) is infinite dimensional.
(iii) C0(Ω) does not have the fixed point property.

In 2017, J. Daengsaen and W. Fupinwong [10] proved that each infinite dimensional
real Abelian Banach algebra X with Ω(X) 6= ∅ and satisfying: (i) if x, y ∈ X is such that
|τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖, (ii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0,
does not have the fixed point property.

Recently, in 2018, P. Thongin and W. Fupinwong [11] proved the following result.

Theorem 1.9. [11] Let X be an infinite dimensional complex unital Abelian Banach
algebra satisfying: (i) condition (A), (ii) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each
τ ∈ Ω(X) then ‖x‖ ≤ ‖y‖, (iii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0. Then there exists an
element x0 in X such that

〈x0〉R =

{
k∑
i=1

αixi0 : k ∈ N, αi ∈ R

}
does not have the fixed point property.

Furthermore, as a consequence of the proof, for each element x0 in X with infinite
spectrum and σ(x0) ⊂ R, the Banach algebra 〈x0〉R generated by x0 does not have the
fixed point property.

In this paper, we show that the unitality in the result proved in [11] can be omitted.

2. Preliminaries and Lemmas

Let F be the field R or C. Let X be a Banach algebra over F. The unitization X̃ of X

is the Banach algebra X
⊕

F, where the multiplication on X̃ is defined by

(x, λ)(y, µ) = (xy + λy + µx, λµ),

and the norm on X̃ is defined by

‖(x, λ)‖ = ‖x‖+ |λ|.

It can be seen that X̃ is a unital Banach algebra over F with the unit (0, 1). Denote
by Ω(X) the set of all characters on X.

A complex Banach algebra X is said to satisfy condition (A) if, for each x ∈ X, there

exists an element y ∈ X such that τ(y) = τ(x), for each τ ∈ Ω(X).
Note that

Ω(X̃) = {τ̃ : τ ∈ Ω(X)} ∪ {τ∞},
where τ̃ is defined from τ ∈ Ω(X) by

τ̃(x, λ) = τ(x) + λ,

and τ∞ is the canonical homomorphism defined by

τ∞(x, λ) = λ.
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It can be seen that, if X satisfies condition (A), then so does the unitization X̃.

Moreover, if X is Abelian, then X̃ is also Abelian.
Let X be an Abelian Banach algebra over F. The Gelfand representation ϕ : X →

C(Ω(X)) is defined by x 7→ x̂, where x̂ is defined by

x̂(τ) = τ(x),

for each τ ∈ Ω(X).
The Jacobson radical J(X) of a Banach algebra X over F is the intersection of all

regular maximal left ideals of X. Note that if X is a unital complex Banach algebra and
x ∈ J(X) then the spectral radius r(x) of x is equal to zero. A Banach algebra X over F
is said to be semi-simple if J(X) = {0}.

The following lemmas are all very useful for proving our main result.

Lemma 2.1. Let X be a complex non-unital Banach algebra satisfying

inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} > 0.

Then:
(i) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.

(ii) inf{‖(̂x, λ)‖∞ : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1} > 0.

Proof. Let X be a complex non-unital Banach algebra satisfying

inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} > 0.

(i) We first note that

{τ(x) : τ ∈ Ω(X)} ⊂ σ(x),

for each x ∈ X, thus it suffices to prove that ‖x̂‖∞ ≤ r(x), for each x ∈ X and then

0 < inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} ≤ inf{r(x) : x ∈ X, ‖x‖ = 1}.

(ii) Assume to the contrary that

inf{‖(̂x, λ)‖∞ : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1} = 0.

So there is a sequence {(xn, λn)} such that lim ‖ ̂(xn, λn)‖∞ = 0 and ‖(xn, λn)‖ = 1, for
each n ∈ N. Since

|λn| ≤ max

{
sup

τ∈Ω(X)

|τ(xn) + λn|, |λn|

}
= sup
ω∈Ω(X̃)

|ω(xn, λn)| = ‖ ̂(xn, λn)‖∞,

for each n ∈ N, so

lim |λn| ≤ lim ‖ ̂(xn, λn)‖∞ = 0.

