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1. Introduction

Street lighting has number of important benefits such as promoting security in urban
areas and increasing the quality of life by providing lights to extend the working hours [1].
It is well known from the review of literatures that the road lighting has significant safety
benefits for drivers, riders, and pedestrians. Regarding the NZTA Economic Evaluation
Manual (EEM), street lights can reduce 35% of crashes as the effect of upgrading or
improving lighting where lighting is poor [2]. Moreover, street lights is also as likely to
reduce crime in these neighborhoods because of a diffusion of benefits [3].

To consider n × n square grid at each intersection, o refers to a street light. Each of
the n2 lights is broken with the probability of p. So, there are 2n(n− 1) sections of roads
(−and|) bounded on both sides by the lights, see Figure 1 for a n × n square grid. The
section of roads will be dark if the lights to both ends are broken. It might be said that
each section of road is dark with probability of p2.
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Figure 1. A n× n square grid

For instance, if the 6× 6 square grid (Figure 2) A,B,C, . . .L1 refer to lights, we, then,
have 36 lights and 60 sections of roads. The R1 road will be dark if the lights A and B are
broken. We, consequently, are interested in the following problem: What is the number
of bright sections of road ?

Figure 2. A 6× 6 square grid

We can construct the random variable to obtain the problem by the following, let

Wn =

2n(n−1)∑
i=1

Xi, (1.1)

be the total number of bright sections of road, where

Xi =

{
1 if the ith section of road is bright
0 otherwise,
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and pi
2 be the probability of section of road is dark with i ∈ {1, 2, . . . , 2n(n − 1)}. For

n beginning sufficiently large, it is logical to approximate the distribution of Wn by
Poisson distribution with mean λ = EWn = [2n(n − 1) − 1]P (Xi = 1) = (2n2 − 2n −
1)(1− pi2)

2n(n−1)
.

In this study, we derived a uniform bound for the error on
∣∣∣P (W̃n ∈ A)− Poiλ(A)

∣∣∣,
where Wn be the total number of bright sections of road. The tool for giving our main
results consisted of the so-called poisson approximation and Stein-Chen coupling method,
which we mentioned them in Section 2. The following theorem is our main results.

Theorem 1.1. Let Wn be the total number of bright sections of road. Then we have

1.
∣∣∣P (W̃n ∈ A)− Poiλ(A)

∣∣∣ ≤ (2n2 − 2n− 1)Cλ,n2,A

(
p4

q−p4

)
2.
∣∣∣P (W̃n ∈ A)− Poiλ(A)

∣∣∣ ≤ (1− e−λ)(2n2 − 2n− 1)
(

p4

q−p4

)
where λ = (2n2−2n−1)(1− pi2)

2n(n−1)
, Cλ,n2,A = max

{( n2

n2−1
2

)
,
(n2

n2

2

)}
min

{
1, λ, 4(λ)

MA+1

}
,

4(λ) =

{
eλ + λ− 1 if λ−1(eλ − 1) ≤MA,
2(eλ − 1) if λ−1(eλ − 1) > MA,

and

MA =

{
max{w | Cw ⊆ A} if 0 ∈ A,
min{w | w ∈ A} if 0 6∈ A.

when Cw = {0, 1, 2, . . . , w}

2. Poisson Approximation via Stein-Chen Method

The Stein-Chen Method of Poisson Approximation provides a powerful technique for
computing an error bound when approximating probabilities by a Poisson distribution.

Stein [4] introduced a new powerful technique for the obtaining the rate of convergence
to standard normal distribution. Chen [5] applied Stein’s idea to obtain approximation
results for the Poisson distribution. Our starting point is the Stein equation for Poisson
distribution, which gives,

IA(j)− Poiλ(A) = λgλ,A(j + 1)− jgλ,A(j) (2.1)

λ > 0, j ∈ N ∪ {0}, A ⊆ N ∪ {0} and IA : N ∪ {0} → R be defined by

IA(w) =

{
1 ;w ∈ A,
0 ;w 6∈ A.

