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Abstract A Banach space X is said to have the fixed point property if for each nonexpansive mapping
T : E — E on a bounded closed convex subset E of X has a fixed point. Assume that X is an infinite
dimensional non-unital Abelian Banach algebra satisfying: (i) condition (A) defined in [W. Fupinwong,
S. Dhompongsa, The fixed point property of unital Abelian Banach algebras, Fixed Point Theory and
Applications (2020)], (ii) ||z|| < ||y|| for each x,y € X such that |7(z)| < |r(y)| for each 7 € Q(X), (iii)
inf{r(z) : x € X, ||z|| = 1} > 0. We show that there is an element (zg,0) in X such that

k
<CE0,O>R = {Zai(xo,o)i ckeN o, € ]R}
=1

does not have the fixed point property. This result is a generalization of Theorem 21 in [P. Thongin, W.
Fupinwong, The fixed point property of a Banach algebra generated by an element with infinite spectrum,
Journal of Function Spaces (2018)]. Moreover, as a consequence of the proof, for each element (zg, 0) in X
with infinite spectrum and o(zo,0) C R, the Banach algebra (zo,0) = {Zi?:l a;i(z0,0)" : k € N,a; € (C}
generated by (zo,0) does not have the fixed point property.
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1. INTRODUCTION

A Banach space X is said to have the fized point property if for each nonexpansive
mapping 7' : F — E on a bounded closed convex subset E of X has a fixed point, to have
the weak fized point property if for each nonexpansive mapping 7' : E — E on a weakly
compact convex subset E of X has a fixed point.
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In 1981, D.E. Alspach [1] proved that there exists an isometry T : F — FE on a
weakly compact convex subset E of the Lebesgue space L;[0,1] without a fixed point.
Consequently, L1[0, 1] does not have the weak fixed point property.

In 1983, J. Elton, P.K. Lin, E. Odell, and S. Szarek [2] showed that C(a,R) has the
weak fixed point property, if « is a compact ordinal with o < w®.

In 1997, A.T. Lau, P.F. Mah, and A. Ulger [3] proved the following theorem.

Theorem 1.1. Let X be a locally compact Haudorff space. If Co(X) has the weak fized
point propert, then X 1is dispersed.

Moreover, by applying Theorem 1.1, they proved the following results.

Corollary 1.2. [3] Let G be a locally compact group. Then the C*-algebra Co(G) has the
weak fized point property if and only if G is discrete.

Corollary 1.3. [3] A von Neumann algebra M has the weak fixed point property if and
only if M is finite dimensional.

In 2005, T.D. Benavides and M.A. Japon Pineda [4] studied the concept of w-almost
weak orthogonality in the Banach lattice C(K) and proved the following results.

Theorem 1.4. [1] Let X be a w-almost weakly orthogonal closed subspace of C(K), where
K is a metrizable compact space. Then X has the weak fixed point property.

Theorem 1.5. [4] Let K be a metrizable compact space. Then the following conditions
are all equivalent:

1) C(K) is w-almost weakly orthogonal.

2) C(K) is w-weakly orthogonal.

3) K@) =.

Corollary 1.6. [1] Let K be a compact set with K“) = (). Then C(K) has the weak fized
point property.

In 2010, W. Fupinwong and S. Dhompongsa [5] showed that each infinite dimensional
real unital Abelian Banach algebra X with Q(X) # @ satisfying: (i) if z,y € X is such that
|7(x)] < |7(y)|, for each 7 € Q(X) then ||z|| < |ly|, (i) inf{r(z): z € X, ||z|| = 1} > 0,
does not have the fixed point property. Moreover, they proved the following theorem.

Theorem 1.7. [5] Let X be an infinite dimensional complex unital Abelian Banach al-
gebra satisfying condition (A) and each of the following:

(1) if x,y € X is such that |7(z)| < |7(y)|, for each 7 € Q(X), then ||z| < |ly]|.

(i) inf{r(z) : z € X, ||z|| =1} > 0.

Then X does not have the fized point property.