We can conclude only that lim |λn| = 0. Since ‖x̂n‖∞ ≤ ‖ ̂(xn, λn)‖∞ + |λn|, for each
n ∈ N, it follows that

lim ‖x̂n‖∞ ≤ lim ‖ ̂(xn, λn)‖∞ + lim |λn| = 0.

We may assume by passing through a subsequence that {|λn|} is a decreasing sequence
converging to zero and |λn| ≤ 1/2, for each n ∈ N. From

1 = ‖(xn, λn)‖ = ‖xn‖+ |λn|,
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we have ‖xn‖ ≥ 1/2, for each n ∈ N. Then

lim

∥∥∥∥∥ ̂( xn
‖xn‖

)∥∥∥∥∥
∞

≤ lim

∥∥∥∥∥
(̂
xn
1/2

)∥∥∥∥∥
∞

= 2 lim ‖x̂n‖∞ = 0.

Hence inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} = 0. This leads to a contradiction.

Lemma 2.2. Let X be a complex non-unital Banach algebra satisfying

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.

Then:
(i) inf{r(x, λ) : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1} > 0.

(ii) X and X̃ are semi-simple.

Proof. Let X be a complex non-unital Banach algebra satisfying

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.

(i) Suppose, on the contrary that

inf{r(x, λ) : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1} = 0.

There is, of course, a sequence {(xn, λn)} such that lim r(xn, λn) = 0 and ‖(xn, λn)‖ = 1,
for each n ∈ N. Since λn = τ∞(xn, λn) ∈ σ(xn, λn), for each n ∈ N, so

lim |λn| ≤ lim r(xn, λn) = 0.

We see that r(xn, 0) ≤ r(xn, λn) + |λn|, for each n ∈ N It follows that

lim r(xn, 0) ≤ lim r(xn, λn) + lim |λn| = 0.

Thus we may as well assume by passing through a subsequence that {|λn|} is a decreasing
sequence converging to zero and |λn| ≤ 1/2, for each n ∈ N. From

1 = ‖(xn, λn)‖ = ‖(xn, 0)‖+ |λn|,
we obtain ‖(xn, 0)‖ ≥ 1/2, for each n ∈ N and thus

lim r

(
(xn, 0)

‖(xn, 0)‖

)
≤ lim r

(
(xn, 0)

1/2

)
= 2 lim r(xn, 0) = 0.

We deduce that inf{r(x) : x ∈ X, |x| = 1} = 0. This contradiction shows that inf{r(x, λ) :

(x, λ) ∈ X̃, ‖(x, λ)‖ = 1} > 0.
(ii) From (i), it follows that

inf{r(x, λ) : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1} > 0.

Thus, it suffices to prove that, for each (x, λ) ∈ X̃, r(x, λ) = 0 implies (x, λ) = (0, 0). We

note that r(x, λ) = 0, for each (x, λ) ∈ J(X̃) and then J(X̃) = {0}. Therefore, we can

deduce that X̃ is semi-simple.
Since every ideal in a semi-simple Banach algebra is also semi-simple, so X is semi-

simple. This completes the proof.

The following lemma was proved in [12].

Lemma 2.3. [12] In any infinite dimensional semi-simple complex Banach algebra, there
exists an element with an infinite spectrum.
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Lemma 2.4. Let X be an infinite dimensional complex non-unital Banach algebra with
condition (A) and satisfying

inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.

Then there exists x0 ∈ X with infinite spectrum and ω(x0, 0) ∈ R, for each ω ∈ Ω(X̃).