The solution gλ,A of (2.1) is the form

gλ,A(w) =

{
(w − 1)!λ−weλ[Pλ(IA∩Cw−1

)− Pλ(IA)Pλ(ICw−1
)] ;w ≥ 1,

0 ;w = 0

where

Pλ(IA) = e−λ
∞∑
l=0

IA(l)
λl

l!

and

Cw−1 = {0, 1, . . . , w − 1}.
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By substituting j and λ in (2.1) by any integer-valued random variable W and λ = EW ,
we have

P(Wn ∈ A)− PoiλA = E(λgλ,A(Wn + 1))− E(Wngλ,A(Wn)). (2.2)

In the case where the dependence between the instances of Xi is global, there is an
alternative approach to approximating the distribution of Wn. This approach is referred
to as The Coupling approach, which was first proposed by Barbour ([6] 1982). This ap-
proach is particularly useful when it is possible to construct a random variable. Wn,i, for
each a i on a common probability space with Wn such that Wn,i is distributed as Wn−Xi

conditional on the event Xi = 1.
There have been a number of successful applications of this method, Barbour ([6] 1982),

Janson ([7] 1994), Lange ([8] 2003).

Theorem 2.1. If Wn and Wn,i are defined as above, pi = E(Xi) = P (Xi = 1), λ =
E(Wn), then

|P(Wn ∈ A)− Poiλ(A)| ≤‖ gλ,A ‖
n∑
i=1

piE|Wn −Wn,i| (2.3)

where ‖ gλ,A ‖:= sup
w

[gλ,A(w + 1)− gλ,A(w)].

Many authors would like to determine a bound of ‖ gλ,A ‖. For A ⊆ N ∪ {0}, Chen
([5], 1975) prove that

‖ gλ,A ‖≤ min{1, λ−1}
and Janson ([7], 1994) showed that

‖ gλ,A ‖≤ λ−1(1− e−λ). (2.4)

In case of non-uniform bound, Neammanee ([9], 2003) showed that

‖ gλ,A ‖≤ min

{
1

w0
, λ−1

}
and Teerapabolarn and Neammanee ([10], 2005) gave bound of ‖ gλ,A ‖ where A =
{0, 1, . . . , w0} in the terms of

‖ gλ,A ‖≤ λ−1(1− e−λ) min

{
1,

eλ

w0 + 1

}
.

In general case for any subset A of {0, 1, . . . , n}, Santiwipanont and Teerapabolarn ([11],
2006) gave a bound in the form of

‖ gλ,A ‖≤ λ−1 min

{
1, λ,

4(λ)

MA + 1

}
(2.5)

where

4(λ) =

{
eλ + λ− 1 if λ−1(eλ − 1) ≤MA,
2(eλ − 1) if λ−1(eλ − 1) > MA,

and

MA =

{
max{w | Cw ⊆ A} if 0 ∈ A,
min{w | w ∈ A} if 0 6∈ A.
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The difficult part in applying Theorem 2.1 is to find Wn,i which make
E|Wn −Wn,i| small enough. So, there has been no solution in general. For the case of
X1, . . . , Xn are independent, we let Wn,i = Wn −Xi. Then E|Wn −Wn,i| = pi and from
(2.3), we have

|P(Wn ∈ A)− Poiλ(A)| ≤‖ gλ,A ‖
n∑
i=1

p2i .

The problem of the construction of Wn,i is difficult in the case of dependent indicator
summand.

In next section, we will use Theorem 2.1 to prove our main result by constructing the
random variable Wn,i which make E|Wn −Wn,i| small.

3. Proof of Thorem 1.1

Proof. For each i ∈ {0, 1, 2, . . . , 2n(n− 1)}, we defined Xij as following

Xij =

 1 if the jth section of road is bright after removing
the ith section of road which is bright,

0 otherwise.