In 2010, D. Alimohammadi and S. Moradi [6] used the above result to obtain sufficient
conditions to show that some unital unifromly closed subalgebras of C'(X), where X is a
compact space, do not have the fixed point property.

In 2011, S. Dhompongsa, W. Fupinwong, and W. Lawton [7] showed that a C*-algebra
has the fixed point property if and only if it is finite dimensional.

In 2012, W. Fupinwong [3] showed that the unitality in the results proved in [5] can
be omitted.

In 2016, by using Urysohn’s lemma and Schauder-Tychonoff fixed point theorem, D.
Alimohammadi [9] proved the following result.
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Theorem 1.8. [9] Let Q be a locally compact Hausdorff space. Then the following state-
ments are equivalent:

(i) Q is infinite set.

(ii) Co(Q2) is infinite dimensional.

(iii) Co(Q) does not have the fized point property.

In 2017, J. Daengsaen and W. Fupinwong [10] proved that each infinite dimensional
real Abelian Banach algebra X with Q(X) # 0 and satisfying: (i) if =,y € X is such that
|7(x)] < |7(y)|, for each 7 € Q(X), then ||z|| < |lyl, (ii) inf{r(z) : x € X, |z|| = 1} > 0,
does not have the fixed point property.

Recently, in 2018, P. Thongin and W. Fupinwong [11] proved the following result.

Theorem 1.9. [11] Let X be an infinite dimensional complex unital Abelian Banach
algebra satisfying: (i) condition (A), (i) if x,y € X is such that |7(z)| < |7(y)|, for each
T € UX) then ||z|| < |lyll, (%) inf{r(zx) : z € X,||z|]| = 1} > 0. Then there exists an
element xg in X such that

k
(xo)r = {Zaixg keN,q; € R}

=1

does not have the fized point property.

Furthermore, as a consequence of the proof, for each element zy in X with infinite
spectrum and o(zg) C R, the Banach algebra (z)r generated by xo does not have the
fixed point property.

In this paper, we show that the unitality in the result proved in [11] can be omitted.

2. PRELIMINARIES AND LEMMAS

Let F be the field R or C. Let X be a Banach algebra over F. The unitization X of X
is the Banach algebra X @ F, where the multiplication on X is defined by

(2, \)(y, p) = (zy + Ay + p, M),

and the norm on X is defined by

Gz MIE= el + |-
It can be seen that X is a unital Banach algebra over F with the unit (0,1). Denote
by Q(X) the set of all characters on X.
A complex Banach algebra X is said to satisfy condition (A) if, for each z € X, there

exists an element y € X such that 7(y) = 7(x), for each 7 € Q(X).
Note that

QX) ={7: 7€ AX)} U{7e0},
where 7 is defined from 7 € Q(X) by
T(z,\) =7(x) + A,
and T, is the canonical homomorphism defined by

Too (T, A) = A
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It can be seen that, if X satisfies condition (A), then so does the unitization X.
Moreover, if X is Abelian, then X is also Abelian.
Let X be an Abelian Banach algebra over F. The Gelfand representation ¢ : X —
C(2(X)) is defined by x +— Z, where T is defined by
z(r) = 7(x),

for each 7 € Q(X).

The Jacobson radical J(X) of a Banach algebra X over F is the intersection of all
regular maximal left ideals of X. Note that if X is a unital complex Banach algebra and
2 € J(X) then the spectral radius r(x) of z is equal to zero. A Banach algebra X over F
is said to be semi-simple if J(X) = {0}.

The following lemmas are all very useful for proving our main result.

Lemma 2.1. Let X be a complex non-unital Banach algebra satisfying
inf{||Z||s : z € X, ||z|]| = 1} > 0.

Then:

(i) inf{r(z) :xz € X, |jz|| =1} > 0.