Proof. It follows from Lemma 2.2 that X is semi-simple. Applying Lemma 2.3, we see
that there exists an element x in X which infinite spectrum. From condition (A), there
exists y ∈ X such that

τ(y) = τ(x),

for each τ ∈ Ω(X). Hence

τ(xy) = τ(x)τ(y) = τ(x)τ(x) ∈ R.

Evidently, ω ((x, 0)(y, 0)) ∈ R, for each ω ∈ Ω(X̃).

The following lemma was proved in [11].

Lemma 2.5. [11] Let X be an infinite dimensional complex unital Banach algebra, and let
x0 be an element in X with infinite spectrum. Then {xn0 : n ∈ N} is linearly independent.

Lemma 2.6. Let X be an infinite dimensional complex non-unital Banach algebra sat-

isfying condition (A), and let (x0, 0) be an element in X̃ with infinite spectrum and

ω(x0, 0) ∈ R, for each ω ∈ Ω(X̃). Define

Z =

{
k∑
i=0

αi(x0, 0)i : k ∈ N, αi ∈ R

}
.

Then Z is an infinite dimensional real unital Abelian Banach algebra with Ω(Z) 6= ∅.

Proof. From Lemma 2.5, {xn0 : n ∈ N} is linearly independent in X, so Z is infinite
dimensional.

Let ω ∈ Ω(X̃), and define τ : Z → R by

(x, λ) 7→ ω(x, λ).

τ is real-valued since ω(x0, 0) ∈ R, for each ω ∈ Ω(X̃). It can be seen that τ is a nonzero
homomorphism on Z. So Ω(Z) 6= ∅.

Lemma 2.7. Let X be an infinite dimensional complex non-unital Banach algebra sat-

isfying condition (A), and let (x0, 0) be an element in X̃ with infinite spectrum and

ω(x0, 0) ∈ R, for each ω ∈ Ω(X̃). Define

Z =

{
k∑
i=0

αi(x0, 0)i : k ∈ N, αi ∈ R

}
.

If X satisfies
inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} > 0,

then Z is a real unital Abelian Banach algebra satisfying the following conditions:
(i) The Gelfand representation ϕ from Z into CR(Ω(Z)) is a bounded isomorphism.
(ii) The inverse ϕ−1 is also a bounded isomorphism.
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Proof. (i) From Lemma 2.1, we have

inf{‖(̂x, λ)‖∞ : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1} > 0,

it follows that ker(ϕ) = {0}. So ϕ is injective. We have ϕ(Z) is a subalgebra of CR(Ω(Z)).
Next, we will now show that ϕ(Z) is complete. We are now in a position to prove that
{zn} is a Cauchy sequence. Suppose, on the contrary that {zn} is not Cauchy. Then,
there exists, of course, ε0 > 0 and subsequences {z′n} and {z′′n} of {zn} such that

‖z′n − z′′n‖ ≥ ε0,

for each n ∈ N. Letting yn = (z′n − z′′n)/ε0. We have ‖yn‖ ≥ 1, for each n ∈ N. Since {ẑn}
is Cauchy, it suffices to conclude that lim ŷn = 0. It follows that

0 < inf{‖(̂x, λ)‖∞ : (x, λ) ∈ X̃, ‖(x, λ)‖ = 1}

≤ inf
n∈N

r

(
yn
‖yn‖

)
= inf
n∈N

∥∥∥∥ ŷn
‖yn‖

∥∥∥∥
∞

= 0,

which is a contradiction. So we conclude that {zn} is a Cauchy sequence. Then {zn} is
a convergent sequence in Z, say lim zn = z0 ∈ Z. Therefore,

lim ‖ẑn − ẑ0‖∞ = 0.

Indeed, for each n ∈ N, ‖ẑn − ẑ0‖∞ = ‖ϕ(zn − z0)‖∞ ≤ ‖zn − z0‖. So ϕ(Z) is complete
subalgebra of CR(Ω(Z)) separating the points of Ω(Z), and annihilating no point of Ω(Z).
It follows from the Stone-Weierstrass theorem that ϕ is surjective.