Let Wn,i =
∑n
i=1,j 6=iXij be the total number of bright sections of road after we removed

the ith section which was bright.
Suppose that {js|s = 1, 2, 3, . . . , w0} be the set of w0 bright sections of road, w0 <

2n(n− 1), so for each w0 ∈ {0, 1, 2, . . . , 2n2 − 2n}, we got

P(Wn,i = w0) = (1−
∑w0

s=1 p
2
js

1− p2i
)2n

2−2n

and

P(Wn −Xi = w0 | Xi = 1) =
P(Wn −Xi = w0, Xi = 1)

P(Xi = 1)

=
P(Wn = w0 + 1, Xi = 1)

P(Xi = 1)

=

{
1− (p2i +

∑w0

s=1 p
2
j2

)
}2n2−2n

(1− p2i )2n
2−2n

=
(1− p2i −

∑w0

s=1 p
2
js

)2n
2−2n

(1− p2i )2n
2−2n

= (1−
∑w0

s=1 p
2
js

1− p2i
)2n

2−2n

Then Wn,i had the same distribution as Wn − Xi conditional on Xi = 1. In order to
bound E|Wn −Wn,i|, we observed that

• In case Xi = 1, we had the ith section of road was bright. Thus the number of
bright sections of road were bright after removing the ith section of road, equal
to the number of the bright sections of road minus 1, that was

Wn,i = Wn − 1. (3.1)
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• In case Xi = 0, we had the total number of bright sections of road after we
removed the ith section of road and we tested them again as defined, equal to the
number of the bright sections of road minus the sum of number of the jth sections
of road, where j 6= i, was bright sections of road in the first-test and they were
dark after we tested them again, let

Wn,i = Wn −
2n(n−1)∑
i,j=1,i6=j

XjYij . (3.2)

For each j ∈ {0, 1, 2, . . . , 2n(n − 1)}, such that j 6= i, we defined the indicator random
variable Yij as follow:

Yij =

 1 if the jth section of road is dark after we test
the sections of road again, in which

0 otherwise.

We knew that

E |Wn −Wn,i |= E(Wn −Wn,i)
+

+ E(Wn −Wn,i)
−
.

Where

(Wn −Wn,i)
+

= max{Wn −Wn,i, 0},

and

(Wn −Wn,i)
−

= −min{Wn −Wn,i, 0}.

Form (3.1) and (3.2).

• In case Xi=1, we had (Wn −Wn,i)
+ = 1 and (Wn −Wn,i)

− = 0

• In case Xi=0, we had (Wn−Wn,i)
+ =

∑n
i,j=1,i6=j XiYij and (Wn−Wn,i)

−= 0.
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Therefore,
(Wn −Wn,i)

+ =
∑n
i,j=1,i6=j XiYij and (Wn −Wn,i)

− = 0.

E(Wn −Wn,i)
+ ≤ E{

2n2−2n∑
i,j=1,i 6=j

XiYij}

=

2n2−2n∑
i,j=1,i6=j

E{XiYij}

=

2n2−2n∑
i,j=1,i6=j

P(Xi = 1,Yij = 1)

=

2n2−2n∑
i,j=1,i6=j

P(Xi = 1)P(Yij = 1)

=

2n2−2n∑
i,j=1,i6=j

(1− p2j )
2n2−2n

{
1− (1−

p2i p
2
j

(1− p2j )
)

bi}

≤
2n2−2n∑
i,j=1,i6=j

{
1− (1−

p2i p
2
j

1− p2j
)

bi}

≤
2n2−2n∑
i,j=1,i6=j

{
1− (1−

p2i p
2
j

1− p2j
)

n2}

=

2n2−2n∑
i,j=1,i6=j

{
1− (

1− p2j − p2i p2j
1− p2j

)

n2}
, (3.3)

where bi be the number of the lights was bright in the ith section of road.
Suppose that p = max1≤i≤n2pi, we had

E|Wn −Wn,i| ≤
2n2−2n∑
i,j=1,i6=j

{
1− (

1− p2j − p2i p2j
1− p2j

)

n2}

= (2n2 − 2n− 1)
{

1− (
1− p2j − p2i p2j

1− p2j
)

n2}
≤ (2n2 − 2n− 1)

{
1− (

1− p2 − p4

1− p2
)
n2}

= (2n2 − 2n− 1)
{

1− (
1− p2 − p4

q
)
n2}

= (2n2 − 2n− 1)
{

1−
n2∑
k=0

(
n2

k

)
(1− p2)n

2−k(−p4)kq−n
2
}
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E|Wn −Wn,i| ≤ (2n2 − 2n− 1)
{

