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Abstract Recently, Patir et al. [B. Patir, N. Goswami, V.N. Mishra, Some results on fixed point

theory for a class of generalized nonexpansive mappings, Fixed Point Theory Appl. (2018)] introduced

new class of generalized nonexpansive mappings which is a new condition on mappings called condition
Bγ,µ. They studied some existences and convergence theorems for such class of mappings. This new

class of mappings is important because it contains the class of Suzuki mappings and hence the class of
nonexpansive mappings. In this paper, we further studied this new class of mappings and as a result

some new convergence theorems are established using up-to-date iteration process of Hussain et al. [N.

Hussain, K. Ullah, M. Arshad, Fixed point approximation of Suzuki generalized nonexpansive mappings
via new faster iteration process, J. Nonlinear Convex Anal. 19 (8) (2018) 1383–1393].
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1. Introduction

A mapping T on a subset D of a Banach space E is called contraction if and only if
there is a real number r ∈ [0, 1) such that

||Tu− Tv|| ≤ r||u− v||, for all u, v ∈ D. (1.1)

If (1.1) is hold at r = 1, then T is called nonexpansive. A point p ∈ D is called a
fixed point for T if and only if Tp = p. Throughtout the work, the notation fix(T ) will
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represent the set {p ∈ D : Tp = p}. The mapping T is called quasi-nonexpansive if and
only if for each p ∈ fix(T ) and u ∈ D, we have

||Tu− Tp|| ≤ ||u− p||.
It is now well-known that the set fix(T ) is nonempty if T acting on nonempty closed
bounded convex subset of a uniformly convex Banach space (see, Browder [1], Gohde [2]
and Kirk [3]).

In [4] Suzuki introduced a new class of mappings (which is the direct extension of the
class of nonexpansive mappings). A mapping T : D → D is said to be Suzuki mapping
(or satisfy condition (C)) if and only if

1

2
||u− Tu|| ≤ ||u− v|| ⇒ ||Tu− Tv|| ≤ ||u− v||,

for each u, v ∈ D.
Recently in 2018, Patir et al. [5] introduced new condition on mappings called condition

Bγ,µ. A mapping T : D → D is said to satisfy condition Bγ,µ (or Patir mapping) if and
only if there exists γ ∈ [0, 1] and µ ∈ [0, 12 ] satisfying 2µ ≤ γ such that for each u, v ∈ D,

γ||u− Tu|| ≤ ||u− v||+ µ||v − Tv||
implies ||Tu− Tv|| ≤ (1− γ)||u− v||+ µ(||u− Tv||+ ||v − Tu||).

They also showed that, this new class of mappings is larger than the class of Suzuki
mappings.

Example 1.1. [5] Let D = [0, 2]. Set T as follow:

Tu =

{
0 if u 6= 2
1 if u = 2.

Here T satisfies condition Bγ,µ, but does not condition (C).

For fixed points investigation of contraction, nonexpansive and generalized nonexpan-
sive mappings, we often use the well-known Picard [6], Mann [7], Ishikawa [8], S [9],
Noor [10], Abbas [11], SP [12], S∗ [13], CR [14], Normal-S [15], Picard-Mann hybrid [16],
Picard-S [17] and Thakur et al. [18] iterative processes. For more details and some recent
literature on iteration processes, we refer the reader to [19–25]

The Picard iteration process [6] is defined as follow:

u1 ∈ D,
un+1 = Tun, n ≥ 1,

}
(1.2)

The Mann iteration process [7] reads as follow:

u1 ∈ D,
un+1 = (1− an)un + anTun, n ≥ 1,

}
(1.3)

where an ∈ (0, 1).

The Ishikawa iterative process [8] is the extension of Mann iterative process [7] from
one-step to two-steps:

u1 ∈ D,
vn = (1− bn)un + bnTun,
un+1 = (1− an)un + anTvn, n ≥ 1,

 (1.4)

where an, bn ∈ (0, 1).
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In 2007, Agarwal et al. [9] introduced the following new two-step iteration process
known as S iteration process, which converges faster than Picard, Mann and Ishikawa
iterations:

u1 ∈ D,
vn = (1− bn)un + bnTun,
un+1 = (1− an)Tun + anTvn, n ≥ 1,

 (1.5)

where an, bn ∈ (0, 1).

