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1. Introduction

Fixed point theory has been of great interest among mathematicians. One of the most
famous work of Stefan Banach, known as Banach contraction principle, has influenced
many researchers to develop the theory in different aspects. One may study the theory in
a more general setting or even adjust the behavior of the mappings in order to establish
fixed point results; see [1], [2] and [3], for example. Research trends have not only focused
on the existence of fixed points, but also shifted to related notions such as common fixed
points, coincidence points, and best proximity points, to mention but a few; see [4], [5]
and [6]. It is also known that theory regarding best proximity points, in particular, can
be applied in economics; see [7] and [8]. Pirbavafa and Vaezpour, [8], have recently shown
that the existence of equilibrium pairs in free abstract economies can be guaranteed by
best proximity points.

Given a system of nonlinear equations of the form Sx = x and Tx = x, a solution to
the system may not be necessarily achieved, when S and T are not self-mappings. That
is, in a metric space with metric d, such an inconsistent system results d(x, Sx) > 0 or
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d(x, Tx) > 0 for all x. It is then natural to seek a distinguished point x at which the
errors d(x, Sx) and d(x, Tx) are minimized. Let us now assume that S and T are mappings
between nonempty subsets A and B. Then, it is obvious that d(A,B) ≤ d(x, Sx) and
d(A,B) ≤ d(x, Tx) for all x ∈ A, where d(A,B) := inf{d(x, y) : x ∈ A and y ∈ B}. To
this end, one can obtain the common minimum if there exists an x0 ∈ A such that

d(x0, Sx0) = min
x∈A

d(x, Sx) = d(A,B) = min
x∈A

d(x, Tx) = d(x0, Tx0).

Such x0 is called a common best proximity point of S and T . In other words, d(x0, Sx0)
and d(x0, Tx0) are globally minimized at x = x0.

Existence of common best proximity points, in general, depends on conditions on
the mappings and the structure of the studied spaces. A number of publications are
devoted for the existence of common best proximity points through various classes of
generalized contractions. In 2009, Al-Thagafi and Shahzad [9] introduced a new class of
mappings, called cyclic ϕ-contractions, and proved best proximity point theorems in a
complete metric space. In 2016, Sadiq Basha and Shahzad [10] introduced the notion of
a generalized cyclic contraction and proved common best proximity point theorems for
the aforesaid mappings in a complete metric space with property UC.

Motivated and inspired by [9] and [10], this paper aims to present another class of
mappings, generalized cyclic ϕ-contractions, and prove the existence of a common best
proximity point in a complete metric space with property UC.

It is worth mentioning that not only has existence of common best proximity points
been studied theoretically, their convergence has also drawn attention of many authors in
optimization theory. The reader may be referred to [11–15] for more details.

2. Mathematical Preliminaries

Given two nonempty subsets A and B of a metric space, the following notions and
notations are used in the sequel.

Definition 2.1. An element x∗ ∈ A is said to be a common best proximity point of the
non-self-mappings S, T : A→ B if

d(x∗, Sx∗) = d(A,B) = d(x∗, Tx∗).

Definition 2.2. A Banach space X is said to be strictly convex if

‖(x+ y)/2‖ < 1

for all x, y ∈ X with ‖x‖ = ‖y‖ = 1 and x 6= y.

Definition 2.3. A Banach space X is said to be uniformly convex if for any ε, 0 < ε ≤ 2,
there exists a δ = δ(ε) > 0 such that the inequalities ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε
imply

‖(x+ y)/2‖ ≤ 1− δ.

Definition 2.4. [16] The pair (A,B) is said to satisfy the property UC if

d(xn, yn)→ d(A,B)
d(x′n, yn)→ d(A,B)

}
=⇒ d(xn, x

′
n)→ 0

for all sequences {xn} and {x′n} in A and for every sequence {yn} in B.