(ii) is a consequence of the open mapping theorem.

Lemma 2.8. [11] Let X be a unital Abelian Banach algebra. If there exists an element
x in X with infinite spectrum σ(x) and σ(x) ⊂ R, then there exists y ∈ X satisfying the
following conditions:
(i) 1 ∈ σ(y) ⊂ [0, 1].
(ii) There exists a strictly decreasing sequence in σ(y).

Lemma 2.9. Let X be an infinite dimensional complex non-unital Banach algebra satis-
fying condition (A) and

inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} > 0,

and let (x0, 0) be an element in X̃ with infinite spectrum and ω(x0, 0) ∈ R, for each

ω ∈ Ω(X̃). Define

Z =

{
k∑
i=0

αi(x0, 0)i : k ∈ N, αi ∈ R

}
.

Assume that there exists a bounded sequence {(yn, 0)} in Z which contains no convergent
subsequences and such that {ω(yn, 0) : ω ∈ Ω(Z)} is finite for each n ∈ N. Then there
exists an element (z0, 0) ∈ Z such that {ω(z0, 0) : ω ∈ Ω(Z)} is equal to {0, 1, 1

2 ,
2
3 ,

3
4 , ...}

or {0, 1, 1
2 ,

1
3 ,

1
4 , ...}.

Proof. It follows form Lemma 2.6 and Lemma 2.7 that Z is an infinite dimensional real
unital Abelian Banach algebra with Ω(Z) 6= ∅ and homeomorphic to CRΩ(Z). Suppose
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that there exists a bounded sequence {(yn, 0)} in Z which contains no convergent subse-
quences and such that {ω(yn, 0) : ω ∈ Ω(Z)} is finite, for each n ∈ N. From the proof of
Lemma 2.10 (ii) in [? ], we obtain that

Ω(Z) = (∪n∈NGn) ∪ F,
where F is a closed set in Ω(Z), Gn is closed and open, for each n ∈ N, and {F,G1, G2, ...}
is a partition of Ω(Z). We first note that the restriction τ∞|Z of the canonical homomor-

phism τ∞ ∈ Ω(X̃) on Z is a character on Z. There are two cases to be considered. If
τ∞|Z is in F, define ψ : Ω(Z)→ R by

ψ(τ) =


1, if τ ∈ G1,
1
n , if τ ∈ Gn, n ≥ 2,

0, if τ ∈ F.
If τ∞|Z is in Gn0

, for some n0 ∈ N, we may assume without loss of generality that n0 = 1,
define ψ : Ω(Z)→ R by

ψ(τ) =


0, if τ ∈ G1,
n−1
n , if τ ∈ Gn, n ≥ 2,

1, if τ ∈ F.
For each case, the inverse image of each closed set in ψ(Ω(Z)) is closed, so ψ ∈ C(Ω(Z)).
Let ϕ : Z → C(Ω(Z)) be the Gelfand representation. Therefore, ϕ−1(ψ) is an ele-

ment in Z, say (z0, λ), such that {ω(z0, λ) : ω ∈ Ω(X̃)} is equal to {0, 1, 1
2 ,

2
3 ,

3
4 , ...} or

{0, 1, 1
2 ,

1
3 ,

1
4 , ...}. Moreover, λ = 0 since τ∞|Z(z0, λ) = ψ(τ∞|Z) = 0.

Lemma 2.10. Let X be an infinite dimensional complex non-unital Banach algebra sat-
isfying (A) and

inf{‖x̂‖∞ : x ∈ X, ‖x‖ = 1} > 0,

and let (x0, 0) be an element in X̃ with infinite spectrum and ω(x0, 0) ∈ R, for each

ω ∈ Ω(X̃). Define

Z =

{
k∑
i=0

αi(x0, 0)i : k ∈ N, αi ∈ R

}
.