(it) int ([ (. V]l  (2.3) € X, [[(2. 1) = 1} > 0.
Proof. Let X be a complex non-unital Banach algebra satisfying
inf{||7]|ec : z € X, ||z|| = 1} > 0.
(i) We first note that
{r(z) : 7€ QX)} Co(x),
for each x € X, thus it suffices to prove that ||Z]|» < r(z), for each € X and then
0 <inf{||Z||oc : z € X, ||z|| = 1} <inf{r(z) :z € X, ||z| = 1}.
(ii) Assume to the contrary that

nf ][ Moo : (2, A) € X, || (2, V)] =1} = 0.

So there is a sequence {(xy, Ay)} such that lim ||(m)|\oo =0 and ||(zn, A\n)|| = 1, for
each n € N. Since

|An| < max sup [7(xn) + Anl, (Al p = sup  |w(@n, An)| = [[(Tn, An)lloos
TEQ(X) we(X)
for each n € N, so
lim | A, | < lim ||(zn, An)|leo = 0.

We can conclude only that lim |\,| = 0. Since ||7,]|c < H(m)”oo + |An], for each
n € N, it follows that

im || 75| oe < im || (2, An) oo + lim A, | = 0.

We may assume by passing through a subsequence that {|\,|} is a decreasing sequence
converging to zero and |A,| < 1/2, for each n € N. From

1= H(xnv/\n)” = ||lzn| + |)‘n‘v
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we have ||z,| > 1/2, for each n € N. Then

T x
lim ( i ) < lim <n> =2lim||Zp]/co = 0.
el )| 172)|
Hence inf{||Z]|» : € X, ||z|| = 1} = 0. This leads to a contradiction. L]

Lemma 2.2. Let X be a complex non-unital Banach algebra satisfying
inf{r(z):z € X,|z|| =1} > 0.

Then: B
(i) inf{r(z,\) : (z,\) € X, ||(z,A)]| =1} > 0.

(ii) X and X are semi-simple.
Proof. Let X be a complex non-unital Banach algebra satisfying
inf{r(z):z € X,|z|| =1} > 0.
(1) Suppose, on the contrary that

inf{r(z,\) : (z,\) € X, ||(z,\)] =1} = 0.
There is, of course, a sequence {(zn, \,)} such that limr(z,, A\,) = 0 and ||(zn, A\n)|| = 1,
for each n € N. Since A, = Too(Tn, An) € (20, An), for each n € N; so

lim [\, | < limr(zp, An) = 0.

We see that r(z,,0) < r(x,, An) + |An|, for each n € N It follows that

limr(xy,,0) < lm7r(x,, A,) +lm|A,| = 0.

Thus we may as well assume by passing through a subsequence that {|\,|} is a decreasing
sequence converging to zero and |\,| < 1/2, for each n € N. From

L= [[(n, An)l| = [0, 0)[] + [Anl,
we obtain ||(zn,0)|| > 1/2, for each n € N and thus

lim 7 (%) < limr ((“:1"/’20)> = 2lim7(z,,0) = 0.

We deduce that inf{r(z) : € X, |z| = 1} = 0. This contradiction shows that inf{r(x, A) :
(x,\) € X,|(z, V)| =1} > 0.
(ii) From (i), it follows that

inf{r(z,\) : (z,\) € X, ||(z,\)]| = 1} > 0.
Thus, it suffices to prove that, for each (x,A) € X, r(z,A) = 0 implies (z, A) = (0,0). We
note that r(z,\) = 0, for each (z,A) € J(X) and then J(X) = {0}. Therefore, we can
deduce that X is semi-simple.

Since every ideal in a semi-simple Banach algebra is also semi-simple, so X is semi-
simple. This completes the proof. [

The following lemma was proved in [12].

Lemma 2.3. [12] In any infinite dimensional semi-simple complex Banach algebra, there
exists an element with an infinite spectrum.
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Lemma 2.4. Let X be an infinite dimensional compler non-unital Banach algebra with
condition (A) and satisfying

inf{r(z):z € X,|z|| =1} > 0.
Then there exists xog € X with infinite spectrum and w(xo,0) € R, for each w € Q(f()

Proof. Tt follows from Lemma 2.2 that X is semi-simple. Applying Lemma 2.3, we see
that there exists an element z in X which infinite spectrum. From condition (A), there
exists y € X such that

T(y) = (),
for each 7 € Q(X). Hence

T(zy) = 7(z)7(y) = 7(x)7(x) € R.
Evidently, w ((z,0)(y,0)) € R, for each w € Q(X). m
The following lemma was proved in [11].