The following examples provide some scenarios where the property UC holds.
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Example 2.5. [16] Let A and B be nonempty subsets of a metric space such that
d(A,B) = 0. Then (A,B) satisfies the property UC.

Example 2.6. [16] Let A,A′, B and B′ be nonempty subsets of a metric space such that
A ⊆ A′, B ⊆ B′ and d(A,B) = d(A′, B′). If (A′, B′) satisfies the property UC, so does
(A,B).

Example 2.7. [16] Let A and B be nonempty subsets of a strictly convex Banach space.
Assume that A is convex and relatively compact, and the closure of B is weakly compact.
Then (A,B) has the property UC.

Example 2.8. [17] Let A and B be nonempty subsets of a uniformly convex Banach
space. Assume that A is convex. Then (A,B) has the property UC.

3. Result for Generalized Cyclic ϕ-Contractions

We recall some basic notions which will be used in our main result.

Definition 3.1. A mapping T : A∪B → A∪B is said to be a cyclic mapping if T (A) ⊆ B
and T (B) ⊆ A.

Definition 3.2. [18] A cyclic mapping T : A ∪B → A ∪B is called a cyclic contraction
if there exists a nonnegative real number α < 1 such that

d(Tx, Ty) ≤ αd(x, y) + (1− α)d(A,B)

for all x ∈ A and y ∈ B.

Definition 3.3. [9] A cyclic mapping T : A∪B → A∪B is called a cyclic ϕ-contraction
if ϕ : [0,+∞)→ [0,+∞) is a strictly increasing mapping and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B.

Definition 3.4. [10] Let S, T : A∪B → A∪B be cyclic mappings. Then S is said to be
a T -cyclic contraction (or a generalized cyclic contraction) if there exists a nonnegative
real number α < 1 such that

d(Sx, Sy) ≤ αd(Tx, Ty) + (1− α)d(A,B)

for all x ∈ A and y ∈ B.

Next, we introduce the concept of a generalized cyclic ϕ-contraction.

Definition 3.5. Let S, T : A ∪ B → A ∪ B be cyclic mappings. Then S is said to be a
T -cyclic ϕ-contraction (or a generalized cyclic ϕ-contraction) if ϕ : [0,+∞)→ [0,+∞) is
strictly increasing and

d(Sx, Sy) ≤ d(Tx, Ty)− ϕ(d(Tx, Ty)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B.

Remark 3.6. A generalized cyclic contraction is a generalized cyclic ϕ-contraction with
ϕ(x) = (1− α)x for x ≥ 0 and 0 ≤ α < 1.

The following lemma will be used in the proof of our main result.



1176 Thai J. Math. Vol. 18 (2020) /S. Dangskul and R. Suparatulatorn

Lemma 3.7. [16] Let A and B be nonempty subsets of a metric space. Assume that
(A,B) has the property UC. Let {xn} and {yn} be sequences in A and B, respectively,
such that either

lim
m→∞

sup
n≥m

d(xm, yn) = d(A,B) or lim
n→∞

sup
m≥n

d(xm, yn) = d(A,B).

holds. Then {xn} is a Cauchy sequence.

We first prove some useful property of common best proximity points of two cyclic
mappings.

Proposition 3.8. Let A and B be nonempty subsets of a metric space such that (A,B)
and (B,A) satisfy the property UC. Let S, T : A∪B → A∪B be cyclic mappings. Suppose
that S is a T -cyclic ϕ-contraction. If x ∈ A and y ∈ B are common best proximity points
of S and T , then

d(x, y) = d(A,B).

Proof. Since x is a common best proximity point of S and T , we get

d(x, Sx) = d(x, Tx) = d(A,B).

As (B,A) satisfies the property UC, we have Sx = Tx. Similarly, we also get Sy = Ty.
Because the mapping S is a T -cyclic ϕ-contraction, we have

d(Sx, Sy) ≤ d(Tx, Ty)− ϕ(d(Tx, Ty)) + ϕ(d(A,B))

= d(Sx, Sy)− ϕ(d(Sx, Sy)) + ϕ(d(A,B))

which yields that ϕ(d(Sx, Sy)) ≤ ϕ(d(A,B)). Since ϕ is strictly increasing, it follows that

d(Sx, Sy) = d(A,B).