Then there exists a sequence {(zn, 0)} in Z such that {τ(zn, 0) : τ ∈ Ω(Z)} ⊂ [0, 1], for

each n ∈ N, and {(ẑn, 0)−1{1}} is a sequence of nonempty pairwise disjoint subsets of

Ω(Z̃).

Proof. From Lemma 2.7 and the proof of Lemma 2.10 (iii) in [5], there exists (z1, λ1) ∈ Z
such that {ω(z1, λ1) : ω ∈ Ω(Z)} is infinite. So σ(z1, λ1) is infinite. Using Lemma 2.8, we
may assume without generality that (z1, λ1) satisfies

1 ∈ σ(z1, λ1) ⊂ [0, 1]

and there exists a strictly decreasing sequence of real number in σ(z1, λ1), say {an}.
Moreover, we may as well assume that a1 < 1.

Define a continuous function g1 : [0, 1]→ [0, 1] by

g1(t) =

{
t
a1
, if t ∈ [0, a1],

1 + (g1(a2)−1)(t−a1)
2(1−a1) , if t ∈ [a1, 1].
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So g1 is joining the points (0, 0) and (a1, 1), and g1(1) ∈ (g1(a2), 1).

Let ̂(z2, λ2) = g1 ◦ ̂(z1, λ1), and define a continuous function g2 : [0, 1]→ [0, 1] by

g2(t) =

{
t

g1(a2) , if t ∈ [0, g1(a2)],

1 + (g2(g1(a3))−1)(t−g1(a2))
2(1−g1(a2)) , if t ∈ [g1(a2), 1].

So g2 is joining the point (0, 0) and (g1(a2), 1) and g2(1) ∈ (g2(g1(a3)), 1).

Let ̂(z3, λ3) = g2 ◦ ̂(z2, λ2). Continuing in this manner, we get a sequence of points

{(zn, λn)} in Z with 1 ∈ {ω(zn, λn) : ω ∈ Ω(Z)} ⊂ [0, 1], for each n ∈ N, and {(ẑn, λn)−1{1}}
is a sequence of nonempty pairwise disjoint subsets of Ω(Z).

Let {(znk
, λnk

)} be a subsequence of {(zn, λn)} such that λnk
6= 1, for each nk ∈ N. It

can be seen that {(znk
, 0)} is the sequence in Z such that

{ω(znk
, 0) : τ ∈ Ω(Z)} ⊂ [0, 1],

for each nk ∈ N, and {(ẑnk
, 0)−1{1}} is a sequence of nonempty pairwise disjoint subsets

of Ω(Z). Indeed, λn = 1 and {(ẑn, λn)−1{1}} is singleton implies {(ẑn, λn)−1{1}} = ∅.

Lemma 2.11. Let X be an infinite dimensional complex non-unital Abelian Banach
algebra, let

Z =

{
k∑
i=0

αi(x0, 0)i : k ∈ N, αi ∈ R

}
,

and let (x, 0) ∈ Z ∩ X with (x̂, 0)−1{1} 6= ∅, and 0 ≤ ω(x, 0) ≤ 1, for each ω ∈ Ω(Z).
Define

E = {(z, 0) ∈ Z : 0 ≤ ω(z, 0) ≤ 1, for each ω ∈ Ω(Z), and ω(z, 0) = 1 if ω ∈ A},

where A = (x̂, 0)−1{1}, and define T : E → E by

(z, 0) 7→ (xz, 0).

Assume that X satisfies the following condition:
If x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖.
Then E is a nonempty bounded closed convex subset of Z ∩ X and T : E → E is a
nonexpansive mapping.

Proof. It is easy to see that E is closed and convex. We can deduce that E is nonempty
since (x, 0) ∈ E.

Let (z, 0) ∈ E. It follows that

|ω(z, 0)| ≤ 1 = |ω(0, 1)|,
for each ω ∈ Ω(Z). Therefore,

‖(z, 0)‖ ≤ ‖(0, 1)‖ = 1.