Lemma 2.5. [11] Let X be an infinite dimensional complex unital Banach algebra, and let
xo be an element in X with infinite spectrum. Then {x{ : n € N} is linearly independent.

Lemma 2.6. Let X be an infinite dimensional complex non-unital Banach algebra sat-
isfying condition (A), and let (x0,0) be an element in X with infinite spectrum and
w(z0,0) € R, for each w € Q(X). Define

k
Z= {Zai(m070)i ‘keNq; € R}.
=0

Then Z is an infinite dimensional real unital Abelian Banach algebra with Q(Z) # 0.

Proof. From Lemma 2.5, {7 : n € N} is linearly independent in X, so Z is infinite
dimensional.

Let w € (X), and define 7: Z — R by
(z,\) = w(x, N).

7 is real-valued since w(zg,0) € R, for each w € Q(X). It can be seen that 7 is a nonzero
homomorphism on Z. So Q(Z) # 0. =

Lemma 2.7. Let X be an infinite dimensional complex non-unital Banach algebra sat-

isfying condition (A), and let (x¢,0) be an element in X with infinite spectrum and
w(z0,0) € R, for each w € Q(X). Define

k
7= {Zai(x(hO)i ‘keN,q; € R}.
1=0

If X satisfies

inf{||Z||e : z € X, ||z|| = 1} > 0,
then Z is a real unital Abelian Banach algebra satisfying the following conditions:
(i) The Gelfand representation ¢ from Z into Cr(QU(Z)) is a bounded isomorphism.
(ii) The inverse ¢~ is also a bounded isomorphism.
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Proof. (i) From Lemma 2.1, we have
inf{||(z, Al : (z,A) € X, [[(z,N)| = 1} > 0,

it follows that ker(y) = {0}. So ¢ is injective. We have ¢(Z) is a subalgebra of Cr(€2(Z)).
Next, we will now show that ¢(Z) is complete. We are now in a position to prove that
{zn} is a Cauchy sequence. Suppose, on the contrary that {z,} is not Cauchy. Then,
there exists, of course, gy > 0 and subsequences {z,} and {z]/} of {z,} such that

Iz, = 2nll = <o,

for each n € N. Letting y,, = (2], — #]) /e0. We have ||y, || > 1, for each n € N. Since {z,}
is Cauchy, it suffices to conclude that lim 7, = 0. It follows that

0 < inf{[[(z, Nlloo : (2,4) € X, ||z, M) = 1}
i

< inf r <yn > = inf
nel \lynll ) neN||{|ynll
which is a contradiction. So we conclude that {z,} is a Cauchy sequence. Then {z,} is
a convergent sequence in Z, say lim z,, = zg € Z. Therefore,

:0’

lim || % — Zolee = 0.

Indeed, for each n € N, ||z, — Z0]lcc = |l¢(2n — 20)|lco < [|2n — 20]]- So ¢(Z) is complete
subalgebra of Cr(€2(Z)) separating the points of (Z), and annihilating no point of Q(Z7).
It follows from the Stone-Weierstrass theorem that ¢ is surjective.

(ii) is a consequence of the open mapping theorem. [

Lemma 2.8. [11] Let X be a unital Abelian Banach algebra. If there exists an element
x in X with infinite spectrum o(x) and o(x) C R, then there exists y € X satisfying the
following conditions:

(i) 1€ aly) c[o,1].