Because (A,B) satisfies the property UC, we get Sy = x. Similarly, it can be shown that
Sx = y. Therefore, we can conclude that

d(x, y) = d(A,B).

This completes the proof.

The following result is a key result on the existence of a common best proximity point
for a generalized cyclic ϕ-contraction.

Theorem 3.9. Let A and B be nonempty subsets of a complete metric space such that B
is closed. Assume that (A,B) and (B,A) satisfy the property UC. Let S, T : A∪B → A∪B
be cyclic mappings satisfying the following conditions:
(i) S(A) ⊆ T (A) and S(B) ⊆ T (B);
(ii) S is a T -cyclic ϕ-contraction;
(iii) S and T commute, that is, ST = TS;
(iv) T is continuous;
(v) ϕ is lower semi-continuons.
Then there exist a unique element x ∈ A and a unique element y ∈ B such that

d(x, Sx) = d(x, Tx) = d(A,B) = d(y, Sy) = d(y, Ty).

Moreover, such best proximity points x and y satisfy the condition that

d(x, y) = d(A,B).
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Proof. Let x0 be a fixed element in A. Since S(A) ⊆ T (A), then there exists an element
x1 ∈ A such that Sx0 = Tx1. Given xn ∈ A, it is possible to choose an element xn+1 ∈ A
such that Sxn = Txn+1, since S(A) ⊆ T (A). Because the mapping S is a T -cyclic
ϕ-contraction, we have

d(Sxn, SSxn) ≤ d(Txn, TSxn)− ϕ(d(Txn, TSxn)) + ϕ(d(A,B)).

As S and T commute, we have d(Txn, TSxn) = d(Sxn−1, SSxn−1). Thus, we get

d(Sxn, SSxn) ≤ d(Sxn−1, SSxn−1)− ϕ(d(Sxn−1, SSxn−1)) + ϕ(d(A,B)), (3.1)

so, d(Sxn, SSxn) + ϕ(d(Sxn−1, SSxn−1)) ≤ d(Sxn−1, SSxn−1) + ϕ(d(A,B)).
Since ϕ(d(A,B)) ≤ ϕ(d(Sxn−1, SSxn−1)), and above inequality implies that
d(Sxn, SSxn) ≤ d(Sxn−1, SSxn−1). Therefore, lim

n→∞
d(Sxn, SSxn) exists. We also have

that {ϕ(d(Sxn, SSxn))}∞n=1 is non-increasing, so lim
n→∞

ϕ(d(Sxn, SSxn)) exists. Taking

n→∞ in (3.1), we can conclude that lim
n→∞

ϕ(d(Sxn, SSxn)) = ϕ(d(A,B)).

Since ϕ is strictly increasing, it follows that

d(Sxn, SSxn)→ d(A,B) as n→∞.

Using the same proof as above, we can show that

d(Sxn+1, SSxn)→ d(A,B) as n→∞.

As (B,A) satisfies the property UC, we have

d(Sxm, Sxm+1)→ 0 as m→∞.

Further, given ε > 0. Choose a positive integer m0 such that

d(Sxm, SSxm) ≤ d(A,B) +
ε

2
for m ≥ m0,

d(Sxm, Sxm+1) ≤ ε

2
for m ≥ m0.