Thus, it suffices to conclude that E is bounded.
Let ω ∈ Ω(X) and let (z, 0), (z′, 0) ∈ E. We have

|ω(T (z, 0)− T (z′, 0))| = |ω((x, 0)(z, 0)− (x, 0)(z′, 0))|,
= |ω(x, 0)||ω((z, 0)− (z′, 0))|,
≤ |ω((z, 0)− (z′, 0))|.
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Then
‖T (z, 0)− T (z′, 0)‖ ≤ ‖(z, 0)− (z′, 0)‖.

So T is nonexpansive.

3. Main Result

Now, we prove the main result in this paper.

Theorem 3.1. Let X be an infinite dimensional complex non-unital Abelian Banach
algebra satisfying condition (A) and the following conditions:
(i) If x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{‖x̂‖∞ : x ∈ X, ‖ x ‖= 1} > 0. Then there exists an element (x0, 0) in X such that

〈x0, 0〉R =

{
k∑
i=1

αi(x0, 0)i : k ∈ N, αi ∈ R

}
does not have the fixed point property.

Proof. Let X be an infinite dimensional complex non-unital Abelian Banach algebra sat-
isfying (i), (ii), and condition (A). It follows from Lemma 2.1 and 2.4 that there is an

element (x0, 0) in X̃ with infinite spectrum and ω(x0, 0) ∈ R, for each ω ∈ Ω(X̃). Let

Z =

{
k∑
i=0

αi(x0, 0)i : k ∈ N, αi ∈ R

}
.

Applying Lemma 2.6, Z is an infinite dimensional real unital Abelian Banach algebra
with Ω(Z) 6= ∅. From Lemma 2.10, it follows that there exists a sequence {(zn, 0)} in Z

such that {ω(zn, 0) : ω ∈ Ω(Z)} ⊂ [0, 1], for each n ∈ N, and (ẑ1, 0)−1{1}, (ẑ2, 0)−1{1},
(ẑ3, 0)−1{1}, ... are pairwise disjoint.

Write An = (ẑn, 0)−1{1}, define

En = {(z, 0) ∈ Z : 0 ≤ ω(z, 0) ≤ 1, for each ω ∈ Ω(Z), and ω(z, 0) = 1 if ω ∈ An},
and define Tn : En → En by

(z, 0) 7→ (znz, 0).

Using Lemma 2.11, En is a bounded closed convex subset in Z and Tn is nonexpansive,
for each n ∈ N.

Suppose, on the contrary that 〈x0, 0〉R has fixed point property. For each n ∈ N, since
En is also a bounded closed convex subset in X, so Tn has a fixed point in En, say (yn, 0).

Since (yn, 0) is a fixed point of Tn, so (yn, 0) = (znyn, 0). Then (̂yn, 0) = (̂zn, 0)(̂yn, 0),
and then

(̂yn, 0)(ω) =

{
0, if ω is not in An,

1, if ω is in An,

for each n ∈ N. Since A1, A2, A3, ... are pairwise disjoint, so ‖(̂ym, 0) − (̂yn, 0)‖ = 1,

if m 6= n. Thus {(̂yn, 0)} has no convergent subsequences. Since Z and CR(Ω(Z)) are
homeomorphic, so {(yn, 0)} has no convergent subsequences. From Lemma 2.9, there is
an element (z0, 0) in Z such that {ω(z0, 0) : ω ∈ Ω(Z)} is equal to {0, 1, 1

2 ,
2
3 ,

3
4 , ...} or

{0, 1, 1
2 ,

1
3 ,

1
4 , ...}.
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Write A0 = (ẑ0, 0)−1{1}, define

E0 = {(z, 0) ∈ Z : 0 ≤ ω(z, 0) ≤ 1, for each ω ∈ Ω(Z), and ω(z, 0) = 1 if ω ∈ A0},
and define T0 : E0 → E0 by

(z, 0) 7→ (z0z, 0).