(ii) There exists a strictly decreasing sequence in o(y).
Lemma 2.9. Let X be an infinite dimensional complex non-unital Banach algebra satis-
fying condition (A) and

inf{||7]|eo : z € X, ||z|| =1} > 0,

and let (xg,0) be an element in X with infinite spectrum and w(xg,0) € R, for each
w € Q(X). Define

{ZO‘Z (z9,0)t: k €N, azeR}

Assume that there exists a bounded sequence {(yn,0)} in Z which contains no convergent
subsequences and such that {w(yn,0) : w € Q(Z)} is finite for each n € N. Then there
exists an element (29,0) € Z such that {w(20,0) : w € Q(Z)} is equal to {0,1,%, 2,3 .}

s 439539 40
1 11
OT{O 17273747 }

Proof. 1t follows form Lemma 2.6 and Lemma 2.7 that Z is an infinite dimensional real
unital Abelian Banach algebra with Q(Z) # ) and homeomorphic to Cr2(Z). Suppose
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that there exists a bounded sequence {(y,,0)} in Z which contains no convergent subse-
quences and such that {w(yn,0) : w € Q(Z)} is finite, for each n € N. From the proof of
Lemma 2.10 (ii) in [? ], we obtain that

Q(Z) == (URENGTL) U F,
where F'is a closed set in Q(Z), G,, is closed and open, for each n € N, and {F, Gy, Gs, ...}
is a partition of (Z). We first note that the restriction 7|z of the canonical homomor-

phism 7o, € Q()} ) on Z is a character on Z. There are two cases to be considered. If
Teo|z is in F, define ¢ : Q(Z) — R by

1, if 7 e Gy,
P(T) = %, ifreG,,n>2,
0, ifrekF

If 70|z is in G, for some ng € N, we may assume without loss of generality that ng = 1,
define ¢ : 2(Z) — R by

0, if 7 € Gy,
P(r) = 2L, ifreGnn>2,
1, ifreF.

For each case, the inverse image of each closed set in (€2(Z)) is closed, so 1 € C(Q(Z)).
Let ¢ : Z — C(Q(Z)) be the Gelfand representation. Therefore, 9071(1/)) is an ele-
ment in Z say (20,A), such that {w(z,A) : w € QX)} is equal to {0,1,3,2,3,...} or
{0,1,3, %, %, ...}. Moreover, A = 0 since 7|7 (20, A) = ¥(7|z) = 0. L]

Lemma 2.10. Let X be an infinite dimensional complex non-unital Banach algebra sat-
isfying (A) and

inf{||Z]| : z € X, ||z|]| = 1} > 0,
and let (xg,0) be an element in X with infinite spectrum and w(xp,0) € R, for each
w € Q(X). Define

k
Z = {Zai(azo,())i tkeNa; € R}.
i=0

Then there exists a sequence {(zn,0)} in Z such that {7(2,,0) : 7 € Q(Z)} C [0,1], for
each n € N, and {(zn, 0)~1{1}} is a sequence of nonempty pairwise disjoint subsets of

O(2).

Proof. From Lemma 2.7 and the proof of Lemma 2.10 (iii) in [5], there exists (z1,\1) € Z
such that {w(z1,\1) : w € Q(Z)} is infinite. So o(21, A1) is infinite. Using Lemma 2.8, we
may assume without generality that (21, A1) satisfies

1€ a2, M) € [0,1]
and there exists a strictly decreasing sequence of real number in o(z1, A1), say {an}.

Moreover, we may as well assume that a; < 1.
Define a continuous function ¢; : [0,1] — [0, 1] by

o~ + if t € [0,a4],
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So g1 is joining the points (0,0) and (aq,1), and g1(1) € (g1(az2), 1).
Let (22, \2) = g1 0 (21, A1), and define a continuous function g, : [0,1] — [0, 1] by

galt) = {< it £ € 0,91 (a2),

1+ 892(91(5(31)) gll()éi))gl(%)) if t € [g1(az), 1].

So g2 is joining the point (0,0) and (g1(az),1) and g2(1) € (g2(g1(asz)), 1).
Let (2z3,A3) = g2 o (22, A2). Continuing in this manner, we get a sequence of | of points

{(#zn, An)}in Z with 1 € {w(zp, \n) :w € Q(Z)} C[0,1], for each n € N, and {(zn, An) " H1}}
is a sequence of nonempty pairwise disjoint subsets of Q(Z).