1−
n2∑
k=0

(
n2

k

)
(q)n

2−k(−p4)kq−n
2
}

= (2n2 − 2n− 1)
{

1−
n2∑
k=0

(
n2

k

)
(q)n

2−k(−p4)kq−n
2
}

= (2n2 − 2n− 1)
{

1−
n2∑
k=0

(
n2

k

)
(q)−k(−p4)k

}

= (2n2 − 2n− 1)
{ n2∑
k=1

(
n2

k

)
(−1)k(q)−k(p4)k

}

≤ αn2(2n2 − 2n− 1)

n2∑
k=1

(
p4

q
)
k

= αn2(2n2 − 2n− 1)
{ p4

q − (p
4

q )
n2+1

1− p4

q

}
≤ αn2(2n2 − 2n− 1)

( p4

q − p4
)
, (3.4)

where αn2 = max
{( n2

n2−1
2

)
,
(n2

n2

2

)}
and q = 1− p2.

Hence, by (2.3), (2.4), (2.5) and (3.4), we had

|P (Wn ∈ A)− Poiλ(A)| ≤ (2n2 − 2n− 1)Cλ,n2,A

( p4

q − p4
)

and

|P (Wn ∈ A)− Poiλ(A)| ≤ (1− e−λ)(2n2 − 2n− 1)
( p4

q − p4
)

where λ = (2n2 − 2n− 1)(1− pi2)
2n(n−1)

and Cλ,n2,A = max
{( n2

n2−1
2

)
,
(n2

n2

2

)}
min

{
1, λ, 4(λ)

MA+1

}
.

Remark 3.1. It was observed from Theorem 1.1, for n beginning sufficiently large, we
could approximate the total number of bright sections of road by using Poisson distribu-

tion with mean λ = (2n2 − 2n− 1)(1− pi2)
2n(n−1)

.

Acknowledgements

Our gratitudes go to the anonymous referees for their valuable suggestions and con-
structive criticism which have helped improving the quality of the presentation of the
paper.



Bound on Poisson Approximation for the Street Light Problem ... 1147

References

[1] H. Ward, N. Shepherd, S. Robertson, M. Thomas, Night-Time Accidents: A Scoping
Stud,. Report to the AA Motoring Trust and Rees Jeffreys Road Fund, 2005.

[2] M. Jackett, W. Frith, Quantifying the impact of road lighting on road safety–A New
Zealand Study. IATSS research 36 (2) (2013) 139–145.

[3] R.V.G. Clarke, Improving Street Lighting to Reduce Crime in Residential Areas, US
Department of Justice, Office of Community Oriented Policing Services, 2008.

[4] C.M. Stein, A bound for the error in normal approximation to distribution of a sum of
dependent random variables, Proc. Sixth Berkeley Symapos, Math. Statist. Probab.
3 (1972) 583–602.

[5] L.H.Y. Chen, Poisson approximation for dependent trials, Annals of Probability 3
(1975) 534–545.

[6] A.D. Barbour, Poisson convergence and random graphs, Math.Proc. Cambridge.
Philos. 92 (1982) 349–359.

[7] S. Janson, Coupling and poisson approximation, Acta Applicandae Mathematicae
34 (1994) 7–15.

[8] K. Lange, Applied Probability, New York, Spinger-Verlag, 2003.

[9] K. Neammanee, Pointwise approximation of Poisson binomial by Poisson distribu-
tion, Stochastic Modelling and Applications. 6 (2003) 20–26.

[10] K. Teerapabolarn, K. Neammanee, Poisson approximation for sums of dependent
Bernulli random, Acta Math. 22 (2006) 87–89.

[11] T. Santiwipanont, K. Teerabolarn, Two formulas of nonuniform bounds on dependent
indicators, Thai J. Math. 5 (2006) 5–39.


	Introduction
	Poisson Approximation via Stein-Chen Method
	Proof of Thorem 1.1