In 2014, Gursoy and Karakaya [17] introduced Picard-S hybrid iteration process, which
converges faster than all Picard, Mann, Ishikawa, Noor, SP, CR, S, S∗, Abbas and Normal-
S iteration process:

u1 ∈ D,
wn = (1− bn)un + bnTun,
vn = (1− an)Tun + anTwn,
un+1 = Tvn, n ≥ 1,

 (1.6)

where an, bn ∈ (0, 1).

In 2016, Thakur et al. [18] used a new iteration process. With the help of an numer-
ical example, they proved that this new process is faster than Picard, Mann, Ishikawa,
Agarwal, Noor and Abbas iteration processes:

u1 ∈ D,
wn = (1− bn)un + bnTun,
vn = T ((1− an)un + anwn) ,
un+1 = Tvn, n ≥ 1,

 (1.7)

where an, bn ∈ (0, 1).

Remark 1.2. The rate of convergence of iteration process (1.6) and (1.7) is almost same.

Recently in 2018, Hussain et al. [26] proposed the following new iteration process
so-called K iteration process:

u1 ∈ D,
wn = (1− bn)un + bnTun,
vn = T ((1− an)Tun + anTwn),
un+1 = Tvn, n ≥ 1,

 (1.8)

where an, bn ∈ (0, 1).

They proved some weak and strong convergence results of K iteration process for the
class of Suzuki generalized nonexpansive mappings. Also, they proved numerically that
K iteration process is better than the leading three-step Picard-S and leading two-step S
iteration process.

In this article, we extend their results to the more general formulation of Patir gener-
alized nonexpansive mappings (mappings with Bγ,µ condition).
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2. Preliminaries

Let D be a nonempty subset of a Banach space E and {xn} a bounded sequence in E.
For each u ∈ E define:

(1) asymptotic radius of {un} at u by Ar(u, {un}) := lim supn→∞ ||u− un||;
(2) asymptotic radius of {un} relative to D by Ar(D, {un}) = inf{Ar(u, {un}) :
u ∈ D};

(3) asymptotic center of {un} relative to D by
Ac(D, {un}) = {u ∈ D : Ar(u, {un}) = Ar(D, {un})}.

When the space E is uniformly convex [27], then the set Ac(D, {un}) is always singleton.
Notice also, the set Ac(D, {un}) is convex as well as nonempty provided that D is weakly
compact convex, (see e.g., [28, 29]).

We say that, a Banach space E has the Opial’s property if and only if for all {un} in E
which weakly converges to u ∈ E and for every v ∈ E-{u}, one has lim supn→∞ ||un−u|| <
lim supn→∞ ||un − v||.

Proposition 2.1. [5] Let D be a nonempty subset of a Banach space E having Opial
property. Let T : D → D satisfies the condition Bγ,µ. If p is a fixed point of T : D → D,
then for each u ∈ D

||Tp− Tu|| ≤ ||p− u||.

From Proposition 2.1, we obtain the following facts.

Lemma 2.2. Let D be a nonempty subset of a Banach space E. Let T : D → D satisfies
the condition Bγ,µ. Then the set fix(T ) is closed. Moreover, if E is strictly convex and
D is convex then fix(T ) is also convex.

Theorem 2.3. [5] Let D be a nonempty subset of a Banach space E having Opial property.
Let T : D → D satisfies the condition Bγ,µ. If {un} is sequence in E such that

(i) {un} converges weakly to h,
(ii) limn→∞ ||Tun − un|| = 0,

then Th = h.

Proposition 2.4. [5] Let D be a nonempty subset of a Banach space E. Let T : D → D
satisfies the condition Bγ,µ. Then, for all u, v ∈ D and c ∈ [0, 1],

(i) ||Tu− T 2u|| ≤ ||u− Tu||,
(ii) at least one of the following ((a) and (b)) holds:
(a) c

2 ||u− Tu|| ≤ ||u− v||
(b) c

2 ||Tu− T
2u|| ≤ ||Tu− v||.