Let {(2zn,, An, )} be a subsequence of {(z,, A,)} such that A\, # 1, for each ny € N. Tt
can be seen that {(z,,,0)} is the sequence in Z such that

{w(zn,,0): 7€ Q(Z)} C0,1],

for each n; € N, and {(znk, 0)~1{1}} is a sequence of nonempty pairwise disjoint subsets
of Q(Z). Indeed, \,, = 1 and {(z,, \,) "1{1}} is singleton implies {(z,, \,) " {1}} =0. =

Lemma 2.11. Let X be an infinite dimensional complex non-unital Abelian Banach
algebra, let

k
= {Zai(l'm())i ckeNq; € R},

i=0
and let (x,0) € ZN X with (E,\O)_l{l} # 0, and 0 < w(z,0) < 1, for each w € Q(Z).
Define

E={(20)e€Z:0<w(z0) <1, for eachw € UZ), and w(z,0) =1 ifw € A},
where A = (5,\0)_1{1}, and define T : E — E by
(2,0) = (2z,0).

Assume that X satisfies the following condition:

If 2,y € X is such that |7(x)| < |7(y)|, for each T € QX), then ||z| <|y]-

Then E is a monempty bounded closed conver subset of ZNX and T : E — FE is a
NONETPANSIVE Mapping.

Proof. 1t is easy to see that E is closed and convex. We can deduce that F is nonempty
since (z,0) € E
Let (z,0) € E. It follows that

w(z,0)] <1 =|w(0,1)],
for each w € Q(Z). Therefore,
1z, 0)[l < [1(0, D) = 1.

Thus, it suffices to conclude that E is bounded.
Let w € Q(X) and let (2,0),(2,0) € E. We have

w(T'(2,0) = T(2',0))| = |w((,0)(2,0) — (2,0)(z, 0))],
= lw(z,0)||lw((2,0) = (<, 0))I,
< lw((2,0) = (z/,0))I.
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Then
1T (2,0) = (=, 0)|| < [|(2,0) — (', 0)].
So T is nonexpansive. [

3. MAIN RESULT
Now, we prove the main result in this paper.

Theorem 3.1. Let X be an infinite dimensional compler non-unital Abelian Banach
algebra satisfying condition (A) and the following conditions:

(i) If x,y € X is such that |7(x)| < |7(y)|, for each T € Q(X), then ||z| < |yl

(i) inf{||Z||c : © € X, || z ||= 1} > 0. Then there exists an element (x¢,0) in X such that

(20,0 R—{Zala:o, kENaleR}

does not have the fixed point property.

Proof. Let X be an infinite dimensional complex non-unital Abelian Banach algebra sat-
isfying (i), (ii), and condition (A). It follows from Lemma 2.1 and 2.4 that there is an
element (g, 0) in X with infinite spectrum and w(xg,0) € R, for each w € Q(X). Let

k
= {Zai(me)i ke N, o; € R}
=0

Applying Lemma 2.6, Z is an infinite dimensional real unital Abelian Banach algebra
with Q(Z) # 0. From Lemma 2.10, it follows that there exists a v sequence { (zn, 0)}in Z
such that {w(z,,0) : w € Q(Z)} C [0,1], for each n € N, and (z1,0)" {1}, (z2,0) {1},
(23,0)71{1}, ... are re pairwise disjoint.

Write A, = (2,,0) {1}, define

E,={(200€Z:0<w(z20) <1, for eachw € Q(Z), and w(z,0) =1ifw € A,},
and define T,, : E,, — E,, by

(2,0) = (2,2,0).
Using Lemma 2.11, F,, is a bounded closed convex subset in Z and T,, is nonexpansive,
for each n € N.