Fix m such that m ≥ m0. It can be established easily by induction on n that

d(Sxm, SSxn) ≤ d(A,B) +
ε

2

for all n ∈ N with n ≥ m. It is obvious that the preceding condition holds when n = m.
Assume that the condition holds for some n ≥ m. Then, we have

d(Sxm, SSxn+1) ≤ d(Sxm, Sxm+1) + d(Sxm+1, SSxn+1)

≤ d(Sxm, Sxm+1) + d(Txm+1, TSxn+1)

− ϕ(d(Txm+1, TSxn+1)) + ϕ(d(A,B))

= d(Sxm, Sxm+1) + d(Sxm, SSxn)− ϕ(d(Sxm, SSxn))

+ ϕ(d(A,B))

≤ ε

2
+ d(A,B) +

ε

2
− ϕ(d(Sxm, SSxn)) + ϕ(d(A,B))

≤ d(A,B) + ε.

Hence, the aforesaid condition holds for n+ 1. Therefore,

lim
m→∞

sup
n≥m

d(Sxm, SSxn) = d(A,B).
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By Lemma 3.7, {Sxn} is a Cauchy sequence, so it converges to some y ∈ B. Thus,
Sxn → y and whence Txn → y. By the continuity of T , we get TSxn → Ty and
TTxn → Ty. Since S and T commute, we have STxn → Ty. By (ii), we have

d(STxn, Sxn) ≤ d(TTxn, Txn)− ϕ(d(TTxn, Txn)) + ϕ(d(A,B))

which implies

d(STxn, Sxn) + ϕ(d(TTxn, Txn)) ≤ d(TTxn, Txn) + ϕ(d(A,B)).

Taking the limit inferior yields

d(Ty, y) + lim inf
n→∞

ϕ(d(TTxn, Txn)) ≤ d(Ty, y) + ϕ(d(A,B)).

Thus, lim inf
n→∞

ϕ(d(TTxn, Txn)) ≤ ϕ(d(A,B)). By the lower semi-continuity of ϕ, we get

ϕ(d(y, Ty)) ≤ lim inf
n→∞

ϕ(d(TTxn, Txn)).

It follows that ϕ(d(y, Ty)) = ϕ(d(A,B)). Since ϕ is strictly increasing, we get

d(y, Ty) = d(A,B).

On the other hand,

d(Sy, Sxn) ≤ d(Ty, Txn)− ϕ(d(Ty, Txn)) + ϕ(d(A,B))

≤ d(Ty, Txn).

Letting n→∞, we obtain
d(y, Sy) = d(A,B).

As (A,B) satisfies the property UC, we obtain Sy = Ty. Put x := Sy = Ty. Because the
mapping S is a T -cyclic ϕ-contraction, we get

d(x, Sx) = d(Sy, Sx) ≤ d(Ty, Tx)− ϕ(d(Ty, Tx)) + ϕ(d(A,B)).

In view of the fact that S and T commute, we have

d(Ty, Tx) = d(Ty, STy) = d(x, Sx).

This implies by above inequality that ϕ(d(x, Sx)) ≤ ϕ(d(A,B)). Since ϕ is strictly
increasing, it follows that

d(x, Sx) = d(A,B),

and hence we have
d(x, Tx) = d(Ty, Tx) = d(A,B).

To show the uniqueness, let z ∈ B be a common best proximity point of S and T .
Then

d(z, Sz) = d(z, Tz) = d(A,B).

As (A,B) satisfies the property UC, we have Sz = Tz. Similarly, it can be shown that
Sx = Tx. Because the mapping S is a T -cyclic ϕ-contraction, we get

d(Sx, Sz) ≤ d(Tx, Tz)− ϕ(d(Tx, Tz)) + ϕ(d(A,B))

= d(Sx, Sz)− ϕ(d(Sx, Sz)) + ϕ(d(A,B)).

It follows that
d(Sx, Sz) = d(A,B).

Since (B,A) satisfies the property UC, it follows that Sx = z. Similarly, we also obtain
Sx = y. Therefore, y and z are identical. That is, y is a unique common best proximity
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point of S and T in B. Similarly, it can be shown that x is a unique common best
proximity point of S and T in A. Moreover, by Proposition 3.8, we can conclude that

d(x, y) = d(A,B).

This completes the proof.

The following result is directly obtained by Theorem 3.9 and Remark 3.6.