The condition (a) implies ||Tu−Tv|| ≤ (1− c
2 )||u−v||+µ(||u−Tv||+||v−Tu||) and

condition (b) implies ||T 2u−Tv|| ≤ (1− c
2 )||Tu−v||+µ(||Tu−Tv||+ ||v−T 2u||).

(iii) ||u− Tv|| ≤ (3− c)||u− Tu||+
(
1− c

2

)
||u− v||+ µ(2||u− Tu||+ ||u− Tv||+

||v − Tu||+ 2||Tu− T 2u||).

The following facts are in [30].

Lemma 2.5. Let E be a UCBS and 0 < p ≤ ξn ≤ q < 1 for every n ≥ 1. If {un} and
{vn} are two sequences in E such that lim supn→∞ ||un|| ≤ l, lim supn→∞ ||vn|| ≤ l and
limn→∞ ||ξnun + (1− ξn)vn|| = l for some a ≥ 0 then, limn→∞ ||un − vn|| = 0.
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3. Main Results

Lemma 3.1. Let D be a nonempty closed convex subset of a UCBS E and T : D → D be
a mapping satisfying condition Bγ,µ with fix(T ) 6= ∅. Let {un} be a sequence generated
by (1.8), then limn→∞ ||un − p|| exists for all p ∈ fix(T ).

Proof. Let p ∈ fix(T ). By Proposition 2.1, we have

||wn − p|| = ||(1− bn)un + bnTun − p||
≤ (1− bn)||un − p||+ bn||Tun − p||
≤ (1− bn)||un − p||+ bn||un − p||
≤ ||un − p||,

and

||vn − p|| = ||T ((1− an)Tun + anTwn)− p||
≤ ||(1− an)Tun + anTwn − p||
≤ (1− an)||Tun − p||+ an||Twn − p||
≤ (1− an)||un − p||+ an||wn − p||.

They imply that

||un+1 − p|| = ||Tvn − p|| ≤ ||vn − p||
≤ (1− an)||vn − p||+ an||wn − p||
≤ (1− an)||un − p||+ an||un − p||
≤ ||un − p||.

Thus {||un−p||} is non-increasing and bounded, which implies that limn→∞ ||un−p|| exists
for all p ∈ fix(T ).

Theorem 3.2. Let D be a nonempty closed convex subset of a UCBS E and T : D → D
be a mapping satisfying condition Bγ,µ. Let {un} be a sequence generated by (1.8). Then,
fix(T ) 6= ∅ if and only if {un} is bounded and limn→∞ ||Tun − un|| = 0.

Proof. Let fix(T ) 6= ∅ and p ∈ fix(T ). By Lemma 3.1, limn→∞ ||un−p|| exists and {un}
is bounded. Suppose

lim
n→∞

||un − p|| = l. (3.1)

By the proof of Lemma 3.1 together with (3.1), we have

lim sup
n→∞

||wn − p|| ≤ lim sup
n→∞

||un − p|| = l. (3.2)

By Proposition 2.1, we have

lim sup
n→∞

||Tun − p|| ≤ lim sup
n→∞

||un − p|| = l. (3.3)

Again by the proof of Lemma 3.1, we have

||un+1 − p|| ≤ (1− an)||un − p||+ an||wn − p||.
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It follows that

||un+1 − p|| − ||un − p|| ≤
||un+1 − p|| − ||un − p||

an
≤ ||wn − p|| − ||un−p||.

So, we can get ||un+1 − p|| ≤ ||wn − p||. Therefore,

l ≤ lim inf
n→∞

||wn − p||. (3.4)

From (3.2) and (3.4), we obtain

l = lim
n→∞

||wn − p||. (3.5)

From (3.5), we have

r = lim
n→∞

||wn − p||

= lim
n→∞

||(1− bn)un + bnTun − p||

= lim
n→∞

||(1− bn)(un − p) + bn(Tun − p)||.