It follows from Lemma 2.11 that T0 is a nonexpansive mapping on a bounded closed
convex subset E0 in X. So T0 has a fixed point in E0, say (y0, 0). There are two cases to
be considered.

Case(1) {ω(z0, 0) : ω ∈ Ω(Z)} = {0, 1, 1
2 ,

2
3 ,

3
4 , ...} :

Hence (̂y0, 0) = (̂z0, 0)(̂y0, 0). Then

(̂y0, 0)(ω) =

{
0, if ω is not in A0,

1, if ω is in A0.

So
A0 = (ŷ0, 0)−1{1} = (ẑ0, 0)−1{1}

and

Ω(Z)\A0 = (ŷ0, 0)−1{0} =

∞⋃
n=0

(
(ẑ0, 0)−1{ n

n+ 1
}
)
.

It follows from

{ω(z0, 0) : ω ∈ Ω(Z)} = {0, 1, 1

2
,

2

3
,

3

4
, ...}

that
{

(ẑ0, 0)−1{ n
n+1} : n ∈ N

}⋃{
(ẑ0, 0)−1{0}

}
is a pairwise disjoint open covering of

the compact set Ω(Z)\A0, which is a contradiction.

Case(2) {ω(z0, 0) : ω ∈ Ω(Z)} = {0, 1, 1
2 ,

1
3 ,

1
4 , ...} :

E = {(z, 1) ∈ Z : 0 ≤ ω(z, 1) ≤ 1, for each ω ∈ Ω(Z), and ω(z, 1) = 1 if ω ∈ A},
where A = (−̂z0, 1)−1{1}.
It can be seen that E is a bounded closed convex subset of Z.

Define T : E → E by
(z, 1) 7→ (−z0, 1)(z, 1),

for each (z, 1) ∈ E. We have

{ω(−z0, 1) : ω ∈ Ω(Z)} = {0, 1, 1

2
,

2

3
,

3

4
, ...}.

Define S : Z → Z by
(z, λ) 7→ (−z, 1− λ).

It follows from (i) that STS : S(E) → S(E) is a nonexpansive mapping on a bounded
closed convex subset S(E) of 〈x0, 0〉R. So then T = S(STS)S is a nonexpansive mapping
on E.
STS has a fixed point, since 〈x0, 0〉R has the fixed point property. It follows that T

has a fixed point, say (y0, 1). Then

(̂y0, 1)(ω) =

{
0, if ω is not in A,

1, if ω is in A,
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and

(ŷ0, 1)−1{1} = (−̂z0, 1)−1{1} = A.

So

Ω(Z)\A = (ŷ0, λ0)−1{0} =

∞⋃
n=0

(
(−̂z0, 1)−1{ n

n+ 1
}
)
.

It follows from

{ω(−z0, 1) : ω ∈ Ω(Z)} = {0, 1, 1

2
,

2

3
,

3

4
, ...}

that
{

(−̂z0, 1)−1{ n
n+1} : n ∈ N

}⋃{
(−̂z0, 1)−1{0}

}
is a pairwise disjoint open covering

of the compact set Ω(Z)\A, which is a contradiction. So we can dedude that 〈x0, 0〉R
does not have the fixed point property.

From the proof of the above theorem, we can show the following corollary.

Corollary 3.2. Let X be an infinite dimensional complex non-unital Abelian Banach
algebra satisfying condition (A) and the following conditions:
(i) If x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈ Ω(X), then ‖x‖ ≤ ‖y‖,
(ii) inf{r(x) : x ∈ X, ‖x‖ = 1} > 0.
If (x0, 0) is an element in X with infinite spectrum and σ(x0, 0) ⊂ R, then the Banach
algebra

〈x0, 0〉 =

{
k∑
i=1

αi(x0, 0)i : k ∈ N, αi ∈ C

}
generated by (x0, 0) does not have the fixed point property.
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