Corollary 3.10. [10] Let A and B be nonempty subsets of a complete metric space such
that B is closed. Assume that (A,B) and (B,A) satisfy the property UC. Let S, T :
A ∪B → A ∪B be cyclic mappings satisfying the following conditions:
(i) S(A) ⊆ T (A) and S(B) ⊆ T (B);
(ii) S is a T -cyclic contraction;
(iii) S and T commute;
(iv) T is continuous.
Then there exist a unique element x ∈ A and a unique element y ∈ B such that

d(x, Sx) = d(x, Tx) = d(A,B) = d(y, Sy) = d(y, Ty).

Moreover, such best proximity points x and y satisfy the condition that

d(x, y) = d(A,B).

As a consequence of Theorem 3.9, we obtain the following common fixed point theorem.

Corollary 3.11. Let A be nonempty closed subsets of a complete metric space. Let
S, T : A → A and ϕ : [0,+∞) → [0,+∞) is a strictly increasing and lower semi-
continuons mapping satisfying the following conditions:
(i) S(A) ⊆ T (A);
(ii) S and T commute;
(iii) T is continuous;
(iv) there is an α ∈ [0, 1) such that

d(Sx, Sy) ≤ d(Tx, Ty)− ϕ(d(Tx, Ty))

for all x, y ∈ A.
Then S and T have a unique common fixed point.

The following example illustrates the previous theorem.

Example 3.12. Consider R2 with the metric

d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2.

Let A = (−∞,−1] × (−∞, 0] and B = [1,∞) × (−∞, 0]. Let S, T : A ∪ B → A ∪ B be
defined as

S((x, y)) = (− 3
√
x, ey − 1) and T ((x, y)) = (−x3, y).

Let ϕ : [0,+∞)→ [0,+∞) be defined as

ϕ(x) =

{
x
5 , if x ∈ [0, 3],√
x, if x ∈ (3,∞).

It is obvious that (A,B) and (B,A) satisfy the property UC and above functions satisfy
(i) − (v) in our main theorem. Choose x0 = (−10,−10). Let {xn} be a sequence in A
generated by yn ≡ Sxn = Txn+1. We obtain the following numerical experiments for
common best proximity points of S and T .
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n xn yn d(xn, yn) d(xn, (−1, 0)) d(yn, (1, 0))
0 (-10.00000,-10.00000) (2.15443,-0.99995) 15.12386 13.45362 1.52729
1 (-1.29155,-0.99995) (1.08902,-0.63210) 2.40883 1.04159 0.63834
2 (-1.02883,-0.63210) (1.00952,-0.46853) 2.04491 0.63276 0.46862
3 (-1.00316,-0.46853) (1.00105,-0.37408) 2.00644 0.46854 0.37408
4 (-1.00035,-0.37408) (1.00012,-0.31208) 2.00143 0.37408 0.31208
...

...
...

...
...

...
300 (-1.00000,-0.00661) (1.00000,-0.00659) 2.00000 0.00661 0.00659

Table 1. Numerical experiments of Example 3.12.

Figure 1. {xn} and {yn} of Example 3.12.

Observe that (−1, 0) is a unique common best proximity point of S and T in A and
(1, 0) is a unique common best proximity point of S and T in B, and d(A,B) = 2.

In the next theorem, we improve the conditions of the previous theorem by replacing
the continuity assumption with other type of continuity.

Definition 3.13. Let A and B be nonempty subsets of a metric space. A cyclic mapping
T : A ∪ B → A ∪ B is said to be relatively continuous at a point x ∈ A if, given ε > 0,
there exists δ > 0 such that

d(x, y) < d(A,B) + δ =⇒ d(Tx, Ty) < d(A,B) + ε

for all y ∈ B. Similarly, one can define relative continuity at a point in B. If T is relatively
continuous at each and every point of its domain, then it is simply said to be relatively
continuous.