Hence,

l = lim
n→∞

||(1− bn)(un − p) + bn(Tun − p)||. (3.6)

Now from (3.1), (3.3) and (3.6) together with Lemma 2.5, we obtain

lim
n→∞

||Tun − un|| = 0.

Conversely, let p ∈ Ac(D, {un}). By Proposition 2.4(iii), for γ = c
2 , c ∈ [0, 1],

||un − Tp|| ≤ (3− c)||un − Tun||+
(

1− c

2

)
||un − p||+ µ(2||un − Tun||

+ ||un − Tp||+ ||p− Tun||+ 2||Tun − T 2un||)

≤ (3− c)||un − Tun||+
(

1− c

2

)
||un − p||+ µ(2||un − Tun||

+ ||un − Tp||+ ||un − p||+ ||un − Tun||+ 2||un − Tun||)
(by Proposition 2.4(i))

⇒ (1− µ) lim sup
n→∞

||un − Tp|| ≤ (1− c

2
+ µ) lim sup

n→∞
||un − p||

⇒ lim sup
n→∞

||un − Tp|| ≤
(

1− c
2 + µ

1− µ

)
lim sup
n→∞

||un − p||

≤ lim sup
n→∞

||un − p||(
as

1− c
2 + µ

1− µ
≤ 1, for 2µ ≤ γ =

c

2

)
⇒ Ar (Tp, {un}) ≤ Ar (p, {un}) .

So Tp ∈ Ac(D, {un}). Since E is uniformly convex Banach space, Ac(D, {un} is singleton.
Hence Tp = p.

Theorem 3.3. Let D a nonempty closed convex subset of a UCBS E having the Opial
property and T : D → D be a mapping satisfying condition Bγ,µ with fix(T ) 6= ∅. Then,
{un} generated by (1.8) converges weakly to an element of fix(T ).
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Proof. By Theorem 3.2, {un} is bounded and limn→∞ ||Tun−un|| = 0. Since B is UCBS,
B is reflexive. Thus, we can find a subsequence {unj} of {un} such that {unj} converges
weakly to some h1 ∈ D. By Theorem 2.3, we obtain h1 ∈ fix(T ). It is suffice to prove
that {un} converges weakly to h1. Indeed, if {un} does not converge weakly to h1. Then,
we can find a subsequence {unk

} of {un} and h2 ∈ D such that {unk
} converges weakly

to h2 and h2 6= h1. Hence, h2 ∈ fix(T ) by Theorem 2.3. Opial condition and Lemma
3.1, gives us

lim
n→∞

||un − h1|| = lim
j→∞

||unj − h1|| < lim
j→∞

||unj − h2||

= lim
n→∞

||un − h2|| = lim
k→∞

||unk
− h2||

< lim
k→∞

||unk
− h1|| = lim

n→∞
||un − h1||.

This is a contradiction. So, h1 = h2.

Theorem 3.4. Let D be a nonempty closed convex subset of a UCBS E and T : D → D be
a mapping satisfying condition Bγ,µ. If fix(T ) 6= ∅ and lim infn→∞ dist(un, fix(T )) = 0.
Let {un} be the sequence generated by (1.8). Then {un} converges strongly to fixed point
of T .

Proof. By Lemma 3.1, limn→∞ ||un−p|| exists, for all p ∈ fix(T ). So, limn→∞ dist(un, fix(T ))
exists, thus

lim
n→∞

dist(un, fix(T )) = 0.

Thus, there exists subsequence {unk
} of {un} and {ωk} in fix(T ) with ||unk

−ωk|| ≤ 1
2k

.
k ≥ 1. Moreover, {un} is nonincreasing by the proof of Lemma 3.1. Hence

||unk+1
− ωk|| ≤ ||unk

− ωk|| ≤
1

2k
.

We prove that {ωk} is a Cauchy sequence in fix(T ).

||ωk+1 − ωk|| ≤ ||ωk+1 − unk+1
||+ ||unk+1

− ωk||

≤ 1

2k+1
+

1

2k
≤ 1

2k−1
→ 0, as k →∞.