Suppose, on the contrary that (zg,0)r has fixed point property. For each n € N, since
E,, is also a bounded closed convex subset in X, so T}, has a fixed point in E,,, say (yp,0).
Since (yn,0) is a fixed point of T),, s0 (yn,0) = (2,Yn,0). Then (y/n\,()) = (zn/,\())(yn/,\()),
and then

— 0, if wisnotin A,,
(Yn, 0)(w) = . ..
1, ifwisin A,,
for each n € N. Since Al,Ag,Ag,... are pairwise disjoint, so ||(m) (yn, 0] =1,

if m # n. Thus {(yn7 0)} has no convergent subsequences. Since Z and Cr(€(Z)) are
homeomorphic, so {(yn,0)} has no convergent subsequences. From Lemma 2. () there is
an element (z0,0) in Z such that {w(20,0) : w € Q(Z)} is equal to {0,1,3,%,3,..} or

111
{0,1,5 Y Z’}
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Write Ay = (20,0) {1}, define
Ey={(2,0)€Z:0<w(z0) <1, for each w € Q(Z), and w(z,0) =1 if w € Ao},

and define Ty : Ey — FEy by

(2,0) = (202, 0).
It follows from Lemma 2.11 that T is a nonexpansive mapping on a bounded closed
convex subset Fy in X. So Ty has a fixed point in Ey, say (yo,0). There are two cases to
be considered.

Case(1) {w(20,0) :w € Q2Z)} ={0,1, 1, 3, 3.0

Hence (yo/,\()) = (zo/,\())m. Then
— 0, if wis not in Ay,
0)(w) =
(50, 0)(w) {1, if w is in Ag.
So
AO — (yOa ) 1{1} - (Z07 ) 1{1}
and

020\ 4o = (0 0} = U (0

)

It follows from 193
{W(Z(]’O) we Q(Z)} = {Oa 15 57 §7 17 }

that {(zo, 0) ;g :ne N} U {(zo, 0)~ 1{O}} is a pairwise disjoint open covering of

the compact set 2(Z)\ Ag, which is a contradiction.

Case(2) {w(20,0) 1w € Q(2)} ={0,1,3,%, %, ..} :

E={(z 1) €7Z:0<w(z1) <1, for each w € Q(Z), and w(z,1) =1if w € A},

where A = ( 20,1)7H1}.
It can be seen that E is a bounded closed convex subset of Z.
Define T : E — FE by

(Z7 1) = (_207 1)(Za 1)7
for each (z,1) € E. We have

{w(=20,1) :w e Q(2)} ={0,1,
Define S: Z — Z by

3
3

[SCI )

1
9’

(2, A) = (=2, 1 =)).
It follows from (i) that ST'S : S(E) — S(F) is a nonexpansive mapping on a bounded
closed convex subset S(E) of (zg,0)g. So then T'= S(ST'S)S is a nonexpansive mapping
on E.
STS has a fixed point, since (zg,0)r has the fixed point property. It follows that T'
has a fixed point, say (yo,1). Then

— 0, if wisnot in A,
(40, 1) (w) = {

1, ifwisin A,
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and
(%0, 1) "H{1} = (Tz0,1) " H{1} = A.
So

QUZNA = (1o 30) 0} = | (( 1)

n=0

1)

It follows from

123
2374
that {(—/z\o,l)_l{niﬂ} in € N} U{ —20,1)" 1{O}} is a pairwise disjoint open covering

{w(=20,1) :w e Q(2)} ={0,1

of the compact set 2(Z)\ A, which is a contradiction. So we can dedude that (zg,0)r
does not have the fixed point property. [

From the proof of the above theorem, we can show the following corollary.

Corollary 3.2. Let X be an infinite dimensional complex non-unital Abelian Banach
algebra satisfying condition (A) and the following conditions:

(i) If z,y € X is such that |7(x)| < |7(y)|, for each 7 € Q(X), then ||z|| < ||yl

(i) inf{r(z) :x € X, |jz|| =1} > 0.

If (20,0) is an element in X with infinite spectrum and o(x,0) C R, then the Banach
algebra

(20,0 {Zaz 0,0)* 1 k €N, ale(C}

generated by (xo,0) does not have the fixed point property.
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