Theorem 3.14. Let A and B be nonempty closed subsets of a complete metric space.
Assume that (A,B) and (B,A) satisfy the property UC. Let S, T : A ∪ B → A ∪ B be
cyclic mappings satisfying the following conditions:
(i) S(A) ⊆ T (A) and S(B) ⊆ T (B);
(ii) S is a T -cyclic ϕ-contraction;
(iii) S and T commute;
(iv) T is relatively continuous;
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(v) ϕ is lower semi-continuons.
Then there exist a unique element x ∈ A and a unique element y ∈ B such that

d(x, Sx) = d(x, Tx) = d(A,B) = d(y, Sy) = d(y, Ty).

Moreover, such best proximity points x and y satisfy the condition that

d(x, y) = d(A,B).

Proof. Let {xn} be a sequence defined as in Theorem 3.9, that is, Sxn = Txn+1 for all
n. The same as in Theorem 3.9, we have that

Sxn → y and Txn → y

for some y ∈ B. Similarly, one can define a sequence {yn} in B such that Syn = Tyn+1

for all n and

Syn → x and Tyn → x

for some x ∈ A. Because the mapping S is a T -cyclic ϕ-contraction, we obtain

d(Sxn, Syn) ≤ d(Txn, T yn)− ϕ(d(Txn, T yn)) + ϕ(d(A,B)).

Taking the limit inferior yields

lim inf
n→∞

ϕ(d(Txn, T yn)) ≤ ϕ(d(A,B)).

By the lower semi-continuity of ϕ, we have

ϕ(d(y, x)) ≤ lim inf
n→∞

ϕ(d(Txn, Tyn)).

It follows that ϕ(d(y, x)) = ϕ(d(A,B)). Since ϕ is strictly increasing, we get

d(x, y) = d(A,B).

In view of the facts that T is relatively continuous and S is a T -cyclic ϕ-contraction, it
follows that S is also relatively continuous. Since d(x, Txn)→ d(A,B) and S is relatively
continuous, we have

d(Sx, STxn)→ d(A,B).

Because T is relatively continuous and d(x, Sxn)→ d(A,B), we have
d(Tx, TSxn)→ d(A,B). As S and T commute, we get

d(Tx, STxn)→ d(A,B).

Since (A,B) satisfies the property UC, it can be concluded that Sx = Tx. Because the
mapping S is a T -cyclic ϕ-contraction, we obtain

d(Sx, Syn) ≤ d(Tx, Tyn)− ϕ(d(Tx, Tyn)) + ϕ(d(A,B)).

Taking the limit inferior yields

lim inf
n→∞

ϕ(d(Tx, Tyn)) ≤ ϕ(d(A,B)).

This implies by the lower semi-continuity of ϕ that ϕ(d(Tx, x)) = ϕ(d(A,B)), hence

d(Sx, x) = d(Tx, x) = d(A,B),

and so x is a common best proximity point of S and T in A. Using the same proof as
above, we can show that y is also a common best proximity point of S and T in B and

d(x, y) = d(A,B).
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Proceeding as in the proof of Theorem 3.9, it can be shown that the best proximity point
is unique. This completes the proof.

The following result of Sadiq Basha and Shahzad [10] is a consequence of Theorem
3.14.

Corollary 3.15. [10] Let A and B be nonempty closed subsets of a complete metric space.
Assume that (A,B) and (B,A) satisfy the property UC. Let S, T : A ∪ B → A ∪ B be
cyclic mappings satisfying the following conditions:
(i) S(A) ⊆ T (A) and S(B) ⊆ T (B);
(ii) S is a T -cyclic contraction;
(iii) S and T commute;
(iv) T is relatively continuous.
Then there exist a unique element x ∈ A and a unique element y ∈ B such that

d(x, Sx) = d(x, Tx) = d(A,B) = d(y, Sy) = d(y, Ty).

Moreover, such best proximity points x and y satisfy the condition

d(x, y) = d(A,B).
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