This shows that the sequence {ωk} is Cauchy in fix(T ). Since, fix(T ) is closed by Lemma
2.2. Therefore, ωn → p for some p ∈ fix(T ). By Lemma 3.1, limn→∞ ||un− p|| exists. So
the proof is finished.

Finally we prove the following strong of {un} with the help of condition (I). Recall
that a self mapping T on a subset D of a Banach space is said to satisfy the condition (I)
if and only if there exists a nondecreasing function π : [0,∞)→ [0,∞) satisfying π0 = 0
and πt > 0 for every t > 0 such that

||Tu− u|| ≥ πdist(u, fix(T )) for all u ∈ D.

Theorem 3.5. Let D be a nonempty closed convex subset of a UCBS E and T : D → D be
a mapping satisfying condition Bγ,µ with fix(T ) 6= ∅. Let {un} be the sequence generated
by (1.8). If T satisfies condition (I) then {un} converges strongly to the fixed point of T .
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Proof. From Theorem 3.2, it follows that

lim inf
n→∞

||Tun − un|| = 0.

By condition (I), we have

lim inf
n→∞

(dist(un, fix(T ))) = 0.

The conclusion follows from Theorem 3.4.

4. Example

In this section, we construct a new example of Patir mapping which is not Suzuki.

Example 4.1. We consider the subset D = [0,∞) of real line and set T on D as follow:

Tu =

{
0 if u < 1

400
u
2 if u ≥ 1

400 .

Choose u = 1
700 and v = 1

400 . We see that, 1
2 |u − Tu| = 1

1400 < 3
2800 = |u − v| but

|Tu − Tv| = 1
800 >

3
2800 = |u − v|. Thus T is not Suzuki mapping. Choose γ = 1 and

µ = 1
2 , we have

Case I: For u, v < 1
400 , we have

(1− γ)|u− v|+ µ(|u− Tv|+ |v − Tu|) ≥ 0 = |Tu− Tv|.
Case II: For u, v ≥ 1

400 , we have

(1−γ)|v|+µ(|u−Tv|+|v−Tu|) =
1

2
(|u− Tv|+ |v − Tu|)

=
1

2

(∣∣∣u− v

2

∣∣∣+
∣∣∣v − u

2

∣∣∣)
≥ 1

2

(∣∣∣∣3u2 − 3v

2

∣∣∣∣)
=

3

4
|u− v| ≥ 1

2
|u− v| = |Tu− Tv|.

Case III: For u ≥ 1
400 and v < 1

400 , we have

(1−γ)|u−v|+µ(|u−Tv|+|v−Tu|) =
1

2
(|u− Tv|+ |v − Tu|)

=
1

2

(
|u|+

∣∣∣v − u

2

∣∣∣)
=

1

2
|u|+ 1

2

∣∣∣v − u

2

∣∣∣
≥ 1

2
|u| = |Tu− Tv|.

Hence, T satisfies condition B1, 12
. Moreover, fix(T ) = {0}.

Take αn = 4
5 and βn = 1

5 for n ≥ 1. By choosing u1 = 4 , we may observe in the Table
1 as well as in Figure 1 the behavior of K iterates with the leadings three-step Picard-S
and leading two step S iterates.
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Table 1. Sequences generated by K, Picard-S and S iteration processes

K Picard-S S
u1 4 4 4
u2 0.46000000000000 0.92000000000000 1.84000000000000
u3 0.05290000000000 0.21160000000000 0.84640000000000
u4 0.00608350000000 0.04866800000000 0.38934400000000
u5 0 0.01119364000000 0.17909824000000
u6 0 0.00257453720000 0.08238519040000
u7 0 0 0.03789718758400
u8 0 0 0.01743270628864
u9 0 0 0.00801904489277
u10 0 0 0.00368876065067
u11 0 0 0.00169682989931
u12 0 0 0
u13 0 0 0
u14 0 0 0

0 1 2 3 4

0.0

0.5

1.0

1.5

u
n

u
n
+

1

Figure 1. Convergence behavior of K, Picard-S and S iterates for map-
ping T defined in Example 4.1 where u1 = 4.
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